37
Quantum Information and the simulation of quantum systems José Ignacio Latorre Universitat de Barcelona Buenos Aires, August 2007 I Simulation of quantum Mechanics II Entanglement entropy III Efficient representation of quantum systems

Quantum Information and the simulation of quantum systems · 2007. 8. 3. · Quantum Information and the simulation of quantum systems José Ignacio Latorre Universitat de Barcelona

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Quantum Informationand

    the simulation of quantum systems

    José Ignacio LatorreUniversitat de Barcelona

    Buenos Aires, August 2007

    I Simulation of quantum Mechanics

    II Entanglement entropy

    III Efficient representation of quantum systems

  • Physics

    Theory 1 Theory 2

    Exact solution

    Approximated methods

    Simulation

    Classical Simulation

    Quantum Simulation

  • Classical Theory

    • Classical simulation• Quantum simulation

    Quantum Mechanics

    • Classical simulation• Quantum simulation

    Classical simulation of Quantum Mechanics is related to our ability to supportlarge entanglement

    Classical simulation may be enough to handle e.g. ground states

    Quantum simulation needed for typical evolution of Quantum systems(linear entropy growth to maximum)

    Classical computer

    Quantum computer

    ?

    IntroductionIntroduction

  • Is it possible to classically simulate faithfully a quantum system?

    000 ψψ EH =

    Heisenberg model0ψ

    0)( ψtU

    0210 ψψ OO∑ +⋅=i

    ii SSH 1

    represent

    evolve

    read

    Introduction

  • Misconception: NO

    • Exponential growth of Hilbert space

    ∑ ∑= =

    〉=〉Ψd

    i

    d

    inii

    n

    niic

    1 11...

    1

    1...|...|

    Classical representation requires dn complex coefficients

    n

    • A random state carries maximum entropy

    ψψρ )( LnL Tr −=

    ( ) dLTrS LLL loglog)( ≈−≡ ρρρ

    IntroductionIntroduction

  • Refutation

    • Realistic quantum systems are not random

    • symmetries (translational invariance, scale invariance)• local interactions• little entanglement

    • We do not have to work on the computational basis

    • use an entangled basis

    IntroductionIntroduction

  • Plan

    Measures of entanglement

    Efficient description of slight entanglement

    Entropy: physics vs. simulation

    New ideas: MPS, PEPS, MERA

  • Measures of entanglement

    One qubit

    ∑=

    =+=1,0

    1110

    i

    i icβαψ

    Quantum superposition

    Two qubits

    ∑=

    =+++=1,0,

    2121

    2111100100ii

    ii iicδγβαψ

    Quantum superposition + several parties = entanglement

    Measures of entanglement

  • Measures of entanglement

    Bii

    Aii

    ii

    ii iiciic 21,0,

    11,0,

    2121

    21

    21

    21 ∑∑==

    ==ψ

    • Separable states

    BABii

    Aii iic ζξψ == ∑

    =2

    1,0,1

    21

    21

    ( ) ( ) ( )BBAA

    102110

    2111100100

    41 ++=+++=ψe.g.

    • Entangled states

    BABii

    Aii iic ζξψ ≠= ∑

    =2

    1,0,1

    21

    21

    ( )100121 −=−ψe.g.

    Measures of entanglement

  • Measures of entanglement

    ∑= BiAiip ζξρ

    • Classically correlated states

    • Entangled states

    ∑≠ BiAiip ζξρ

    Separability problem: given ρ find whether it is entangled or not

  • Measures of entanglement

    Pure states: Schmidt decomposition

    BiAii

    iAB p 〉〉=〉Ψ ∑=

    ζξχ

    |||1

    BjA

    B

    ij

    A

    vuA iH

    j

    H

    iAB 〉〉=〉Ψ ∑∑

    ==

    |||dim

    1

    dim

    1klkikij VUA

    += λ

    A B

    χ =min(dim HA, dim HB) is the Schmidt number

    BA HHH ⊗=

    Measures of entanglement

    1>χ Entanglement

    Diagonalize A

    Measures of entanglement

  • BiAii

    iAB p 〉〉=〉Ψ ∑=

    ζξχ

    |||1

    Von Neumann entropy of the reduced density matrix

    ( ) Bi

    iiAAA SppTrS =−=−= ∑=

    χ

    ρρ1

    22 loglog

    ( ) ∑=

    〉〈=Ψ〈〉Ψ=χ

    ξξρ1

    ||||i

    iiiABBA pTr

    • χ=1 corresponds to a product state• Large χ implies large superpositions

    • e-bit

    ITrBA 21|| =Ψ〉〈Ψ== −−ρρ 1

    21log

    21

    21log

    21

    22 =

    +−== BA SS

    Measures of entanglementMeasures of entanglement

  • Maximum Entropy for n-qubits

    Strong subadditivity theorem

    implies concavity on a chain of spins

    nInn 221=ρ nS

    n

    innn ∑

    =

    =

    −=

    2

    12 21log

    21)(ρ

    ),(),()(),,( CBSBASBSCBAS +≤+

    2MLML

    LSSS −+ +≥

    SL

    SL-M

    SL+M

    Smax=n

    Measures of entanglementMeasures of entanglement

  • Measures of entanglement

    Other measures of entanglement:• concurrence• negativity• purity• ….

    3-party entanglement

    ∑=

    =1,0,,

    321321

    321

    iii

    iii iiicψ

    5 invariants under local unitaries:

    2Atrρ

    2Btrρ

    2Ctrρ ( )ABBAtr ρρρ ⊗ ( )ψdetH

    n-party: 2n measures of entanglement

    Measures of entanglement

    3-party entanglement 5 invariants under local unitaries:

  • Measures of entanglement

    Von Neumann entropy has an asymptotic meaning

    A B

    p

    A and B share p entangled states

    A and B perform LOCC to distill q singlets

    ( )pqS p ∞→= limψ

    ψ

    Measures of entanglement

  • Efficient description for slightly entangled states

    BkAkk

    kAB p 〉〉=〉Ψ ∑=

    ζξχ

    |||1

    BA

    H

    i

    H

    iAB iic

    B

    ii

    A

    〉〉=〉Ψ ∑∑==

    21

    dim

    1

    dim

    1

    |||2

    21

    1

    +=2121 kikkiii

    VpUc

    A BBA HHH ⊗=Schmidt decomposition

    ∑=

    ΓΓ=χ

    λ1

    ]2[]1[ 2121

    k

    ikk

    ikiic

    Efficient description

    Retain eigenvalues and changes of basis

    Efficient description

  • ∑ ∑= =

    〉=〉Ψd

    i

    d

    inii

    n

    niic

    1 11...

    1

    1...|...|

    n

    n

    n

    n

    iniiiiic

    ][

    ...

    ]3[]2[]2[]1[]1[... 1

    11

    3

    322

    2

    211

    1

    11....

    ΓΓΓΓ= ∑ ααα

    ααααααα λλ

    Slight entanglement iff χ∼poly(n)

  • Matrix Product States

    ∑ ∑= =

    〉=〉Ψd

    i

    d

    inii

    n

    niic

    1 11...

    1

    1...|...|

    1

    21

    ]1[ iA αα 232]2[ iA αα 343

    ]3[ iA αα 454]4[ iA αα 565

    ]5[ iA αα 676]6[ iA αα 787

    ]7[ iA αα

    n

    n

    n

    n

    iniiiii AAAAc

    ][

    ...

    ]3[]2[]1[1... 1

    12

    3

    43

    2

    32

    1

    21.... α

    ααααααα∑

    =

    i

    α

    Approximate physical states with a finite χ MPS

    IAA ii

    i =+∑ ][][ ][][]1[][ iiii

    i AA Λ=Λ −+∑canonical form PVWC06

    λΓ=A

    Efficient descriptionEfficient description

  • Graphic representation of a MPS χα ,,1=

    di ,,1=jjj

    ijA ][1+αα

    ψ

    Efficient computation of scalar products

    operations2χd

    3χnd

    Efficient description

  • Local action on MPS

    U

    lkjiklijU δγδαδβγβαβ λλ ΓΓ=ΓΓ

    ~~~

    Efficient description

  • n

    n

    n

    n

    iniiiii AAAAc

    ][

    ...

    ]3[]2[]1[1... 1

    12

    3

    43

    2

    32

    1

    21.... α

    ααααααα∑

    =

    Intelligent way to represent and manipulateentanglement

    Classical analogy:I want to send 16,24,36,40,54,60,81,90,100,135,150,225,250,375,625Instruction: take all 4 products of 2,3,5 MPS= compression algorithm

    n

    n

    n

    n

    iniiiiic

    ][

    ...

    ]3[]2[]2[]1[]1[... 1

    11

    3

    322

    2

    211

    1

    11....

    ΓΓΓΓ= ∑ ααα

    ααααααα λλ

    Efficient description

  • 〉ΓΓ=

    〉=〉

    =

    =

    11,...,

    )()1(

    1

    4

    1...,...

    ...|....

    ...||

    1

    1

    1

    21

    ,1

    1

    ii

    iic

    nini

    nii

    iiimage

    n

    n

    n

    n

    n

    χ

    αααααα

    ψ

    i1=1 i1=2

    i1=3 i1=4

    | i1 〉i2=1 i2=2

    i2=3 i2=4

    | i2 i1 〉105| 2,1 〉

    Crazy ideas: Image compression

    pixel addresslevel of grey

    RG addressing

    Efficient description

  • ....

    χ = 1PSNR=17

    χ = 4PSNR=25

    χ = 8PSNR=31

    Max χ = 81

    QPEG

    • Read image by blocks• Fourier transform• RG address and fill• Set compression level: χ• Find optimal• gzip (lossless, entropic compression) •(define discretize Γ’s to improve gzip)• diagonal organize the frequencies and use 1d RG• work with diferences to a prefixed table

    }{ )(aΓ

    Efficient description

  • 0),...,,(),...,,( 2121 =∂∂∂ nn xxxfO

    )()...()()...(),...,,( 2121 2121

    niiiiii

    n xhxhxhAAAtrxxxf nn=

    2}{min OfA

    Constructed: adder, multiplier, multiplier mod(N)

    Note: classical problems with a direct product structure!

    Crazy ideas: Differential equations

    Crazy ideas: Shor’s algorithm with MPS

    Efficient descriptionEfficient description

  • Success of MPS will depend on how much entanglement is present in the physical state

    Physics

    exactS

    Simulation

    )(χS

    If nSexact log>> MPS is in very bad shape

    Back to the central idea: entanglement support

    Physics vs. simulationPhysics vs. simulation

  • Exact entropy for a reduced block in spin chains

    LcS LL 2log3 → ∞→ |1|log6 22/

    λ−=∞→=cS NL

    At Quantum Phase Transition Away from Quantum Phase Transition

    Physics vs. simulationPhysics vs. simulation

  • Maximum entropy support for MPS

    α

    χ

    αα λλ∑

    =

    −=1

    logS

    Maximum supported entanglement

    χλα

    1== ct

    χlogmax, =≤ MPSSS

    Physics vs. simulationPhysics vs. simulation

  • Faithfullness = Entanglement support

    LcS LL 2log3 → ∞→

    Spin chainsMPS

    χχ

    λα log1

    max =→= S

    Spin networks

    LS LLxL → ∞→

    Area law

    Computations of entropies are no longer academic exercises but limits on simulations

    PEPS

    Physics vs. simulationPhysics vs. simulation

  • Physics

    LcSL 2log3= VLRK02-03

    LSL = For 3-SAT OL04

    Simulation

    0)(

  • S ~ .1 nNP-complete problems3-SAT Exact Cover

    S ~ n log2 nFermionic systems?

    S ~ r ~ nShor Factorization

    S ~ nd-1/dSpin chains in d-dimensions

    S ~ log2 nCritical spin chains

    S ~ ctNon-critical spin chains

    Local (12 levels), nearest neighbor H is QMA-complete!! AGK07

    Physics vs. simulationPhysics vs. simulation

  • New ideas

    MPS using Schmidt decompositions

    Arbitrary manipulations of 1D systems

    PEPS

    2D, 3D systems

    MERA

    Scale invariant 1D, 2D, 3D systems

    New ideas

  • New ideas

    MPS for translational invariant spin chains (iTEBD)

    0ψψε →− He

    ∑∑∑ +++ ⋅+⋅=⋅=iodd

    iiieven

    iii

    ii SSSSSSH 111

    commute commute

    All even gates can be performe simultaneouslyAll odd gates can be performe simultaneouslyUse Trotter decomposition to combine them

    ψ

    New ideas

  • Bλ Aλ BλAΓ BΓBBjAAiBijβγβγαγααβ λλλ ΓΓ=Θ

    ijklij

    kl U αβαβ Θ=Θ~

    la

    Aa

    ka

    kl WV βααβ λ~~ =Θ

    iB

    Ai Vαβα

    αβ λ1~ =Γ B

    iBi Wβ

    αβαβ λ1~ =Γ

    Bλ Aλ~ BλAΓ~ BΓ~

    New ideasNew ideas

  • Heisenberg model

    060.443147182ln41

    ,0 −=−=exactE

    S=.994-.44276223χ=8

    S=1.26-.443094χ=16

    S=.919-.44249501χ=6

    S=.764-.44105813χ=4S=.486-.42790793χ=2

    Trotter 2 order, δ=.001

    New ideasNew ideas

  • New ideas

    PEPS: Projected Entangled Pairs

    iAγ

    δβ

    α

    physical index

    ancillae

    Good: PEPS support an area law!!

    Bad: Contraction of PEPS is #P

    New results beat Monte Carlo simulations

    New ideas

  • New ideas

    MERA: Multiscale Entanglement Renormalization Ansatz

    Intrinsic support for scale invariance!!

  • If MPS, PEPS, MERA are a good representation of QM

    • Approach new problems

    • PrecisionCan we do any better than DMRG?e.g.: Faithfull numbers for entropy? Exact solutions? Smaller errors?

    • Can we simulate better than Monte Carlo?

    • Are MPS, PEPS and MERA the best simulation solution?

    Keep in mind:

    • scaling of entropy: Area law