Problemas Impares - Copia

Embed Size (px)

Citation preview

  • 8/12/2019 Problemas Impares - Copia

    1/33

    C H A P T E R 4

    Integration

  • 8/12/2019 Problemas Impares - Copia

    2/33

    177

    1. d

    dx3

    x3 C ddx3x3 C 9x4

    9

    x4 3.

    d

    dx1

    3x3 4x C x2 4 x 2x 2

    5.

    Check: d

    dtt3 C 3t2

    y t3 C

    dy

    dt 3t2 7.

    Check: d

    dx2

    5x52 C x32

    y 2

    5x52 C

    dy

    dxx32

    Given Rewrite Integrate Simplify

    9.3

    4x 43 C

    x43

    43 Cx13dx3xdx

    11. 2

    x C

    x12

    12 Cx32dx 1

    xxdx

    13. 1

    4x2 C

    1

    2x2

    2 C1

    2x3dx 12x3dx

    15.

    Check: d

    dxx2

    2 3x C x 3

    x 3dx x2

    2 3x C 17.

    Check: d

    dxx2 x3 C 2x 3x2

    2x 3x2dx x2 x3 C

    19.

    Check: d

    dx1

    4x 4 2x C x3 2

    x3 2dx 14x4 2x C 21.Check:

    d

    dx2

    5x52 x2 x C x32 2x 1

    x32 2x 1dx 25x52 x2 x C

    23.

    Check: d

    dx3

    5x53 C x23 3x2

    3

    x2

    dx x

    23

    dx

    x53

    53 C3

    5x53

    C 25.

    Check: d

    dx1

    2x2 C 1x3

    1

    x3dx x3

    dx x2

    2 C 1

    2x2 C

  • 8/12/2019 Problemas Impares - Copia

    3/33

    178 Chapter 4 Integration

    27.

    Check: x2 x 1

    x

    d

    dx2

    5x52

    2

    3x32 2x12 C x32 x12 x12

    2

    15x123x2 5x 15 C

    2

    5x52

    2

    3x32 2x12 Cx2 x 1

    xdx x32 x12 x12dx

    29.

    Check:

    x 13x 2

    d

    dxx3 1

    2x2 2x C 3x2 x 2

    x3 1

    2x2 2x C

    x 13x 2dx 3x2 x 2dx 31.Check:

    d

    dy2

    7y72 C y52 y2y

    y2ydy y52dy 27y72 C

    33.

    Check: d

    dxx C 1

    dx 1 dx x C 35.Check:

    d

    dx2 cosx 3 sinx C 2 sinx 3 cosx

    2 sinx 3 cosxdx 2 cosx 3 sinx C

    37.

    Check: d

    dtt csc t C 1 csc tcot t

    1 csc tcot tdt t csc t C 39.Check:

    d

    dtan cos C sec2 sin

    sec2 sin d tan cos C

    41.

    Check: d

    dytany C sec2

    y tan2

    y 1

    tan2y 1dy sec2ydy tany C 43.

    2

    2

    3

    3

    2 2

    x

    3C

    2C

    0C

    y

    fx cosx

    45.

    Answers will vary.

    5

    4

    3

    32123

    y

    x

    2x)x)

    22x) )xf

    ff

    fx 2x C

    fx 2 47.

    Answers will vary.

    3

    4

    3

    2

    231

    2

    x

    y3

    3

    3

    xxx)f

    xx3

    x)f )3

    )

    f

    fx x x3

    3 C

    fx 1 x2 49.

    y

    x

    2

    x

    1

    1 12 1 C C 1

    y 2x 1dx x2 x C

    dy

    dx 2x 1, 1, 1

  • 8/12/2019 Problemas Impares - Copia

    4/33

    Section 4.1 Antiderivatives and Indefinite Integration 179

    51.

    y

    sinx

    4

    4 sin 0 C C 4

    y cosxdx sinx C

    dy

    dx cosx, 0, 4

    53. (a) Answers will vary.

    (b)

    y x2

    4

    x 2

    2 C

    2 42

    4 4 C

    y x2

    4 x C

    4 8

    2

    6dy

    dx

    1

    2x 1, 4, 2

    x

    y

    3 5

    3

    5

    55.

    fx 2x2 6

    f0 6 202 CC 6

    fx 4xdx 2x2 Cfx 4x,f0 6 57.

    ht 2t4 5t 11

    h1 4 2 5 CC 11

    ht 8t3 5dt 2t4 5t Cht 8t3 5, h1 4

    59.

    fx x2 x 4

    f2 6 C2 10 C

    2 4

    fx 2x 1dx x2 x C2fx 2x 1

    f2 4 C1 5 C

    1 1

    fx 2 dx 2x C1f2 10

    f2 5

    fx 2 61.

    fx 4x12 3x 4x 3x

    f0 0 0 C2 0 C

    2 0

    fx 2x12 3dx 4x12 3x C2fx

    2

    x 3

    f4 2

    2 C

    1 2 C

    1 3

    fx x32dx 2x12 C1 2x

    C1

    f0 0

    f4 2

    fx x32

    63. (a)

    (b) h6 0.7562 56 12 69 cm

    ht 0.75t2 5t 12

    h0 0 0 C 12 C 12

    ht 1.5t 5dt 0.75t2 5t C

  • 8/12/2019 Problemas Impares - Copia

    5/33

    180 Chapter 4 Integration

    65. Graph of is given.

    (a)

    (b) No. The slopes of the tangent lines are greater than 2

    on Therefore,fmust increase more than 4 units

    on

    (c) No, becausefis decreasing on

    (d) fis an maximum at because and

    the first derivative test.

    (e) fis concave upward when is increasing on

    and fis concave downward on Points

    of inflection atx 1, 5.

    1, 5.5,., 1f

    f3.5 0x 3.5

    4, 5.f5 < f4

    0, 4.0, 2.

    f4 1.0

    ff0 4.

    (f ) is a minimum at

    (g)

    x

    2

    2

    4

    4

    6

    6 82

    6

    y

    x 3.f

    67.

    The ball reaches its maximim height when

    s15

    18

    1615

    8

    2

    6015

    8

    6 62.26 feet

    t15

    8seconds

    32t 60

    vt 32t 60 0

    st 16t2 60t 6 Position function

    s0 6 C2

    st 32t 60dt 16t2 60t C

    2

    v0 60 C1

    vt 32 dt 32t C1at 32 ftsec2 69. From Exercise 68, we have:

    when time to reach

    maximum height.

    v0 187.617 ftsec

    v02 35,200

    v02

    64

    v02

    32 550

    s v032 16v0

    322

    v0 v032 550

    tv0

    32st 32t v

    0 0

    st 16t2 v0t

    71.

    f0 s0 C

    2ft 4.9t2 v

    0t s

    0

    ft 9.8t v0dt 4.9t2 v0t C2v0 v

    0 C

    1 vt 9.8t v

    0

    vt 9.8 dt 9.8t C1at 9.8 73. From Exercise 71,

    (Maximum height when )

    f 109.8 7.1 m

    t10

    9.8

    9.8t 10

    v0.v t 9.8t 10 0

    ft 4.9t2 10t 2.

    75.

    since the stone was dropped,

    Thus, the height of the cliff is 320 meters.

    v20 32 msec

    vt 1.6t

    s0 320

    s20 0 0.8202 s0 0

    st 1.6tdt 0.8t2 s0v0 0.vt 1.6 dt 1.6t v0 1.6t,

    a 1.6

  • 8/12/2019 Problemas Impares - Copia

    6/33

    Section 4.1 Antiderivatives and Indefinite Integration 181

    77.

    (a)

    (b) when or(c) when

    v2 311 3

    t 2.at 6t 2 03 < t < 5.0 < t < 1vt > 0

    at vt 6t 12 6t 2

    3t2 4t 3 3t 1t 3

    vt xt 3t2 12t 9

    0 t 5xt t3 6t2 9t 2 79.

    at vt 1

    2t32

    1

    2t32acceleration

    xt 2t12 2 position function

    x1 4 21 C C 2

    xt vtdt 2t12 Ct > 0vt

    1

    t t12

    81. (a)

    (b)

    s13 275

    234132

    2

    250

    3613 189.58 m

    st at2

    2

    250

    36t s0 0

    a 550

    468

    275

    234 1.175 msec2

    550

    36 13a

    v13 800

    36 13a

    250

    36

    v0 250

    36 vt at250

    36

    vt at C

    at a constant acceleration

    v13 80 kmhr 80 1000

    3600

    800

    36msec

    v0 25 kmhr 25 1000

    3600

    250

    36msec 83. Truck:

    Automobile:

    At the point where the automobile overtakes the truck:

    when sec.

    (a)

    (b) v10 610 60 ftsec 41 mph

    s10 3102 300 ft

    t 100 3tt 10

    0 3t2 30t

    30t 3t2

    st 3t2Let s0 0.

    vt 6tLet v0 0.

    at 6

    st 30tLet s0 0.

    vt 30

    85.

    (a) (b)

    (c)

    The second car was going faster than the first until the end.

    S230 1970.3 feet

    S130 953.5 feet

    In both cases, the constant of integration is 0 because S10 S

    20 0

    S2t V2tdt

    0.1208t3

    3 6.7991t2

    2 0.0707t

    S1t V1tdt 0.10683 t3 0.04162 t2 0.3679t

    V2t 0.1208t2 6.7991t 0.0707

    V1

    t 0.1068t2 0.0416t 0.3679

    1 mihr5280 ftmi

    3600 sechr

    22

    15ftsec

    t 0 5 10 15 20 25 30

    0 3.67 10.27 23.47 42.53 66 95.33

    0 30.8 55.73 74.8 88 93.87 95.33V2ftsec

    V1ftsec

  • 8/12/2019 Problemas Impares - Copia

    7/33

    87.

    since

    At the time of lift-off, and Since

    7.45 ftsec2.

    18,285.714 mihr2

    1.4k 1602 k1602

    1.4

    v1.4k k1.4k 160t

    1.4

    k

    k2t2 0.7,k2t2 0.7.kt 160

    v0 s0 0.st k

    2t2

    vt kt

    at k

    89. True 91. True

    93. False. For example, becausex3

    3 C x

    2

    2 C

    1x2

    2 C

    2x xdx xdx xdx

    95.

    is continuous: Values must agree at

    The left and right hand derivatives at do not agree. Hence is not differentiable atx 2.fx 2

    fx x 2,

    3x2 2,

    2

    0 x < 2

    2 x 5

    4 6 C2C2 2

    x 2:f

    f1 31 C1 3C

    1 2

    fx x C

    1,

    3x2 C

    22,

    0 x < 2

    2 x 5

    fx 1,3x,0 x < 2

    2 x 5

    182 Chapter 4 Integration

  • 8/12/2019 Problemas Impares - Copia

    8/33

    Section 4.2 Area 183

    19.

    12,040

    14,400 2,480 120

    152162

    4 2

    151631

    6

    1516

    2

    15

    i1

    ii 12 15

    i1

    i 3 215

    i1

    i 2 15

    i1

    i 21. sum seq (TI-82)

    202141

    6 60 2930

    20

    i1

    i2 3 2020 1220 1

    6 320

    2 3,x, 1, 20, 1 2930x

    23.

    s 1 3 4 921 252 12.5

    S 3 4 92 51 332 16.5 25.

    s 2 2 31 7

    S 3 3 51 11

    27.

    s4 014 1

    41

    4 1

    21

    4 3

    41

    4 1 2 3

    8 0.518

    S4 141

    4 1

    21

    4 3

    41

    4 11

    4 1 2 3 2

    8 0.768

    29.

    s5 1

    651

    5 1

    751

    5 1

    851

    5 1

    951

    5 1

    21

    5 1

    6

    1

    7

    1

    8

    1

    9

    1

    10 0.646

    S5 115 16515 17515 18515 19515 15 16 17 18 19 0.746

    31. limn

    81n4n2n 12

    4 81

    4limn

    n4 2n3 n2

    n4 81

    41

    81

    4

    33. limn

    18n2nn 1

    2 18

    2limn

    n2 n

    n2 18

    21 9

    39. 8 limn

    1 1n 8 limn8n2 n

    n2 limn16

    n2nn 1

    2 limnn

    i1

    16in2 limn16

    n2

    n

    i1

    i

    35.

    S10,000 1.0002

    S1000 1.002

    S100 1.02

    S10 12

    10 1.2

    n

    i1

    2i 1n2

    1n2

    n

    i1

    2i 1 1n22nn 12 n n 2n Sn

    37.

    S10,000 1.99999998

    S1000 1.999998

    S100 1.9998

    S10 1.98

    6n22n

    2 3n

    1

    3n

    36 1n22n2 2 Sn

    n

    k1

    6kk 1

    n3

    6

    n3

    n

    k1

    k2 k 6

    n3nn 12n 1

    6

    nn 1

    2

    >

  • 8/12/2019 Problemas Impares - Copia

    9/33

    184 Chapter 4 Integration

    41.

    limn

    162 3n 1n2

    1 1

    3 lim

    n

    1

    62n3 3n2 n

    n3

    limn

    1

    n3n 1n2n 1

    6 limnn

    i1

    1

    n3i 12 lim

    n

    1

    n3n1

    i1

    i 2

    43. 2 limn1 n2 n

    2n2 21 1

    2 3 2 limn1

    nn 1

    nnn 1

    2 limnn

    i11 i

    n2

    n 2 limn1

    nn

    i11

    1

    n

    n

    i1i

    45. (a)

    (b)

    Endpoints:

    (c) Since is increasing, on

    (d) on

    Sn

    n

    i1

    fxix

    n

    i1

    f2i

    n 2

    n

    n

    i1i2

    n2

    n

    xi1

    ,xifM

    i fx

    i

    n

    i1

    f2i 2n

    2

    n n

    i1

    i 12n2

    n

    sn n

    i1

    fx

    i1x

    xi1

    ,xi.fm

    i fx

    i1y x

    0 < 12n< 22

    n< . . .< n 12

    n< n2

    n 2

    x 2 0

    n

    2

    n

    x31

    3

    2

    1

    y (e)

    (f)

    limn

    2n 1

    n 2

    limn

    4n2nn 1

    2

    limn

    n

    i1

    i2n2

    n limn4

    n2n

    i1

    i

    limn

    2n 1n 4

    n 2

    limn

    4

    n2nn 1

    2 n

    limn

    n

    i1

    i 12n2

    n limn4

    n2n

    i1

    i 1

    x 5 10 50 100

    1.6 1.8 1.96 1.98

    2.4 2.2 2.04 2.02Sn

    sn

    47. on

    Area limn

    sn 2

    3 2

    n2n

    i1

    i 3 2n 1n

    2n2 2

    1

    n

    sn n

    i1

    f in

    1

    n n

    i1

    2 in 31

    n

    321x

    2

    1

    yNote: x 1 0n 1

    n0, 1.y 2x 3

    49. on

    Area limn

    Sn 7

    3

    1n3n

    i1

    i 2 2 nn 12n 16n3 2 1

    62 3

    n

    1

    n2 2

    Sn n

    i1

    f in1

    n n

    i1

    in2

    21n

    x2 3

    3

    1

    1

    y

    Note: x

    1

    n0, 1.y x2 2

  • 8/12/2019 Problemas Impares - Copia

    10/33

    Section 4.2 Area 185

    51. on

    Area limn

    sn 30 8

    3 4

    70

    3 23

    1

    3

    30 8

    6n2n 12n 1

    4

    nn 1

    2

    n15n 4n2

    nn 12n 1

    6

    4

    nnn 1

    2

    2

    n

    n

    i1

    15 4i2

    n2

    4i

    n

    sn n

    i1

    f1 2in 2

    n n

    i1

    16 1 2in 2

    2n

    x

    y

    11

    2

    4

    6

    8

    10

    12

    14

    18

    2 3

    1, 3. Note:x 2ny 16 x2

    53. on

    Area limn

    sn 189 81

    4 27

    27

    2

    513

    4 128.25

    189 81

    4n2n 12

    81

    6n2n 12n 1

    27

    2n 1

    n

    3

    n63n 27

    n3n2n 12

    4

    27

    n2nn 12n 1

    6

    9

    nnn 1

    2

    3

    n

    n

    i1

    63 27i3

    n3

    27i2

    n2

    9i

    n

    sn n

    i1

    f1 3in 3

    n n

    i1

    64 1 3in 3

    3n

    x5 6

    30

    y

    40

    50

    60

    70

    20

    10

    1 21 3

    1, 4. Note:x 4 1n 3

    ny 64 x3

    55. on

    Again, is neither an upper nor a lower sum.

    Area limn

    Tn 4 10 32

    3 4

    2

    3

    4 101 1

    n 16

    32 3

    n

    1

    n2 41 2

    n

    1

    n2

    4

    nn

    20

    n2

    nn 1

    2

    32

    n3

    nn 12n 1

    6

    16

    n4

    n2n 12

    4

    n

    i1

    2 10in 16i 2

    n2

    8i3

    n3 2

    n 4

    nn

    i1

    1 20

    n2n

    i1

    i 32

    n3n

    i1

    i 2 16

    n4n

    i1

    i 3

    n

    i1

    1 4in 4i2

    n2 1 6i

    n

    12i 2

    n2

    8i3

    n3 2

    n

    Tn n

    i1

    f1 2in

    2

    n n

    i1

    1 2in 2

    1 2in 3

    2n

    Tn

    x1

    2

    1

    1

    yNote: x 1 1n 2

    n1, 1.y x2 x3

  • 8/12/2019 Problemas Impares - Copia

    11/33

    186 Chapter 4 Integration

    57.

    Area limn

    Sn limn

    6 6n 6

    6n 1

    n 6

    6

    n

    12

    n2

    n

    i1

    i 12n2 nn 1

    2

    n

    i1

    f2in

    2

    n n

    i1

    32in 2

    nSn n

    i1

    fm

    iy

    64x

    4

    2

    2

    2

    yNote:y 2 0n 2

    n0 y 2fy 3y,

    59.

    Area limn

    Sn limn

    9 272n

    9

    2n2 9

    9

    n22n2 3n 1

    2 9 27

    2n

    9

    2n2

    27

    n3

    nn 12n 1

    6

    n

    i1

    3in 2

    3n 27

    n3

    n

    i1

    i2Sn n

    i1

    f3in

    3

    nx

    2 4 6 8 10

    2

    4

    6

    2

    4

    yNote:y 3 0n 3

    n0 y 3fy y2,

    61.

    Area limn

    Sn 6 10 8

    3 4

    44

    3

    2

    n

    n

    i1

    3 10in 4i2

    n2

    8i3

    n3 2

    n3n 10

    nnn 1

    2

    4

    n2nn 12n 1

    6

    8

    n2n2n 12

    4

    2

    n

    n

    i1

    41 4in 4i2

    n2 1 6i

    n

    12i2

    n2

    8i3

    n3

    n

    i1

    41 2in 2

    1 2in 3

    2n

    Sn n

    i1

    g1 2in 2

    n

    x

    6

    y

    8

    10

    2

    2

    4

    24

    gy 4y2 y3, 1 y 3. Note: y 3 1n 2

    n

    63.

    Let

    69

    8

    1

    21

    16 3 9

    16 3 25

    16 3 49

    16 3

    Area n

    i1

    fcix

    4

    i1

    ci

    2 312

    c4

    7

    4c3

    5

    4,c

    2

    3

    4,c

    1

    1

    4,x

    1

    2,

    ci

    xix

    i1

    2.

    n 40 x 2,fx x2 3, 65.

    Let

    16tan 32 tan 332 tan 532 tan 732 0.345

    Area n

    i1

    fcix

    4

    i1

    tan ci16

    c4

    7

    32c3

    5

    32,c

    2

    3

    32,c

    1

    32,x

    16,

    ci

    xix

    i1

    2.

    n 40 x

    4,fx tanx,

    67. on

    Exact value is 163

    0, 4.fx x

    n 4 8 12 16 20

    5.3838 5.3523 5.3439 5.3403 5.3384Approximate area

  • 8/12/2019 Problemas Impares - Copia

    12/33

    Section 4.2 Area 187

    69. on 1, 3.fx tanx8n 4 8 12 16 20

    2.2223 2.2387 2.2418 2.2430 2.2435Approximate area

    71. We can use the line bounded by and

    The sum of the areas of these inscribed rectangles is the

    lower sum.

    x

    y

    a b

    x b.x ay x The sum of the areas of these circumscribed rectangles is the

    upper sum.

    We can see that the rectangles do not contain all of the area in

    the first graph and the rectangles in the second graph covermore than the area of the region.

    The exact value of the area lies between these two sums.

    x

    y

    a b

    n 4 8 20 100 200

    15.333 17.368 18.459 18.995 19.06

    21.733 20.568 19.739 19.251 19.188

    19.403 19.201 19.137 19.125 19.125Mn

    Sn

    sn

    73. (a)

    Lower sum:

    (c)

    Midpoint Rule:

    (e)

    (f) increases because the lower sum approaches the exact value as n increases. decreases because the upper sum

    approaches the exact value as n increases. Because of the shape of the graph, the lower sum is always smaller than the

    exact value, whereas the upper sum is always larger.

    Snsn

    M4 223 4

    45 5

    57 6

    29

    6112315 19.403

    x

    1

    2

    2 3

    4

    4

    6

    8

    y

    s4 0 4 513 6 15

    13

    463 15.333

    x

    1

    2

    2 3

    4

    4

    6

    8

    y (b)

    Upper sum:

    (d) In each case, The lower sum uses left end-

    points, The upper sum uses right endpoints,

    The Midpoint Rule uses midpoints,i 124n.i4n.i 14n.

    x 4n.

    S4 4 513 6 6

    25 21

    1115

    32615 21.733

    x

    1

    2

    2 3

    4

    4

    6

    8

    y

  • 8/12/2019 Problemas Impares - Copia

    13/33

    188 Chapter 4 Differentiation

    Section 4.3 Riemann Sums and Definite Integrals

    75.

    b. square unitsA 6

    x1 2 3 4

    1

    2

    3

    4

    y 77. True. (Theorem 4.2 (2))

    79.

    Let area bounded by thex-axis, and Let area of the rect-

    angle bounded by and Thus,

    In this program, the computer is generating pairs of random points in the rectangle whose

    area is represented by It is keeping track of how many of these points, lie in the region

    whose area is represented by Since the points are randomly generated, we assume that

    The larger is the better the approximation toA1.N

    2

    A1

    A2

    N

    1

    N2

    A1

    N1

    N2

    A2.

    A1.

    N1,A

    2.

    N2

    A2 21 1.570796.x 2.x 0,y 0,y 1,

    A2x 2.x 0fx sinx,A

    1

    x

    0.25

    0.5

    0.75

    1.0

    4

    2

    2( ), 1f x x( ) sin( )=

    y0, 2fx sinx,

    81. Suppose there are n rows in the figure. The stars on the left total as do the stars on the right. There are

    stars in total, hence

    1 2 . . . n 12nn 1.

    21 2 . . . n nn 1

    nn 11 2 . . . n,

    83. (a)

    (c) Using the integration capability of a graphing utility,

    you obtain

    A 76,897.5 ft2.

    y 4.09 105x3 0.016x2 2.67x 452.9 (b)

    0

    0 350

    500

    1.

    3323 0 23 3.464

    limn

    33n 12n 13n2 n 1

    2n2

    limn

    33

    n32nn 12n 1

    6

    nn 1

    2

    limn

    33

    n3 n

    i1

    2i2 i

    limn

    n

    i1

    fcix

    i lim

    n

    n

    i1

    3i2

    n2

    3

    n22i 1

    xi

    3i2

    n2

    3i 12

    n2

    3

    n22i 1

    3n2

    3(2)2

    n23(n1)2

    n2. . .

    . . .

    3

    1

    2

    3

    y

    x

    y= x

    fx x,y 0,x 0,x 3, ci

    3i2

    n2

  • 8/12/2019 Problemas Impares - Copia

    14/33

    Section 4.3 Riemann Sums and Definite Integrals 189

    3. on

    104

    6 dx limn

    36 36

    n

    i1

    66n n

    i1

    36

    n 36

    n

    i1

    fcix

    i

    n

    i1

    f4 6in 6

    n

    Note: x 10 4n 6

    n, 0 as n4, 10.y 6

    5. on

    1

    1

    x3dx limn

    2

    n

    0

    2 61 1n 42 3

    n

    1

    n2 41 2

    n

    1

    n2 2

    n

    2 12

    n2n

    i1

    i 24

    n3

    n

    i1

    i2 16

    n4

    n

    i1

    i3

    n

    i1

    fc

    ix

    i

    n

    i1

    f1 2in 2

    n n

    i11 2in

    3

    2n n

    i11 6in

    12i 2

    n2

    8i3

    n32

    n

    Note:x 1 1n 2

    n, 0 as n1, 1.y x3

    7. on

    21

    x2 1dx limn

    103 3

    2n

    1

    6n2 10

    3

    2 2

    n2

    n

    i1

    i 1

    n3

    n

    i1

    i2 2 1 1n 1

    62 3

    n

    1

    n2 10

    3

    3

    2n

    1

    6n2

    n

    i1

    fc

    ix

    i

    n

    i1

    f1 in1

    n n

    i11 in

    2

    11n n

    i11 2in

    i2

    n2 11n

    Note:x 2 1n 1

    n, 0 as n1, 2.y x2 1

    9.

    on the interval 1, 5.

    lim0

    n

    i1

    3ci 10x

    i 5

    1

    3x 10dx 11.

    on the interval 0, 3.

    lim0

    n

    i1

    ci2 4 x

    i 3

    0

    x2 4 dx

    13.50

    3 dx 15.44

    4 xdx 17.22

    4 x2dx

    19.0

    sinxdx 21.20

    y3dy 23. Rectangle

    x5

    5

    3

    2

    42 31

    1

    Rectangle

    y

    A 3

    0

    4 dx 12

    A bh 34

  • 8/12/2019 Problemas Impares - Copia

    15/33

    190 Chapter 4 Integration

    25. Triangle

    A 40

    xdx 8

    A 1

    2bh

    1

    244

    x

    Triangle

    4

    2

    42

    y27. Trapezoid

    A 20

    2x 5dx 14

    A b1 b

    2

    2 h 5 92 2

    x

    9

    6

    321

    3

    Trapezoid

    y

    29. Triangle

    A 11

    1 xdx 1

    A 1

    2bh

    1

    221

    1 Triangle

    11x

    y 31. Semicircle

    A 33

    9 x2dx 9

    2

    A 1

    2r2

    1

    232

    x

    4 Semicircle

    4224

    y

    33.24

    xdx 42

    xdx 6 35.42

    4xdx 442

    xdx 46 24

    In Exercises 3339,42

    x3dx 60, 42

    xdx 6, 42

    dx 2

    37.42

    x 8dx 42

    xdx 842

    dx 6 82 10 39.

    1

    260 36 22 16

    42

    12x3 3x 2dx 1

    24

    2

    x3 dx 342

    xdx 242

    dx

    41. (a)

    (b)

    (c)

    (d)50

    3fxdx 350

    fxdx 310 30

    55

    fxdx 0

    0

    5

    fxdx

    5

    0

    fxdx 10

    70

    fxdx 50

    fxdx 75

    fxdx 10 3 13 43. (a)

    (b)

    (c)

    (d)62

    3fxdx 362

    fxdx 310 30

    62

    2gxdx 262

    gxdx 22 4

    2 10 12

    6

    2

    g x fxdx 6

    2

    gxdx 6

    2

    fxdx

    10 2 8

    62

    fx gxdx 62

    fxdx 62

    gxdx

    45. (a) Quarter circle belowx-axis:

    (b) Triangle:

    (c) Triangle Semicircle belowx-axis:

    (d) Sum of parts (b) and (c):

    (e) Sum of absolute values of (b) and (c):

    (f) Answer to (d) plus 3 2 20 23 2210 20:

    4 1 2 5 2

    4 1 2 3 2

    1

    2

    21 1

    222 1 2

    12bh

    12 42 4

    14r

    2 142

    2

    47. The left endpoint approximation will be greater than the

    actual area: >

    49. Because the curve is concave upward, the midpoint

    approximation will be less than the actual area:

  • 8/12/2019 Problemas Impares - Copia

    16/33

    Section 4.3 Riemann Sums and Definite Integrals 191

    51.

    is not integrable on the interval andfhas a

    discontinuity atx 4.

    3, 5

    fx 1

    x 4

    53.

    a. square unitsA 5

    x1 2 3 4

    1

    2

    3

    4

    y

    55.

    d.1

    0

    2 sin x dx1

    212 1

    y

    x1

    1

    1 2

    2

    2

    12

    32

    32

    57.30

    x3 xdx

    4 8 12 16 20

    3.6830 3.9956 4.0707 4.1016 4.1177

    4.3082 4.2076 4.1838 4.1740 4.1690

    3.6830 3.9956 4.0707 4.1016 4.1177Rn

    Mn

    Ln

    n

    59.2

    0

    sin2xdx

    4 8 12 16 20

    0.5890 0.6872 0.7199 0.7363 0.7461

    0.7854 0.7854 0.7854 0.7854 0.7854

    0.9817 0.8836 0.8508 0.8345 0.8247Rn

    Mn

    Ln

    n

    61. True 63. True 65. False

    2

    0

    xdx 2

    67.

    41 102 404 881 272

    4

    i1

    fc

    ix f1x

    1f2x

    2f5x

    3f8x

    4

    c4 8c

    3 5,c

    2 2,c

    1 1,

    x4 1x

    3 4,x

    2 2,x

    1 1,

    x4 8x

    3 7,x

    2 3,x

    1 1,x

    0 0,

    0, 8fx x2 3x,

  • 8/12/2019 Problemas Impares - Copia

    17/33

    192 Chapter 4 Differentiation

    Section 4.4 The Fundamental Theorem of Calculus

    69.

    is not integrable on the interval As or in each subinterval since there

    are an infinite number of both rational and irrational numbers in any interval, no matter how small.

    fci 0fc

    i 10,0, 1.

    fx 1,0,xis rational

    xis irrational

    71. Let and The appropriate Riemann Sum is

    limn

    2n2 3n 1

    6n2 lim

    n

    13 1

    2n

    1

    6n2 1

    3

    limn

    1

    n312 22 32 . . . n2 lim

    n

    1

    n3

    n2n 1n 1

    6

    n

    i1

    fcix

    i

    n

    i1

    in2 1

    n

    1

    n3n

    i1

    i 2.

    xi 1n.fx x2, 0 x 1,

    1.

    is positive.

    0

    4

    x2 1dx

    2

    5 5

    fx 4

    x2 1 3.

    2

    2

    xx2 1 dx 0

    5

    5 5

    fx xx2 1

    5.10

    2xdx x21

    0

    1 0 1 7.01

    x 2dx x2

    2 2x

    0

    1

    0 12 2 5

    2

    9.11

    t2 2dt t3

    3 2t

    1

    1

    13 2 1

    3 2 103

    11.

    1

    0

    2t 12dt

    1

    0

    4t2 4t 1dt 43

    t3 2t2 t1

    0

    4

    3

    2 1 1

    3

    13.21

    3x2 1dx 3

    xx

    2

    1

    32 2 3 1 1

    2

    15.41

    u 2

    udu 4

    1

    u12 2u12du 23u32 4u124

    1

    2343 44 23 4

    2

    3

    17.11

    3t 2dt 34t43 2t1

    1

    34 2 3

    4 2 4

    19.

    1

    0

    x x

    3

    dx 1

    3

    1

    0

    x x12dx 1

    3

    x2

    2

    2

    3

    x32

    1

    0

    1

    3

    1

    2

    2

    3

    1

    18

    21.01

    t13 t23dt 34t43 3

    5t53

    0

    1

    0 34 3

    5 27

    20

    23. split up the integral at the zero

    3x x232

    0

    x2 3x3

    32 92

    9

    4 0 9 9 9

    4

    9

    2 29

    2

    9

    4 9

    2

    x 3

    23

    0

    2x 3dx 320

    3 2xdx 332

    2x 3dx

  • 8/12/2019 Problemas Impares - Copia

    18/33

    Section 4.4 The Fundamental Theorem of Calculus 193

    25.

    23

    3

    8 83 9 12 8

    3 8

    4x x3

    3 2

    0

    x3

    3 4x

    3

    2

    30

    x2 4dx 20

    4 x2dx 32

    x2 4dx

    27.0

    1 sinxdx x cosx

    0

    1 0 1 2

    29.66

    sec2xdx tanx6

    63

    3 33

    23

    3

    31.33

    4 sec tan d 4 sec 3

    3 42 42 0

    33.30

    10,000t 6dt 10,000t2

    2 6t

    3

    0

    $135,000 35. A 10

    x x2dx x2

    2

    x3

    3 1

    0

    1

    6

    37. A 30

    3 xxdx 30

    3x12 x32dx 2x32 25x523

    0

    xx5 10 2x3

    0

    123

    5

    39. A 20

    cosxdx sinx2

    0

    1 41. Since on

    A 20

    3x2 1dx x3 x2

    0

    8 2 10.

    0, 2,y 0

    43. Since on

    A 20

    x3 xdx x4

    4

    x2

    2 2

    0

    4 2 6.

    0, 2,y 0 45.

    c 0.4380 or c 1.7908

    c 1 6 423 2

    c 1 6 423

    c 12 6 42

    3

    c 2c 1 3 42

    3 1

    c 2c 3 42

    3

    fc2 0 6 82

    3

    20

    x 2xdx x2

    2

    4x32

    3 2

    0

    2 82

    3

  • 8/12/2019 Problemas Impares - Copia

    19/33

    194 Chapter 4 Integration

    47.

    arccos

    2 0.4817

    c arcsec 2

    sec c 2

    sec2c 4

    2 sec2c 8

    fc4

    4 4

    44

    2 sec2xdx 2 tanx4

    4 21 21 4

    49.

    Average value

    when orx 23

    3 1.155.x2 4

    8

    34 x2

    8

    3

    8

    3

    5

    1

    3 3

    2 3

    3 3

    8,( ( 2 33 38,( (1

    2 2

    2

    2

    4 x2dx 1

    44x 1

    3x3

    2

    2

    1

    48 8

    3 8 8

    3 8

    3

    51.

    x 0.690, 2.451

    sinx 2

    1

    2

    2

    0.690,

    2.451,

    ((

    ((

    2

    2

    3

    2

    Average value 2

    1

    0

    0

    sinxdx 1cosx

    0

    2

    53. If is continuous on and

    then ba

    fxdx Fb Fa.

    Fx fxon a, b,a, bf

    55.20

    fxdx area of regionA 1.5 57.60

    fxdx 20

    fxdx 62

    fxdx 1.5 5.0 6.5

    59.

    12 3.5 15.5

    60

    2 fxdx 60

    2 dx 60

    fxdx

    61. (a)

    Fx 500 sec2x

    F0 k 500

    Fx ksec2x (b)

    newtons

    newtons 827

    826.99

    1500

    3 0

    1

    3 03

    0

    500 sec2xdx 1500

    tanx3

    0

    63.1

    5 05

    0

    0.1729t 0.1552t2 0.0374t3dt1

    50.08645t2 0.05073t3 0.00935t45

    0

    0.5318 liter

  • 8/12/2019 Problemas Impares - Copia

    20/33

    Section 4.4 The Fundamental Theorem of Calculus 195

    65. (a)

    The area above the -axis equals the area below the

    -axis. Thus, the average value is zero.x

    x

    24

    1

    0

    1

    67. (a)

    (b)

    (c) meters600

    vtdt 8.61 104t4

    4

    0.0782t3

    3

    0.208t2

    2 0.0952t

    60

    0

    2476

    70

    10

    10

    90

    v 8.61 104t3 0.0782t2 0.208t 0.0952

    (b)

    The average value of appears to be g.S

    24

    0

    0

    10

    69.

    F8 64

    2 58 8

    F5 25

    2 55

    25

    2

    F2 4

    2 52 8

    Fx x0

    t 5dt t2

    2 5t

    x

    0

    x2

    2 5x 71.

    F8 1078 35

    4

    F5 1045 8

    F2 1012 5

    10

    x 10 101 1x

    Fx x1

    10

    v2dv x

    1

    10v2 dv 10

    v x

    1

    73.

    F8 sin 8 sin 1 0.1479

    F5 sin 5 sin 1 1.8004

    F2 sin 2 sin 1 0.0678

    Fx x1

    cos d sin x

    1

    sinx sin 1 75. (a)

    (b) d

    dx1

    2x2 2x x 2

    x0

    t 2dt t2

    2 2t

    x

    0

    1

    2x2 2x

    77. (a)

    (b) d

    dx3

    4x43 12 x13 3x

    x8

    3tdt 34t43x

    8

    3

    4x43 16

    3

    4x43 12 79. (a)

    (b) d

    dxtanx 1 sec2x

    xx4

    sec2tdt tan tx

    x4 tanx 1

    81.

    Fx x2 2x

    Fx x2

    t2 2tdt 83.

    Fx x4 1

    Fx x1

    t4 1 dt 85.

    Fx xcosx

    Fx x0

    tcos tdt

  • 8/12/2019 Problemas Impares - Copia

    21/33

    196 Chapter 4 Integration

    87.

    Fx 8

    8x 10

    2x 22 x 2 2x2 x

    2t2 tx2

    x

    Fx x2x

    4t 1dt Alternate solution:

    Fx 4x 1 4x 2 1 8

    x

    0

    4t 1dt x2

    0

    4t 1dt

    0x

    4t 1dt x20

    4t 1dt

    Fx x2x

    4t 1dt

    89.

    Alternate solution

    Fx sinx ddx sinx sinxcosx

    Fx sin x0

    tdt

    Fx sinx12 cosx cosxsinx

    Fx sin x0

    tdt 23t32

    sin x

    0

    2

    3sinx32 91.

    Fx sinx32 3x2 3x2sinx 6

    Fx x30

    sin t2dt

    93.

    has a relative maximum at x 2.g

    x

    y

    1

    1 2 3 4

    2

    2

    1

    f g

    g0 0, g11

    2, g2 1, g3

    1

    2, g4 0

    gx x0

    ftdt 95. (a)

    (b)

    C10 1000125 121054 $338,394

    C5 1000125 12554 $214,721

    C1 1000125 121 $137,000

    500025 125x54 1000125 12x54

    500025 345t54x

    0

    Cx 500025 3x0

    t14dt

    97. True 99. False;

    Each of these integrals is infinite.

    has a nonremovable discontinuity atx 0.

    fx x2

    11

    x2dx 01

    x2dx 10

    x2dx

    101.

    By the Second Fundamental Theorem of Calculus, we have

    Since must be constant.fxfx 0,

    1

    1 x2

    1

    x2 1 0.

    fx 1

    1x2 11

    x2 1

    x2 1

    fx

    1x

    0

    1

    t2

    1

    dt

    x

    0

    1

    t2

    1

    dt

  • 8/12/2019 Problemas Impares - Copia

    22/33

    Section 4.5 Integration by Substitution 197

    103.

    28 units

    4 4 20

    310

    t2 4t 3dt 331

    t2 4t 3dt 353

    t2 4t 3dt

    50

    3t 3t 1dt

    Total distance

    5

    0

    xt

    dt

    3t 3t 1

    3t2 4t 3

    xt 3t2 12t 9

    xt t3 6t2 9t 2

    105.

    22 1 2 units

    2t124

    1

    41

    1

    tdt

    4

    1

    vtdt

    Total distance 41

    xtdt

    Section 4.5 Integration by Substitution

    du gxdxu gxfgxgxdx1. 10x dx

    3. 2x dx

    5. tanx sec2xdxtan2xsec2xdxx2 1 x

    x2 1dx

    5x2 15x2 1210xdx

    7.

    Check: d

    dx1 2x5

    5 C 21 2x4

    1 2x42 dx 1 2x5

    5 C

    9.

    Check: d

    dx2

    39 x232 C 23

    3

    29 x2122x 9 x22x

    9 x2122xdx 9 x23232

    C2

    39 x232 C

  • 8/12/2019 Problemas Impares - Copia

    23/33

    198 Chapter 4 Integration

    11.

    Check: d

    dxx4 33

    12 C 3x

    4 32

    12 4x3 x4 32x3

    x3x4 32dx 14x4 324x3dx 1

    4x4 33

    3 C

    x4 33

    12 C

    13.

    Check: d

    dxx3 15

    15 C 5x

    3 143x2

    15 x2x3 14

    x2x3 14dx

    1

    3x3 143x2dx

    1

    3x3 15

    5 Cx3 15

    15 C

    15.

    Check: d

    dtt2 232

    3 C 32t

    2 2122t

    3 t2 212t

    tt2 2 dt 12t2 2122tdt 1

    2t2 232

    32 C

    t2 232

    3 C

    17.

    Check: d

    dx15

    81 x243 C 158

    4

    31 x2132x 5x1 x213 5x 31 x2

    5x1 x213dx 521 x2132xdx 5

    2

    1 x243

    43 C

    15

    81 x243 C

    19.

    Check: d

    dx1

    41 x22 C 1421 x232x

    x

    1 x23

    x1 x23dx 121 x232xdx 121 x22

    2 C

    1

    41 x22 C

    21.

    Check: ddx 131 x3 C 1311 x323x2 x

    2

    1 x32

    x21 x32dx 131 x323x2dx 131 x31

    1 C 1

    31 x3 C

    23.

    Check: d

    dx1 x212 C

    1

    21 x2122x

    x

    1 x2

    x1 x2

    dx 1

    21 x2122xdx 1

    21 x212

    12 C 1 x2 C

    25.

    Check:

    d

    dt

    1 1t4

    4

    C

    1

    441

    1

    t3

    1

    t2

    1

    t21

    1

    t3

    1 1t3

    1t2dt 1 1t3

    1t2dt 1 1t4

    4 C

    27.

    Check: d

    dx2x C 1

    22x122

    1

    2x

    12x

    dx 1

    22x122 dx 1

    22x12

    12 C2x C

  • 8/12/2019 Problemas Impares - Copia

    24/33

    Section 4.5 Integration by Substitution 199

    29.

    Check: d

    dx2

    5x52 2x32 14x12 C x

    2 3x 7

    x

    x2 3x 7x

    dx x32 3x12 7x12dx 25x52 2x32 14x12 C

    2

    5xx2 5x 35 C

    31.

    Check: d

    dt1

    4t4 t2 C t3 2t t2t 2t

    t2t

    2

    tdt

    t3 2tdt

    1

    4t4 t2 C

    33.

    Check: d

    dy2

    5y3215 y C ddy6y32

    2

    5y52 C 9y12 y32 9 yy

    9 yydy 9y12 y32dy 923y32 25y52 C 25y3215 y C

    35.

    2x2 416 x2 C

    4x2

    2 216 x212

    12 C

    4xdx 216 x2122xdxy

    4x

    4x

    16 x2

    dx 37.

    1

    2x2 2x 3 C

    1

    2x2 2x 31

    1 C

    1

    2x2 2x 322x 2dx

    y

    x 1

    x2

    2x 32dx

    39. (a)

    x

    y

    2 2

    1

    3

    (b)

    2 2

    1

    2

    y 1

    34 x232 2

    2 1

    34 2232 C C 22, 2:

    1

    2

    2

    34 x232 C

    1

    34 x232 C

    y

    x4

    x

    2

    dx

    1

    2

    4

    x2

    12

    2xdx

    dy

    dxx4 x2, 2, 2

    41. sin xdx cos x C 43. sin 2xdx 12sin 2x2xdx 12cos 2x C

    45. 12

    cos1

    d cos 1

    1

    2d sin1

    C

  • 8/12/2019 Problemas Impares - Copia

    25/33

    200 Chapter 4 Integration

    47. OR

    OR

    sin 2xcos 2xdx

    1

    2

    2 sin 2xcos 2xdx

    1

    2

    sin 4xdx

    1

    8cos 4x C

    2

    sin 2xcos 2xdx 12cos 2x2 sin 2xdx 1

    2cos 2x2

    2 C

    1

    1

    4cos22x C

    1

    sin 2xcos 2xdx 12sin 2x2 cos 2xdx 1

    2sin 2x2

    2 C

    1

    4sin22x C

    49. tan4xsec2xdx tan5x5 C

    1

    5tan5x C

    51.

    cotx2

    2 C

    1

    2 cot2x C

    1

    2tan2x C

    1

    2sec2x 1 C

    1

    2sec2x C

    1

    csc2xcot3x

    dx cotx3csc2xdx

    53. cot2xdx csc2x 1dx cotx x C 55.Since Thus,

    fx 2 sinx

    2 3.

    C 3.f0 3 2 sin 0 C,

    fx cosx2

    dx 2 sinx

    2 C

    57.

    2

    15x 2323x 4 C

    2

    15x 2323x 2 10 C

    2u32

    15 3u 10 C

    2

    5u52

    4

    3u32 C

    u32 2u12duxx 2 dx u 2udu

    dx dux u 2,u x 2,

    59.

    2

    1051 x3215x2 12x 8 C

    2

    1051 x3235 421 x 151 x2 C

    2u32

    10535 42u 15u2 C

    23u32 4

    5u52

    2

    7u72 C

    u12 2u32 u52dux21 xdx 1 u2udu

    dx dux 1 u,u 1 x,

  • 8/12/2019 Problemas Impares - Copia

    26/33

    Section 4.5 Integration by Substitution 201

    61.

    1

    152x 13x2 2x 13 C

    1

    602x 112x2 8x 52 C

    2x 1

    60 32x 12 102x 1 45 C

    u12

    603u2 10u 45 C

    1

    82

    5u52

    4

    3u32 6u12 C

    1

    8u32 2u12 3u12du

    1

    8u12u2 2u 1 4du

    x2 12x 1

    dx 12u 12 1u

    1

    2du

    dx 1

    2dux

    1

    2u 1,u 2x 1,

    63.

    where C1 1 C.

    x 2x 1 C1

    x 2x 1 1 C

    x 1 2x 1 C

    u 2u C

    u

    2u12

    C

    1 u12du u 1u 1

    uu 1du

    xx 1 x 1

    dx u 1u u

    du

    dx dux u 1,u x 1,

    65. Let

    11

    xx2 13dx 1

    211

    x2 132xdx 18x2 141

    1

    0

    du 2xdx.u x2 1,

    67. Let

    4

    927 22 12 8

    92

    4

    9x3 1322

    1

    23x3 132

    32 2

    1

    21

    2x2x3 1 dx 2 1

    321

    x3 1123x2dx

    u x3 1, du 3x2dx

  • 8/12/2019 Problemas Impares - Copia

    27/33

    202 Chapter 4 Integration

    69. Let

    40

    1

    2x 1dx

    1

    240

    2x 1122dx 2x 14

    0

    9 1 2

    du 2 dx.u 2x 1,

    71. Let

    91

    1

    x1 x2dx 29

    1

    1 x2 12x

    dx 21 x

    9

    1

    1

    2 1

    1

    2

    du 1

    2x

    dx.u 1 x,

    73.

    When When

    01

    u32 u12du 25u52 2

    3u32

    0

    1

    25 2

    3 4

    1521

    x 12 xdx 01

    2 u 1udu

    u 0.x 2,u 1.x 1,

    dx dux 2 u,u 2 x,

    75. 20

    cos23xdx 3

    2sin23x

    2

    0

    3

    23

    2 33

    4

    77.

    When When

    81

    u43 u13du 37u73 3

    4u43

    8

    1

    3847 12 3

    7

    3

    4 1209

    28

    Area 70

    x3x 1 dx 81

    u 13udu

    u 8.x 7,u 1.x 0,

    dx dux u 1,u x 1,

    79. A 0

    2 sinx sin 2xdx 2 cosx 12cos 2x

    0

    4

    81. Area 232

    sec2x2dx 223

    2sec2x2

    1

    2dx 2 tanx

    223

    2 23 1

    83.

    1

    1 5

    3

    40

    x

    2x 1dx 3.333

    10

    3 85.

    0

    0 8

    15

    73

    xx 3 dx 28.8 144

    5 87.

    1

    1 4

    30

    cos 6d 7.377

    89.

    They differ by a constant: C2 C

    1

    1

    6.

    2x 12dx 4x2 4x 1dx 43x3 2x2 x C

    2

    2x 12dx 122x 122 dx 1

    62x 13 C

    1

    4

    3x3 2x2 x

    1

    6 C

    1

  • 8/12/2019 Problemas Impares - Copia

    28/33

    Section 4.5 Integration by Substitution 203

    91. is even.

    2325 8

    3 272

    15

    22

    x2x2 1dx 220

    x4 x2dx 2x5

    5

    x3

    3 2

    0

    fx x2x2 1 93. is odd.

    22

    xx2 13dx 0

    fx xx2 13

    95. the function is an even function.

    (a)

    (c)20

    x2dx 20

    x2dx 8

    3

    02

    x2dx 20

    x2dx 8

    3

    x220

    x2dx x3

    3 2

    0

    8

    3;

    (b)

    (d) 02

    3x2dx 320

    x2dx 8

    22

    x2dx 220

    x2dx 16

    3

    97. 0 240

    6x2 3dx 22x3 3x4

    0

    23244

    x3 6x2 2x 3dx 44

    x3 2xdx 44

    6x2 3dx

    99. Answers will vary. See Guidelines for Making a Change of Variables on page 292.

    101. is odd. Hence, 22

    xx2 12dx 0.fx xx2 12 103.

    Solving this system yields and

    . Thus,

    When V4 $340,000.t 4,

    Vt 200,000

    t 1 300,000.

    C 300,000

    k 200,000

    V1 1

    2k C 400,000

    V0 k C 500,000

    Vt kt 12dt kt 1 CdV

    dt

    k

    t 12

    105.

    (a) thousand units

    (b) thousand units

    (c) thousand units11274.50t 262.5 cos t6

    12

    0

    112894 262.5 262.5 74.5

    1

    374.50t262.5

    cos

    t

    66

    3

    1

    3447 262.5

    223.5 102.352

    1

    374.50t262.5

    cos

    t

    63

    0

    1

    3223.5 262.5

    102.352

    1

    b aba

    74.50 43.75 sin t6dt1

    b a74.50t262.5

    cos

    t

    6b

    a

  • 8/12/2019 Problemas Impares - Copia

    29/33

    204 Chapter 4 Integration

    109. False

    2x 12dx 122x 122 dx 1

    62x 13 C

    111. True

    Odd Even10

    10

    ax3 bx2 cx ddx

    10

    10

    ax3 cxdx

    10

    10

    bx2 ddx 0 2

    10

    0

    bx2 ddx

    113. True

    4sinxcosxdx 2sin 2xdx cos 2x C

    115. Let then When When Thus,

    ba

    fx hdx bhah

    fudu bhah

    fxdx.

    u b h.x b,u a h.x a,du dx.u x h,

    107.

    (a) amps

    (b)

    amps

    (c) amps1

    130 01

    30cos60t

    1

    120sin120t

    130

    0

    30 130 1

    30 0

    2

    5 22 1.382

    1

    1240 01

    30cos60t

    1

    120sin120t

    1240

    0

    240 1302

    1

    120 1

    30

    1

    160 01

    30cos60t

    1

    120sin120t

    160

    0

    60 130 0 1

    30 4

    1.273

    1

    b aba

    2 sin60t cos120tdt1

    b a1

    30cos60t

    1

    120 sin120t

    b

    a

    Section 4.6 Numerical Integration

    1. Exact:

    Trapezoidal:

    Simpsons: 20

    x2dx1

    60 41

    22

    212 4322

    22 83 2.6667

    20

    x2dx1

    40 21

    22

    212 2322

    22 114 2.7500

    20

    x2dx 13x32

    0

    8

    3 2.6667

    3. Exact:

    Trapezoidal:

    Simpsons: 20

    x3dx1

    60 41

    23

    213 4323

    23 246 4.0000

    20

    x3dx1

    40 21

    23

    213 2323

    23 174 4.2500

    2

    0

    x3dx x4

    4 2

    0

    4.000

  • 8/12/2019 Problemas Impares - Copia

    30/33

    Section 4.6 Numerical Integration 205

    5. Exact:

    Trapezoidal:

    Simpsons: 20

    x3dx1

    120 41

    43

    2243

    4343

    213 4543

    2643

    4743

    8 4.0000

    20

    x3dx1

    80 21

    43

    2243

    2343

    213 2543

    2643

    2743

    8 4.0625

    20

    x3dx 14x42

    0

    4.0000

    7. Exact:

    Trapezoidal:

    Simpsons: 94

    xdx5

    242 4378 21 4478 26 4578 31 4678 3 12.6667 12.6640

    94

    xdx5

    162 2378 2214 2478 2264 2578 2314 2678 3

    94

    xdx 23x329

    4

    18 16

    3

    38

    3 12.6667

    9. Exact:

    Trapezoidal:

    Simpsons:

    1

    121

    4

    64

    81

    8

    25

    64

    121

    1

    9 0.1667

    21

    1

    x 12dx

    1

    121

    4 4 154 12 2

    1

    32 12 41

    74 12 1

    9

    1

    81

    4

    32

    81

    8

    25

    32

    121

    1

    9 0.1676

    21

    1

    x 12dx

    1

    81

    4 2 154 12 2

    1

    32 12 21

    74 12 1

    9

    2

    1

    1x 12

    dx 1x 12

    1

    13 1

    2 1

    6 0.1667

    11. Trapezoidal:

    Simpsons:

    Graphing utility: 3.241

    20

    1 x3dx1

    61 41 18 22 41 278 3 3.240

    2

    0

    1 x3dx1

    41 21 18 22 21 278 3 3.283

    13.

    Trapezoidal:

    Simpsons:

    Graphing utility: 0.393

    10

    x1 xdx1

    120 4141 14 2121 12 4341 34 0.372

    10

    x1 xdx1

    8

    0 2141

    1

    4 21

    21 1

    2 23

    41 3

    4

    0.342

    10

    x1 xdx 10

    x1 xdx

  • 8/12/2019 Problemas Impares - Copia

    31/33

    206 Chapter 4 Integration

    15. Trapezoidal:

    Simpsons:

    Graphing utility: 0.977

    0.978

    2

    0

    cosx2dx2

    12 cos 0 4 cos24 2

    2 cos22 2

    4 cos24 2

    cos22

    0.957

    2

    0

    cosx2dx2

    8 cos 0 2 cos24 2

    2 cos22 2

    2 cos24 2

    cos22

    17. Trapezoidal:

    Simpsons:

    Graphing utility: 0.089

    1.11

    sinx2dx1

    120sin1 4 sin1.0252 2 sin1.052 4 sin1.0752 sin1.12 0.089

    1.11

    sinx2dx1

    80sin1 2 sin1.0252 2 sin1.052 2 sin1.0752 sin1.12 0.089

    19. Trapezoidal:

    Simpsons:

    Graphing utility: 0.186

    40

    xtanxdx

    480 4

    16tan

    16 22

    16tan2

    16 43

    16tan3

    16

    4 0.186

    4

    0xtanxdx

    320 2

    16tan

    16 2

    2

    16tan2

    16 2

    3

    16tan3

    16

    4 0.194

    21. (a)

    The Trapezoidal Rule overestimates the area if the graph

    of the integrand is concave up.

    xa b

    y f x= ( )

    y 23.

    (a) Trapezoidal: since

    is maximum in when

    (b) Simpsons: since

    f4x 0.

    Error 2 05

    180440 0

    x 2.0, 2fx

    Error 2 03

    1242 12 0.5

    f4

    x

    0

    fx 6

    fx 6x

    fx 3x2

    fx x3

    25. in .

    (a) is maximum when and

    Trapezoidal: let

    in

    (b) is maximum when and when

    Simpsons: let n 26.n > 25.56;n4 > 426,666.67,Error 25

    180n424 < 0.00001,

    f41 24.x 1f4x

    1, 3f4x 24

    x5

    n 366.n > 365.15;n2 > 133,333.33,Error 23

    12n22 < 0.00001,

    f1

    2.x 1

    fx

    1, 3fx 2

    x3

  • 8/12/2019 Problemas Impares - Copia

    32/33

    Section 4.6 Numerical Integration 207

    27.

    (a) in .

    is maximum when and

    Trapezoidal: Error < 0.00001, > 16,666.67,n > 129.10; let

    (b) in

    is maximum when and

    Simpsons: Error < 0.00001, > 16,666.67, n > 11.36; let n 12.n432

    180n415

    16f40

    15

    16.x 0f4x

    0, 2f4x 15

    161 x72

    n 130.n2

    8

    12n21

    4

    f0 1

    4.x 0fx

    0, 2fx 1

    41 x32

    fx 1 x

    29.

    (a) in .

    is maximum when and

    Trapezoidal: Error < 0.00001, > 412,754.17, n > 642.46; let

    (b) in

    is maximum when and

    Simpsons: Error < 0.00001, > 5,102,485.22,n > 47.53; let n 48.n41 05

    180n4 9184.4734

    f41 9184.4734.x 1f4x

    0, 1f4x 8 sec2x212x2 3 32x4tanx2 36x2tan2x2 48x4tan3x2

    n 643.n21 03

    12n2 49.5305

    f1

    49.5305.x 1

    fx

    0, 1fx 2 sec2x21 4x2tanx2

    fx tanx2

    31. Let Then

    Simpsons: Error

    Therefore, Simpsons Rule is exact when approximating the integral of a cubic polynomial.

    Example:

    This is the exact value of the integral.

    10

    x3dx 1

    60 41

    23

    1 14

    b a5

    180n4 0 0

    f4x 0.fx Ax3 Bx2 Cx D.

    33. on .0, 4fx 2 3x2

    n

    4 12.7771 15.3965 18.4340 15.6055 15.4845

    8 14.0868 15.4480 16.9152 15.5010 15.4662

    10 14.3569 15.4544 16.6197 15.4883 15.4658

    12 14.5386 15.4578 16.4242 15.4814 15.4657

    16 14.7674 15.4613 16.1816 15.4745 15.4657

    20 14.9056 15.4628 16.0370 15.4713 15.4657

    SnTnRnMnLn

  • 8/12/2019 Problemas Impares - Copia

    33/33

    208 Chapter 4 Integration

    35. on .0, 4fx sinx

    n

    4 2.8163 3.5456 3.7256 3.2709 3.3996

    8 3.1809 3.5053 3.6356 3.4083 3.4541

    10 3.2478 3.4990 3.6115 3.4296 3.4624

    12 3.2909 3.4952 3.5940 3.4425 3.4674

    16 3.3431 3.4910 3.5704 3.4568 3.4730

    20 3.3734 3.4888 3.5552 3.4643 3.4759

    SnTnRnMnLn

    37.

    Simpsons Rule:

    x

    4 2

    1

    1

    2

    y

    0.701

    20

    xcosxdx

    840 cos 0 4

    28cos

    28 214cos

    14 4328cos

    3

    28 . . . 2 cos

    2

    n 14

    A 20

    xcosxdx

    39.

    Simpsons Rule:

    4001512125 15

    123

    . . . 0 10,233.58 ft lb

    50

    100x125 x3dx5

    3120 400 512125 5123

    2001012125 10

    123

    n 12

    W

    5

    0 100x125

    x

    3

    dx

    41. Simpsons Rule,

    1

    36113.098 3.1416

    1

    2

    0

    36 6 46.0209 26.0851 46.1968 26.3640 46.6002 6.9282

    n 6120

    6

    1 x2dx

    43. Area1000

    210125 2125 2120 2112 290 290 295 288 275 235 89,250 sq m

    45 10t i d 2