28
Rachels 1 Title: Do Indian and Pacific Ocean carbon isotopes reflect a change in the biological pump during the last deglaciation (~19,00011,000 years ago)? Authors: Aaron Rachels 1 , Emma Gleeman 1 , Andreas Schmittner 2 Affiliations: 1 Brown University; Department of Earth, Environmental, and Planetary Sciences; Providence, Rhode Island 2 Oregon State University; College of Earth, Oceanic, and Atmospheric Sciences; Corvallis, Oregon Abstract: The biological pump is a significant control on atmospheric carbon dioxide levels due to its ability to sequester carbon in the deep ocean. δ 13 C measured from the carbonate shells of benthic foraminifera serves as a proxy for biologic pump efficiency, so analyzing these carbon isotope ratios from sediment cores can provide information about the pump’s efficiency in the past. Here we compile and analyze δ 13 C data from the Pacific and Indian Ocean basins during the last deglaciation (19,500 to 10,500 years ago), when atmospheric carbon dioxide levels increased about 80 ppm. Hundreds of published results and unpublished data were assembled into a database and selected for records of at least millennial time resolution. The resulting 59 records were analyzed in 8 regions, divided based on depth (intermediate [< 2 km] and deep [> 2 km]), and geographic location (North, Equatorial, and SouthPacific and Indian Ocean). Overall, in both basins, δ 13 C increased throughout the deglaciation, indicating that the deglacial biological pump became more inefficient. Introduction: During the last deglaciation, atmospheric carbon dioxide increased by about 80 ppm (Marcott et al., 2014). However, the mechanisms for this increase are not

Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     1  

Title:  Do  Indian  and  Pacific  Ocean  carbon  isotopes  reflect  a  change  in  the  biological  

pump  during  the  last  deglaciation  (~19,000-­‐11,000  years  ago)?  

 

Authors:  Aaron  Rachels1,  Emma  Gleeman1,  Andreas  Schmittner2  

 

Affiliations:  1Brown  University;  Department  of  Earth,  Environmental,  and  Planetary  Sciences;      

Providence,  Rhode  Island  2Oregon  State  University;  College  of  Earth,  Oceanic,  and  Atmospheric  Sciences;  

Corvallis,  Oregon  

 

Abstract:  

The  biological  pump  is  a  significant  control  on  atmospheric  carbon  dioxide  

levels  due  to  its  ability  to  sequester  carbon  in  the  deep  ocean.  δ13C  measured  from  

the  carbonate  shells  of  benthic  foraminifera  serves  as  a  proxy  for  biologic  pump  

efficiency,  so  analyzing  these  carbon  isotope  ratios  from  sediment  cores  can  provide  

information  about  the  pump’s  efficiency  in  the  past.  Here  we  compile  and  analyze  

δ13C  data  from  the  Pacific  and  Indian  Ocean  basins  during  the  last  deglaciation  

(19,500  to  10,500  years  ago),  when  atmospheric  carbon  dioxide  levels  increased  

about  80  ppm.  Hundreds  of  published  results  and  unpublished  data  were  assembled  

into  a  database  and  selected  for  records  of  at  least  millennial  time  resolution.  The  

resulting  59  records  were  analyzed  in  8  regions,  divided  based  on  depth  

(intermediate  [<  2  km]  and  deep  [>  2  km]),  and  geographic  location  (North-­‐,  

Equatorial-­‐,  and  South-­‐Pacific  and  Indian  Ocean).  Overall,  in  both  basins,  δ13C  

increased  throughout  the  deglaciation,  indicating  that  the  deglacial  biological  pump  

became  more  inefficient.    

 

Introduction:  

During  the  last  deglaciation,  atmospheric  carbon  dioxide  increased  by  about  

80  ppm  (Marcott  et  al.,  2014).  However,  the  mechanisms  for  this  increase  are  not  

Page 2: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     2  

well  understood.  Schmittner  and  Lund  (2015)  using  compiled  δ13C  data  from  the  

Pacific  and  Indian  ocean  basins  and  modeling  suggest  that  a  shutdown  of  the  

Atlantic  Meridional  Overturning  Circulation  (AMOC)  could  have  altered  the  

efficiency  of  the  biological  pump  as  one  potential  mechanism  that  could  explain  the  

initial  CO2  rise  from  the  late  Last  Glacial  Maximum  (20,000  years  ago)  to  the  

Heinrich  Stadial  event  1  (HS1;  18-­‐15,000  years  ago).    However,  only  a  few  

datapoints  from  these  ocean  basins  were  included  in  their  data  compilation.  

The  biologic  pump  is  an  important  control  on  atmospheric  carbon  dioxide  

levels  because  it  enables  sequestration  of  carbon  at  ocean  depths.  Understanding  

the  interplay  between  biological  pump  efficiency,  ocean  circulation,  and  

atmospheric  carbon  dioxide  levels  during  the  last  deglaciation  would  both  enable  a  

more  comprehensive  understanding  of  how  changes  in  global  paleoclimate  lead  to  

modern-­‐day  climate  and  provide  a  more  solid  foundation  for  post-­‐Last  Glacial  

Maximum  (LGM)  paleoclimate  work  in  the  future.    

Carbon  isotopes  are  usually  reported  as  δ13C,  equal  to !"!!"! !"#$%&!"!!"! !"#$%#&%

− 1 ∗

1000  ‰,  which  is  a  ratio  of  the  two  stable  isotopes  of  carbon  normalized  to  a  

standard.  It  can  be  used  as  a  proxy  for  biologic  efficiency  due  to  photosynthetic  

fractionation.  The  global  mean  of  δ13C  in  oceanic  surface  water  is  about  2‰  while  

phytoplankton  fractionate  the  light  carbon  isotope  during  photosynthesis  at  a  ratio  

of  about  -­‐21‰  (Schmittner  et  al.  2013).  When  these  phytoplankton  die  and  sink  to  

depths,  they  are  respired  and  their  carbon  is  released  back  into  the  water,  meaning  

that  δ13C  at  ocean  depths  is  dependent  on  the  efficiency  of  photosynthetic  activity  at  

the  surface.    

In  addition  to  δ13C,  many  models  and  proxies  of  various  data  types  suggest  a  

biological  pump  reduction  during  the  last  deglaciation.  Galbraith  and  Jaccard  (2012)  

examine  fractionation  of  nitrogen  isotopes  to  conclude  that  reduced  biologic  

efficiency  diminished  deep-­‐ocean  carbon  storage,  while  Schmittner  and  Galbraith  

(2008)  use  paleoclimate  modeling  to  suggest  that  an  AMOC  shutdown  could  result  

in  a  less  efficient  biological  pump  and  in  turn,  a  20-­‐30  ppm  increase  in  atmospheric  

Page 3: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     3  

CO2  concentrations.  If  true,  this  mechanism  would  be  reflected  in  a  δ13C  increase  in  

the  Southern,  Indian,  and  Pacific  oceans  during  the  early  part  of  the  deglaciation  

from  19-­‐15  kyr  BP  (Schmittner  and  Lund,  2015).  This  inefficient  pump  could  have  

been  caused  through  the  following  mechanism:  if  downwelling  of  nutrient-­‐poor  

NADW  decreases,  upwelling  of  nutrient-­‐rich  water  must  also  decrease  at  other  

locations,  hindering  biologic  efficiency.  As  a  result,  concentrations  of  preformed  

nutrients  (such  as  phosphate)  increase  at  depth  while  remineralized  nutrient  

concentrations  decrease;  the  sum  of  the  two  remains  constant  on  short  time  scales,  

as  the  residence  time  of  phosphate  is  estimated  to  be  about  20,000  years  or  greater  

(Paytan  and  McLaughlin,  2007).  Furthermore,  remineralized  phosphate  

concentrations  and  δ13C  are  anticorrelated  due  to  the  preferential  fractionation  of  

light  carbon  isotopes  by  plankton  during  photosynthesis  (in  which  phosphate  is  also  

consumed).  Thus,  a  decrease  in  biologic  pump  efficiency  should  be  accompanied  by  

both  a  decrease  in  remineralized  phosphate  concentrations  and  an  increase  in  δ13C.  

This  signal  can  best  be  measured  in  benthic  foraminifera  in  the  sedimentary  record  

that  incorporate  carbon  into  their  carbonate  shells  with  little  to  no  isotopic  

fractionation  (Dunbar  and  Wefer,  1984;  Duplessy  et  al.  1984).  Oliver  et  al.  (2010)  

provide  a  synthesis  of  marine  sediment  core  proxies  over  the  past  150,000  years,  

among  them  δ13C,  and  these  data  do  indicate  an  increase  in  Pacific  and  Indian  δ13C  

during  the  deglaciation.  However,  here  we  will  attempt  to  study  changes  at  higher  

temporal  (millennial)  resolution  and  increase  the  number  of  analyzed  cores,  

resulting  in  a  more  comprehensive  analysis.      

  To  detect  whether  a  deglacial  increase  in  δ13C  does  in  fact  occur,  thousands  of  

data  points  gathered  from  a  plethora  of  cores  will  be  analyzed  to  ensure  that  any  

observed  trend  is  regional,  not  local.  Thus,  since  δ13C  data  from  many  individual  

publications  exist,  a  compilation  and  analysis  of  them  all  would  be  best  suited  to  

answer  the  research  question.  As  a  result,  the  research  goals  intersect  with  a  much  

larger  project,  the  Ocean  Circulation  and  Carbon  Cycling  project  (OC3).  The  goal  of  

this  project  is  to  compile  the  largest  existing  δ13C  dataset  on  record,  synthesizing  

both  published  results  and  unpublished  data.  This  would  provide  new  evidence,  

Page 4: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     4  

using  δ13C  data  from  benthic  foraminifera,  concerning  the  efficiency  of  the  biological  

pump  and  atmospheric  CO2  levels  at  many  different  times  in  many  different  

locations.  Thus,  through  this  project,  one  control  on  paleo-­‐atmospheric  carbon  

dioxide  concentrations  can  be  more  thoroughly  understood,  but  more  importantly,  a  

foundation  for  future  paleoclimate  analyses  and  a  baseline  OC3  dataset  will  be  

established.  

 

Materials  and  Methods:  

The  first  task  in  this  project  was  to  determine  the  best  method  to  not  only  

address  the  scientific  question  at  hand,  but  to  form  an  accessible  and  simple  

database.  Future  scientists  who  desire  either  to  add  data  to  the  OC3  project  or  use  

its  data  should  have  no  trouble  doing  so.  The  chosen  format  for  such  a  database  was  

an  Excel  spreadsheet;  such  a  format  is  easy  to  use  and  format.  Furthermore,  should  

any  analyses  of  OC3  data  require  more  analytical  software,  transferring  data  to  

another  file  type  is  not  difficult.    

  The  spreadsheet  itself,  available  in  Supplementary  Materials  #1,  was  

structured  to  contain  data  from  all  available  sites  in  one  spreadsheet;  these  can  be  

found  in  the  “Master”  tab.  Within  this  tab,  information  concerning  location,  core  

depth,  age  model,  age  model  resolution,  foraminifera  species,  δ13C,  δ18O,  and  

citation/original  source  are  available  for  each  site.  This  encompasses  many  types  of  

filters  that  could  be  used  to  analyze  paleoclimatic  isotope  data.    If  any  additional  

data  were  required  for  any  given  site,  it  would  need  to  be  located  in  the  original  

publication  (provided  in  the  “Author”  column).    

  Another  goal  for  this  database,  in  addition  to  size  and  accessibility,  was  to  

make  age  models  easily  updatable,  so  that  its  scientific  rigor  could  continue  to  

improve  as  age  models  do.  To  accomplish  this,  the  database  was  structured  so  that  

each  individual  core  has  two  tabs:  a  data  tab  and  an  age  tab,  consistent  with  a  

community  wide  agreement  within  OC3.  The  information  in  each  data  tab  is  

identical  to  the  information  contained  in  the  Master  tab;  the  data  is  just  subdivided  

by  site.  Each  age  tab  however  contains  information  about  how  the  age  model  was  

Page 5: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     5  

generated;  examples  of  this  are  radiocarbon  tie-­‐lines,  δ18O  alignment,  or  simply  

source  information.  These  tabs  are  crucial  to  the  goal  of  updatable  age  models;  

whenever  anybody  uses  data  from  a  specific  site  and  has  an  improved  age  model,  

the  age  model  in  the  data  (and  Master)  tabs  should  be  updated  while  information  on  

the  changes  made  should  be  recorded  in  the  age  tab.  Through  this  method,  the  OC3  

database  will  not  become  obsolete.    

  The  data  compiled  into  the  OC3  database  at  this  time  primarily  comes  from  

five  sources:  Olivier  Cartapanis,  NOAA,  Pangaea,  Andreas  Schmittner,  and  Lorranie  

Lisiecki.  The  Cartapanis  data  was  originally  in  the  form  of  a  Matlab  database  

comprised  of  data  from  NOAA  and  Pangaea  submitted  prior  to  2011.  This  data,  and  

the  script  which  extracted  the  data  from  Matlab  to  an  Excel  spreadsheet  form,  are  

available  in  Supplementary  Materials  #2.  These  data  comprise  the  plurality  of  the  

OC3  database  at  this  time,  although  much  work  needs  to  be  done  improving  and  

locating  age  models.  Since  the  Cartapanis  database  only  had  data  published  up  to  

2011,  the  NOAA  database  was  additionally  mined  for  carbon  and  oxygen  isotope  

datasets  post-­‐dating  2011.  Age  models  from  these  data  are  generally  quite  precise  

and  come  from  the  initial  publication  source.    

  The  final  two  data  sources  came  from  two  paleoclimate  researchers,  Andreas  

Schmittner  and  Lorraine  Lisiecki,  who  have  specifically  focused  on  the  transition  

after  the  Last  Glacial  Maximum.  The  Lisiecki  data  also  has  internally  consistent  age  

models  whose  δ18O  time  series  have  been  aligned,  making  them  a  valuable  tool  for  

generating  age  models  for  other  sites  in  the  database.  While  the  combination  of  all  

four  data  sources  did  result  in  some  duplicate  data  sets  being  added  to  the  OC3  

database,  whenever  a  duplicate  is  found  it  is  deleted.  Additionally,  if  duplicate  data  

sets  were  present  with  different  age  models,  both  age  models  are  provided  in  that  

site’s  age  tab.    

  Upon  the  addition  of  the  data  from  all  four  sources,  the  OC3  Master  Tab  had  

112,710  data  points  spanning  495  different  drilling  sites  (Figure  1).  However,  to  

conduct  analyses  of  the  Pacific  and  Indian  ocean  basins,  Excel’s  sort  function  was  

used  to  extract  the  applicable  data.  First,  the  data  was  sorted  by  Age  (Column  K)  and  

Page 6: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     6  

all  of  the  data  which  fell  between  10,000  and  20,000  years  ago  were  copied  into  a  

new  spreadsheet.  Then,  the  data  were  sorted  by  longitude  to  most  easily  eliminate  

the  sites  in  the  Atlantic  Ocean.  70°W  and  30°E  were  used  as  initial  cutoffs,  but  each  

site’s  location  was  manually  checked  to  eliminate  points  in  the  Gulf  of  Mexico  and  

various  European  seas.  Finally,  the  data  were  sorted  by  age  resolution  and  any  data  

set  with  a  resolution  lower  than  a  millennial  time  scale  was  eliminated,  as  that  

resolution  would  be  too  coarse  for  these  analyses.  After  this  filtration,  data  from  59  

sites  remained  (Figure  2).    

  To  best  analyze  these  data  for  global  shifts  in  carbon  isotope  ratios,  averages  

were  calculated,  as  the  examination  of  59  individual  time  series  would  have  been  

needlessly  tedious  and  difficult  to  succinctly  describe.  However,  different  parts  of  

the  ocean  basins  behave  differently  due  to  circulation  patterns;  there  may  be  

variations  with  respect  to  site  depth  as  well.  Thus,  the  data  were  divided  into  eight  

different  regions  according  to  both  their  geographic  location  and  depth.  The  

geographic  subdivisions  were  the  North  Pacific,  Equatorial  Pacific,  South  Pacific,  and  

Indian;  each  geographic  subdivision  was  further  divided  into  both  an  intermediate  

zone  (<2000  meters  depth)  and  a  deep  zone  (>2000  meters  depth).  Within  each  

zone,  averages  of  available  time  series  should  reflect  the  widespread  change  in  that  

area  during  the  last  deglaciation.    

  To  average  the  time  series,  each  individual  site’s  data  set  was  first  averaged  

to  1000  year  intervals:  10,500  years  ago,  11,500  years  ago…  19,500  years  ago.  As  a  

result,  each  individual  site  was  reduced  to  a  ten-­‐point  data  set  with  identical  ages.  

Then,  the  “site-­‐specific  averages”  within  a  single  zone  were  averaged  to  form  a  

“zone-­‐specific  average.”  It  is  these  zone-­‐specific  averages  that  should  shed  light  on  

the  changes  in  biologic  pump  efficiency  beginning  19,500  years  ago.    

Results:

The  current  magnitude  of  the  OC3  database  enables  analyses  with  sizable  

data  densities.  However,  as  shown  in  Figure  1,  the  Pacific  and  Indian  Oceans  are  not  

nearly  as  well  sampled  as  the  Atlantic.  A  potential  reason  for  this  is  one  of  the  most  

reliable  genera  of  foraminifera,  cibicoides,  does  not  thrive  as  well  in  the  more  acidic  

Page 7: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     7  

bottom  water  of  the  Pacific  and  Indian  oceans.  Thus,  after  dividing  the  applicable  

data  into  zones  (Figures  3  and  4),  the  data  density  within  some  of  these  zones  is  

relatively  low,  such  as  in  the  Southern  and  Equatorial  Intermediate  Pacific.  

Conversely,  some  areas  are  quite  well  sampled,  such  as  in  the  Equatorial  Deep  

Pacific.  Regardless,  a  goal  of  OC3  is  for  the  database  to  be  dynamic,  not  static,  so  

while  at  this  time  the  data  density  within  some  of  these  zones  is  not  ideal,  they  will  

only  improve  with  time.  Despite  sporadic  low  data  density,  after  calculating  the  

zonal  average  time  series,  a  clear  trend  became  apparent;  an  increase  in  δ13C  

through  the  deglaciation.    

  In  the  Intermediate  North  Pacific  (INP),  this  trend  with  an  increase  of  about  

0.5  permil  is  especially  apparent  at  the  beginning  of  the  deglaciation  from  19.5  to  

16.5  ka,  before  roughly  equilibrating  by  the  end  of  Heinrich-­‐Stadial  1  (Figure  5).  An  

increase  in  δ13C  is  also  observable  in  the  Deep  North  Pacific  (DNP)  (Figure  6)  

throughout  the  entire  time  series.  The  magnitude  of  these  changes,  both  with  

respect  to  the  initial  change  (19,500-­‐16,500  years  ago)  and  the  total  change  

(19,500-­‐10,500  years  ago)  is  shown  in  Table  1.  The  standard  deviation  of  the  trends,  

calculated  as  the  standard  deviation  of  the  trend  from  all  individual  records,  is  also  

provided  in  this  figure;  in  most  cases  the  standard  deviation  is  smaller  than  the  

observed  trend,  indicating  a  significant  trend.  In  the  future,  as  more  data  is  added  to  

the  database,  standard  deviations  may  decrease  further.    

  In  the  Intermediate  and  Deep  Equatorial  Pacific  (IEP,  DEP)  (Figures  7  and  8,  

respectively),  the  increase  in  δ13C  over  the  entire  deglaciation  can  again  be  

observed,  although  in  the  IEP  most  of  that  increase  (~0.2  permil)  appears  in  the  

early  deglaciation  before  year  16,000,  whereas  in  the  DEP  most  of  the  increase  of  

~0.15  permil  occurs  late  after  year  14,000.  However,  a  δ13C  decrease  in  the  IEP  

occurs  from  16,500  to  12,500  years  ago,  with  the  largest  decrease  of  0.1  permil  

around  year  13,000,  contrary  to  the  overall  observed  increasing  trends.  This  

anomaly  could  perhaps  be  due  to  the  low  data  density  within  this  zone,  but  a  

potential  explanation  for  this  will  be  discussed  below.    

Page 8: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     8  

  The  Intermediate  and  Deep  South  Pacific  (ISP,  DSP)  (Figures  9  and  10,  

respectively)  also  show  a  gradual  increase  in  δ13C  throughout  the  majority  of  the  

deglaciation.  As  shown  in  Table  1,  the  magnitude  of  the  change  is  also  particularly  

large  in  these  zones  (~0.5  to  0.7  permil)  and  most  of  that  increase  happens  in  the  

early  part  of  the  deglaciation.  Finally,  an  increase  in  δ13C  is  recorded  in  the  

Intermediate  and  Deep  Indian  (II,  DI)  (Figures  11  and  12,  respectively)  as  well,  

although  the  increase  is  quite  small  in  the  II.  Similar  to  the  IEP  and  ISP,  a  temporary  

δ13C  decrease  is  observed  in  the  II,  although  this  increase  occurs  a  couple  thousand  

years  earlier.  Again,  while  this  trend  could  be  accurate,  the  II  is  another  zone  with  

particularly  low  data  density,  meaning  the  trends  observed  in  a  small  number  of  

sites  cannot  be  assumed  to  be  representative  of  the  entire  region  with  the  same  

degree  of  confidence.    

  In  summary,  while  there  are  a  couple  of  slight  deviations  from  the  overall  

trend,  a  basin-­‐wide  increase  in  δ13C  is  apparent  in  both  the  Pacific  and  Indian  

oceans.  This  trend  seems  to  be  most  extreme  in  the  early  part  of  the  deglaciation,  

but  is  mostly  continuous  throughout  particularly  in  the  deep,  whereas  some  of  the  

intermediate  zones  show  a  temporary  decrease.  All  of  the  time  series  can  be  

observed  together  in  Figure  13.  

 

Discussion:  

  δ13C  is  a  proxy  for  biologic  pump  efficiency,  so  these  results  directly  display  

how  deglaciation  affected  it.  The  data  clearly  shows  basin-­‐wide  trends  to  a  more  

inefficient  biological  pump;  in  turn,  this  would  enable  less  carbon  sequestration  at  

ocean  depths,  which  would  likely  accelerate  deglaciation.  This  is  a  potential  

explanation  for  why,  in  some  zones,  the  biological  pump  becomes  drastically  more  

inefficient  in  the  first  3,000  years,  and  then  gradually  more  inefficient  throughout  

the  remaining  7,000.    

  While  the  data  clearly  show  the  trend  throughout,  the  triggering  mechanism  

may  remain  somewhat  nebulous.  However,  as  previously  outlined,  the  changes  

displayed  in  these  graphs  are  contemporaneous  with  the  initial  ice  sheet  melt  and  

Page 9: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels     9  

resultant  AMOC  shutdown/reduction  during  HS1.  Based  on  known  ocean  circulation  

patterns-­‐  the  Pacific  Ocean  receives  about  half  its  bottom  water  from  the  Atlantic  

and  half  from  the  Southern  Ocean-­‐  the  biological  pump  did  not  just  become  more  

inefficient  in  the  Pacific/Indian  Ocean,  but  globally.  Thus,  the  AMOC  shutdown  

during  HS1  may  have  acted  as  the  triggering  mechanism  for  continued  deglaciation  

and  biologic  inefficiency,  while  not  definitively  proven  by  this  data,  is  certainly  

supported.    

  Two  more  subtle  trends  presented  in  the  data,  beyond  the  general  global  δ13C  

increase,  merit  further  examination.  First,  additionally  indicating  the  likelihood  the  

AMOC  shutdown,  the  magnitudes  of  the  δ13C  increases  during  the  first  2-­‐3  thousand  

years  of  the  deglaciation  align  rather  closely  with  the  modeled  changes  presented  by  

Schmittner  and  Lund  (Figure  15).  Figure  14  shows  change  of  about  .2-­‐.3  for  the  

majority  of  the  Pacific  with  a  more  drastic  increase  of  .56  in  the  INP,  which  is  

approximately  what  Figure  15  predicts.  As  the  OC3  database  grows  and  its  data  

density  increase,  a  contour  map  based  solely  on  actual  data,  not  modeled,  will  be  

able  to  be  generated  and  compared  more  rigorously  to  the  Schmittner/Lund  model.  

  Furthermore,  the  II,  ISP,  and  IEP  actually  show  a  temporary  decrease  in  δ13C  

about  midway  through  the  deglaciation.  This  is  slightly  puzzling,  especially  since  a  

similar  trend  is  not  observed  in  surrounding  zones,  making  a  relatively  local  

decrease  more  difficult  to  explain.  However,  one  potential  explanation  may  be  that  

the  AMOC  vigorously  restarted  about  14,500  years  ago.  Such  a  restart  would  have  

caused  opposite  trends  to  those  shown  in  Fig.  15  and  Table  1  and  may  be  consistent  

with  the  observed  decreases  in  the  II,  ISP,  and  IEP.  The  data  in  these  three  regions  

suggest  that  this  could  have  happened,  but  data  density  needs  to  be  significantly  

increased  to  support  this  with  any  certainty.  

 Conclusions:   In  conclusion,  these  results  are  an  exciting  first  step  in  using  the  compiled  

database  to  better  understand  the  changes  that  occurred  during  the  last  

deglaciation.  These  data  are  some  of  the  most  temporally  and  spatially  thorough  to  

have  ever  been  analyzed  during  this  time  frame.  However,  as  is  the  goal  of  OC3,  the  

Page 10: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels    10  

density  and  age  models  of  these  data  will  have  to  be  improved  to  enable  more  

rigorous  analyses  in  the  future.  Furthermore,  this  paper  did  not  analyze  the  most  

thoroughly  sampled  basin,  the  Atlantic,  which  is  the  topic  of  the  companion  paper  

by  Gleeman  et  al.  In  sum,  this  analysis  is  likely  just  the  first  of  many  more  analyses  

to  come  as  a  result  of  OC3’s  goals.  

  However,  to  improve  the  quality  of  these  analyses,  the  database  requires  

additional  work.  The  biggest  obstacle  in  this  project  is  age  model  consistency;  since  

different  scientists  applied  age  models  to  most  of  these  cores,  accurately  comparing  

them  temporally  is  quite  difficult.  Thus,  they  need  to  be  normalized  to  internally  

consistent  age  models.    

Two  factors  will  make  this  possible:  radiocarbon  tie-­‐lines  and  alignment  of  

δ18O.  In  general,  radiocarbon  analyses  are  quite  expensive  and  therefore  relatively  

scarce.  They  often  help  with  constraining  age  models,  but  in  the  case  of  this  

database,  it  is  nearly  impossible  to  base  entire  age-­‐models  solely  upon  them.  Thus,  

alignment  of  δ18O  will  have  to  be  the  primary  mechanism  used.  The  fractionation  of  

oxygen  isotopes  is  dependent  both  on  ice  sheet  volume  and  temperature,  both  of  

which  hold  relatively  constant  controls  across  the  “zones”  formed  in  this  project.  

Thus,  within  a  zone,  δ18O  time  series  of  different  cores  should  align  closely  if  the  

cores’  age  models  are  consistent.  Some  δ18O  alignment  was  used  in  this  project  to  

ensure  the  validity  of  the  data;  Figure  15  is  an  example  of  the  δ18O  taken  from  all  the  

cores  in  the  DNP  region.  This  figure  highlights  some  of  the  difficulties  facing  age  

model  consistency  checks;  while  these  curves  may  roughly  align,  the  data  sets  are  all  

have  different  resolutions  and  are  from  different  locations.  In  the  case  of  these  

analyses,  cores  with  egregiously  terrible  alignment  were  discarded  through  a  simply  

visual  check.  However,  a  tool  much  more  advanced  than  simple  spot  checks  is  

necessary.  Tuning  all  age  models  in  the  OC3  database  to  be  internally  consistent  is  

vital  to  the  database’s  value  and  growth.  

The  key  to  do  this  will  be  Match  software  (Lisiecki  and  Herbert,  2007),  the  

purpose  of  which  is  to  take  δ18O  time  series  of  different  cores  and  to  align  their  age  

models.  Note  that  every  single  site  in  the  OC3  database  has  both  carbon  and  oxygen  

Page 11: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels    11  

isotope  data,  so  it  is  possible  to  use  this  software  on  every  single  core.  Some  of  the  

OC3  database  has  already  had  this  alignment  applied  to  it;  these  sites  are  

highlighted  in  a  pale  green  and  have  a  source  of  “Peterson.”  However,  the  large  

majority  of  this  database  still  needs  the  Match  software  application.  This  will  not  

only  greatly  increase  the  size  of  data  with  age  models  in  the  database,  but  improve  

the  quality  of  the  age  models  already  present  as  well.    

   

Acknowledgements: I thank the National Science Foundation and Oregon State University REU

program for providing me with the funding and opportunity for this summer research

project. I would also like to thank Olivier Cartapanis, Lorraine Lisiecki, and Caryle

Peterson for their contributions to the OC3 database. I would finally like to thank

Andreas Schmittner not only for his data contributions, but also for his guidance and

advising in the entirety of this project.

References: Dunbar, R. B., & Wefer, G. (1984). Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin. Marine Geology, 59(1), 215-225. Duplessy, Jean-Claude, et al. "13 C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation." Quaternary Research 21.2 (1984): 225-243. Jaccard, S. L., & Galbraith, E. D. (2012). Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience,5(2), 151-156. Lisiecki, L.E., and T.D. Herbert (2007), Automated composite depth scale construction and estimates of sediment core extensions, Paleoceanography, 22, PA4213, doi:10.1029/2006PA001401.

Marcott, Shaun A., et al. "Centennial-scale changes in the global carbon cycle during the last deglaciation." Nature 514.7524 (2014): 616-619. Oliver, K. I., Hoogakker, B. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M., Edwards, N. R., & Elderfield, H. (2010). A synthesis of marine sediment core δ 13 C data over the last 150 000 years. Climate of the Past, 6, 645-673.

Page 12: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Rachels    12  

Paytan, A., & McLaughlin, K. (2007). The oceanic phosphorus cycle. Chemical Reviews, 107(2), 563-576.

Schmittner, A., & Galbraith, E. D. (2008). Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature, 456(7220), 373-376. Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., & Westberry, T. K. (2013). Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ 13 C) in the ocean. Biogeosciences, 10(9), 5793-5816.

Schmittner, A., & Lund, D. C. (2015). Early deglacial Atlantic overturning decline and its role in atmospheric CO 2 rise inferred from carbon isotopes (δ 13 C).Climate of the Past, 11(2), 135-152. Stern, J. V., & Lisiecki, L. E. (2014). Termination 1 timing in radiocarbon‐dated regional benthic δ18O stacks. Paleoceanography, 29(12), 1127-1142. Figures and Tables:

Page 13: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 1: The above �gure shows the coordinates of every site currently in the OC3 database.

Page 14: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 2: The above �gures shows the coordinates of all the sites with high-resolution data from the Paci�c and Indian oceans during the last deglaciation.

Page 15: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

-6000

-5000

-4000

-3000

-2000

-1000

0 -60 -40 -20 0 20 40 60

LatitudeSite D

epth (m)

DSP

ISP

DEP

IEP INP

DNP

Figure 3: The above �gure shows the distribution of remaining sites after the entire OC3 database was �ltered for high-resolution Paci�c data spanning 20,000 to 10,000 years ago.

Page 16: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

-3500

-3000

-2500

-2000

-1500

-1000

-500

0 -50 -40 -30 -20 -10 0 10 20

Dep

th (

m)

Latitude

DI

II

Figure 4: The above �gure shows the distribution of remaining sites after the entire OC3 database was �ltered for high-resolution Indian data spanning 20,000 to 10,000 years ago.

Page 17: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 5: The above �gure shows the changes in d13C during the deglaciation in the Intermediate North Paci�c. The increase was initial quite large, before leveling out to a more gradual rate of change.

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Intermediate North Pacific

Page 18: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 6: The above �gure shows the changes in d13C during the deglaciation in the Deep North Paci�c. The increase is of relatively small mangitude and gradual.

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Deep North Pacific

Page 19: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 7: The above �gure shows the changes in d13C during the deglaciation in the Deep North Paci�c. The increase is steady until about 15,500 years until beginning to decrease.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Intermediate Equatorial Pacific

Page 20: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 8: The above �gure shows the changes in d13C during the deglaciation in the Deep Equatorial Paci�c. The increase is relatively steady throughout the deglaciation, but takes a couple thousand years to begin.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Deep Equatorial Pacific

Page 21: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 9: The above �gure shows the changes in d13C during the deglaciation in the Intermediate South Paci�c. The increase is of greater magnitude initially, but shows a slight increase at about 14,000 years ago (contemporaneous with

the potential AMOC restart).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Intermediate South Pacific

Page 22: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 10: The above �gure shows the changes in d13C during the deglaciation in the Deep South Paci�c. The increase is of greater magnitude initially, before �uctuating much more unpredictably starting at 14,000 years ago.

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Deep South Pacific

Page 23: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 11: The above �gure shows the changes in d13C during the deglaciation in the Intermediate Indian. The increase is very slight for the �rst few thousand years and temporairily increases about 16,000 years ago.

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Intermediate Indian

Page 24: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 12: The above �gure shows the changes in d13C during the deglaciation in the Deep Indian. The increase is fairly consistent throughout the deglaciation.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

Deep Indian

Page 25: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 13: The above �gure shows the d13C time series from all of the latitudinal/depth zones. While each individual time series may have unique characteristics, the clear trend is an increase in d13C throughout the time period.

-2

-1.5

-1

-0.5

0

0.5

1 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

d13C

Years BP

All Sites: d13C Time Series (20,000-10,000 Years BP)

North Pacific (I)

North Pacific (D)

Equatorial Pacific (I)

Equatorial Pacific (D)

South Pacific (I)

South Pacific (D)

Indian (I)

Indian (D)

Page 26: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 15: The above �gure is taken from (Schmittner and Lund, 2015). These are modeled changes in each ocean basin 2500 years after the deglaciation. Note the signi�cant increase in the INP is consistent with Figure 5.

Page 27: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Figure 16: The above �gure shows all of the d18O time series from the INP region. As can be seen, the curves are in apprxoaimte alignment, but on a �ner scale these cruves represent part of the important work that lies ahead on the OC3 database.

2

2.5

3

3.5

4

4.5

5

5.5

9000 11000 13000 15000 17000 19000 21000

d18O

Years Before Present

d18O Time Series: Intermediate North Pacific

AHF16832

EW9504-05

HLY0202-51J

EW9504-9

ODP167-101

KT90-921

Page 28: Rachels(1( - Past Global Changespastglobalchanges.org/download/docs/working_groups/oc3/... · 2016. 7. 25. · Rachels(4(usingδ13C(data(frombenthic(foraminifera,concerningtheefficiencyofthebiological(

Changes in d13C

Table 1: The above �gure shows changes in d13C in di�erent ocean “zones”across two di�erent time frames: the entire deglaciation (19,5000-10,500 Years BP) and the very beginning of the deglaciation (19,500-16,500 Years BP).