24
Quantum simulations of the Abelian Higgs model Alexei Bazavov 1 and Yannick Meurice 2 1 Michigan State University 2 University of Iowa arXiv:1803.11166 Work done with Shan-Wen Tsai (UCR), Judah Unmuth-Yockey (U. Iowa/Syracuse), and Jin Zhang (UCR) ANL, 3/29/18 Alexei Bazavov 1 and Yannick Meurice 2 Quantum Abelian Higgs ANL, 3/29/18 1 / 24

Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Quantum simulations of the Abelian Higgs model

Alexei Bazavov1 and Yannick Meurice2

1 Michigan State University2 University of IowaarXiv:1803.11166

Work done with Shan-Wen Tsai (UCR), Judah Unmuth-Yockey (U. Iowa/Syracuse), and JinZhang (UCR)

ANL, 3/29/18

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 1 / 24

Page 2: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Talk Content

Motivations from the lattice gauge theory point of viewThe Abelian Higgs model on a 1+1 lattice (PRD 92, 076003)The HamiltonianData collapse for Polyakov’s loop (arXiv:1803.11166)Ladders of Rydberg atomsA proof of principle: data collapse for the quantum Ising modelConclusions

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 2 / 24

Page 3: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Motivations for quantum simulations in lattice gaugetheory and high energy physics

Lattice QCD has been very successful at establishing that QCD isthe theory of strong interactions, however some aspects remaininaccessible to classical computing.Finite density calculations: sign problem (MC calculations withcomplex actions are only possible if the complex part is smallenough to be handled with reweighing). Relevant for heavy ioncollisions.Real time evolution: requires detailed information about theHamiltonian and the states which is usually not available fromconventional MC simulations at Euclidean time. Collider jetphysics from first principles?Quantum simulations with optical lattices were successful inCondensed Matter (Bose-Hubbard), but so far no actualimplementations for lattice gauge theory

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 3 / 24

Page 4: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

The Abelian Higgs model on a 1+1 space-time lattice

a.k.a. lattice scalar electrodynamics. Field content:• Complex (charged) scalar field φx = |φx |eiθx on space-time sites x• Abelian gauge fields Ux ,µ = exp iAµ(x) on the links from x to x + µ• FµνFµν appears in products of U ’s around a plaquette in the µνplane:Ux ,µν = ei(Aµ(x)+Aν(x+µ)−Aµ(x+ν)−Aν(x))

• βpl. = 1/g2, g is the gauge coupling and κ is the hopping coefficient

S = −βpl.∑

x

∑ν<µ

ReTr [Ux ,µν ] + λ∑

x

(φ†xφx − 1

)2+∑

x

φ†xφx

− κ∑

x

d∑ν=1

[eµch.δ(ν,t)φ†xUx ,νφx+ν + e−µch.δ(ν,t)φ†x+νU†x ,νφx

].

Z =

∫Dφ†DφDUe−S

Unlike other approaches (Reznik, Zohar, Cirac, Lewenstein, Kuno,....)we will not try to implement the gauge field on the optical lattice.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 4 / 24

Page 5: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

The large λ limit (finite λ will not be considered here)

λ→∞, |φx | is frozen to 1, or in other words, theBrout-Englert-Higgs mode becomes infinitely massive.We are then left with compact variables of integration in theoriginal formulation (θx and Ax ,ν) and the discrete Fourierexpansions exp[2κνcos(θx+ν − θx + Ax ,ν)] =∑∞

n=−∞ In(2κν)exp(ın(θx+ν − θx + Ax ,ν))

This leads to expressions of the partition function in terms ofdiscrete sums. This is important for quantum computing.When g = 0 we recover the O(2) model (KT transition)

We use the following definitions:

tn(z) ≡ In(z)/I0(z)

For z non zero and finite, we have 1 > t0(z) > t1(z) > t2(z) > · · · > 0In addition for sufficiently large z,

tn(z) ' 1− n2/(2z) will be used to take the time continuum limitAlexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 5 / 24

Page 6: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Tensor Renormalization Group formulation

As in PRD.88.056005 and PRD.92.076003, we attach a B() tensor toevery plaquette

B()m1m2m3m4

=

tm(βpl), if m1 = m2 = m3 = m4 = m

0, otherwise.

a A(s) tensor to the horizontal links

A(s)mupmdown

= t|mdown−mup|(2κs),

and a A(τ) tensor to the vertical links

A(τ)mleft mright

= t|mleft−mright |(2κτ ) eµ.

The quantum numbers on the links are completely determined by thequantum numbers on the plaquettes

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 6 / 24

Page 7: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Z = Tr [∏

T ]

Z =∝ Tr

∏h,v ,

A(s)mupmdown

A(τ)mright mleft

B()m1m2m3m4

.The traces are performed by contracting the indices as shown

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 7 / 24

Page 8: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

The Hamiltonian (time continuum limit)

For 1 << βpl << κτ , we obtain the time continuum limit.For practical implementation, we need a truncation of theplaquette quantum number (“finite spin")We use the notation Lx

(i) to denote a matrix with equal matrixelements on the first off-diagonal (like the first generator of therotation algebra in the spin-1 representation)Parameters: Y ≡ (βpl/(2κτ ))Ug and X ≡ (βplκs

√2)Ug which are

the (small) energy scales.The final form of the Hamiltonian H is

H =Ug

2

∑i

(Lz

(i)

)2+

Y2

∑i

(Lz(i) − Lz

(i+1))2 − X∑

i

Lx(i) .

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 8 / 24

Page 9: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Polyakov loop: definition

Polyakov loop, a Wilson line wrapping around the Euclidean timedirection: 〈Pi〉 = 〈

∏j U(i,j),τ 〉 =exp(−F (single charge)/kT ); the order

parameter for deconfinement.

With periodic boundary condition, the insertion of the Polyakov loop(red) forces the presence of a scalar current (green) in the oppositedirection (left) or another Polyakov loop (right).

0 01

0 01

0 01

0 01

0 01

1

1

1

1

1

0

0

0

0

0

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

In the Hamiltonian formulation, we add − Y2 (2(Lz

i? − Lz(i?+1))− 1) to H.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 9 / 24

Page 10: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Expectations

• |〈P〉| ∝ e−Nτ∆E , with ∆E the gap between the neutral and charge 1ground states.

• For κ (or X ) large enough and g2Ns small enough:

∆E ' a/Ns + bg2Ns

(KT phase when g = 0 and a linear gauge potential)

• ∆ENs = f (g2N2s ) (data collapse related to KT)? This would be great

because it works for small volumes

• For larger g2N2s , f (g2N2

s ) ∼√

g2N2s , so ∆E stabilizes at large Ns at

some value proportional to g (for fixed g).

• The Polyakov loop can be replaced by 1-0 boundary conditions (tocreate a charge 1 state).

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 10 / 24

Page 11: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Polyakov loop collapse (Judah Unmuth-Yockey)

0 5 10 15 20 25 30 35

(Nsg)2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ns(

∆E

)

=1.6, f(x) =√A+Bx

Ns =4

Ns =8

Ns =16

Figure: A fit to the universal curve of the form√

A + Bx . In this calculation,space and Euclidean time are treated isotropically.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 11 / 24

Page 12: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Polyakov loop collapse (Jin Zhang)

0 2 4 6 8 10Ns Up

1

2

3

4

5

Ns

E

Spin-6, X = 1Ns = 8, 01BCNs = 8, PloopNs = 16, 01BCNs = 16, PloopNs = 24, 01BCNs = 24, PloopNs = 32, 01BCNs = 32, Ploop

Figure: Same data collapse with the Hamiltonian formulation: we add− Y

2 (2(Lzi? − Lz

(i?+1))− 1) to H (lower set), or with 0-1 boundary conditions(upper set).

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 12 / 24

Page 13: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Universal functions I: the Polyakov loop

Today’s posting: arXiv:1803.11166

0 20 40 60 80 100N2

s U

0.5

1.5

2.5

Ns

E

PL+00BC

X = 2X = 3X = 4

= 2= 3= 4

Figure: Data collapse of Ns∆E defined from the insertion of the Polyakovloop, as a function of N2

s U, or (Nsg)2 (collapse of 24 datasets).

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 13 / 24

Page 14: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Universal functions II: Background field (1803.11166)

0 20 40 60 80 100N2

s U

0.5

1.5

2.5

3.5

4.5

Ns

E

01BC

X = 2X = 3X = 4

= 2= 3= 4

Figure: The data collapse of Ns∆E as a function of N2s U, or (Nsg)2, for three

different values of X , or κ, in both the isotropic coupling, and continuous timelimits. Four different system sizes were used: Ns = 4, 8, 16, and 32. Thesolid markers are data obtained from DMRG calculations done in theHamiltonian limit, while empty markers are data taken from HOTRGcalculations done in the Lagrangian limit. ∆E is the difference in the groundstate energies between a system with zero and one on the boundaries, and asystem with open boundary conditions (zeros on the boundaries). Theisotropic data has been rescaled by 2κ on both axes.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 14 / 24

Page 15: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Collapse breaking: small Ns, large ggauge (P. loop)

10-1 100 101 102 103 104 105 106

(Nsg)2

10-1

100

101

Ns∆E

Ns=4

Ns=8

Ns=16

Ns=32

Figure: A plot showing the data collapse across different Ns for sufficientlysmall g, and collapse breaking across different Ns at large g in the case ofisotropic coupling. Here κ = 1.6, and Dbond = 41 was used in the HOTRGcalculations.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 15 / 24

Page 16: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Collapse breaking: small Ns, large ggauge (E field)

10-2 10-1 100 101 102 103 104 105 106

(Nsg)2

10-1

100

101

Ns∆E

01

Ns=4

Ns=8

Ns=16

Ns=32

Figure: The energy gap between the 01-boundary condition partition functionand the 00-boundary condition (typical open boundary condition) partitionfunction in the case of isotropic coupling. This is for κ = 1.6 and Dbond = 41for the HOTRG truncation. Similar to the Polyakov loop gap, for sufficientlysmall g we see data collapse, and for g large enough we see the collapsebreakdown.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 16 / 24

Page 17: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Optical lattice implementation with a ladder

H =Ug

2

∑i

(Lz

(i)

)2+

Y2

∑i

(Lz(i) − Lz

(i+1))2 − X∑

i

Lx(i)

Figure: Ladder with one atom per rung: tunneling along the vertical direction,no tunneling in the the horizontal direction but short range attractiveinteractions. A parabolic potential is applied in the spin (vertical) direction.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 17 / 24

Page 18: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Recent experimental progress

Tunable nearest neighborinteractions, Johannes Zeiher et al.arxiv 1705.08372

Quantum gas microscopes, Grossand Bloch, Science 357, 995-1001(2017)

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 18 / 24

Page 19: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

A first quantum calculator for the abelian Higgs model?

Figure: Left: Johannes Zeiher, a recent graduate from Immanuel Bloch’sgroup can design ladder shaped optical lattices with nearest neighborinteractions. Right: an optical lattice experiment of Bloch’s group.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 19 / 24

Page 20: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

The quantum Ising model

In the case of 2 long sides (spin 1/2), we recover the quantum Isingmodel:

H = −λ∑

i

σzi σ

zi+1 −

∑i

σxi − h

∑i

σzi

where all the energies are expressed in units of the transversemagnetic field (the coefficient in front of −

∑i σ

xi ). In the ladder

realization, this is proportional to the inverse tunneling time along therungs. The zero temperature magnetic susceptibility is

χquant . =1L

∑<i,j>

< (σi− < σi >)(σj− < σj >) >∝ ξ1−η ∝ |λ− 1|−ν(1−η)

where < ... > are short notations for 〈Ω|...|Ω〉 with |Ω〉 the lowestenergy state of H. Recent calculations by Jin Zhang show a nice datacollapse.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 20 / 24

Page 21: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Data collapse for the quantum magnetic susceptibility:χquant .′ = χquant .L−(1−η), λ′ = L1/ν(λ− 1), h′ = hL15/8

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 21 / 24

Page 22: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Looking at the vacuum wavefunction: σz meas. Couldwe replace the rungs by q-bits?

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 22 / 24

Page 23: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Conclusions

We have proposed a gauge-invariant approach for the quantumsimulation of the abelian Higgs model.The tensor renormalization group approach provides a discreteformulation in the limit λ→∞ (suitable for quantum computing)Calculations of the Polyakov loop at finite Nx and small gaugecoupling show a universal behavior (collapse related to the KTtransition of the limiting O(2) model).A ladder of cold atoms with Ns rungs, one atom per rung, and2s + 1 long sides seems to be the most promising realizationSpin truncations can affect the collapse (not discussed here)Proof of principle: data collapse for the quantum Ising model.D-wave machine realization?Thanks for listening!

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 23 / 24

Page 24: Quantum simulations of the Abelian Higgs model · Quantum simulations of the Abelian Higgs model Alexei Bazavov1 and Yannick Meurice2 1 Michigan State University 2 University of Iowa

Acknowledgements:

This research was supported in part by the Dept. of Energy underAward Numbers DOE grants DE-SC0010114, DE-SC0010113, andDE-SC0013496 and the NSF under grant DMR-1411345.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 24 / 24