27
Principles of Atomic Layer Deposition J Provine 10.27.2010 (special thanks to Ganesh Sundaram and Prof. Fritz Prinz)

Principles of Atomic Layer Deposition-EE412

Embed Size (px)

DESCRIPTION

Principles of Atomic Layer Depositio

Citation preview

  • Pri

    nci

    ple

    s o

    f A

    tom

    ic L

    aye

    r

    De

    po

    siti

    on

    De

    po

    siti

    on

    J P

    rov

    ine

    10

    .27

    .20

    10

    (sp

    eci

    al t

    ha

    nks

    to G

    an

    esh

    Su

    nd

    ara

    ma

    nd

    Pro

    f. F

    ritz

    Pri

    nz)

  • Met

    ho

    ds

    for

    Dep

    osi

    tin

    g Th

    in F

    ilms

    Me

    tho

    dA

    LDM

    BE

    CV

    DS

    pu

    tte

    rE

    vap

    or

    PLD

    Th

    ick

    ne

    ss U

    nif

    orm

    ity

    go

    od

    fair

    go

    od

    go

    od

    fair

    fair

    Fil

    m D

    en

    sity

    go

    od

    go

    od

    go

    od

    go

    od

    fair

    go

    od

    Ste

    p C

    ove

    rag

    eg

    oo

    dp

    oo

    rva

    rie

    sp

    oo

    rp

    oo

    rp

    oo

    r

    Inte

    rfa

    ce Q

    ua

    lity

    go

    od

    go

    od

    vari

    es

    po

    or

    go

    od

    vari

    es

    Low

    Te

    mp

    . D

    ep

    osi

    tio

    ng

    oo

    dg

    oo

    dva

    rie

    sg

    oo

    dg

    oo

    dg

    oo

    d

    De

    po

    siti

    on

    Ra

    tefa

    irfa

    irg

    oo

    dg

    oo

    dg

    oo

    dg

    oo

    d

    Ind

    ust

    ria

    l Ap

    pli

    cab

    ilit

    yva

    rie

    sva

    rie

    sg

    oo

    dg

    oo

    dg

    oo

    dp

    oo

    r

  • Tri-methyl

    aluminum

    Al(CH3)3(g)

    CH

    HH H

    Al

    Methyl group

    (CH3)

    ALD

    Exa

    mp

    le C

    ycle

    fo

    r A

    l 2O

    3 D

    epo

    siti

    on

    In a

    ir H

    2O

    vapor

    is a

    dsorb

    ed o

    n m

    ost surf

    aces, f

    orm

    ing a

    hyd

    roxyl

    gro

    up.

    With s

    ilic

    on this

    form

    s: S

    i-O

    -H (s

    )

    After

    pla

    cin

    g the s

    ubstr

    ate

    in the r

    eacto

    r, T

    rim

    eth

    ylA

    lum

    inum

    (TM

    A) is

    puls

    ed into

    th

    e reaction c

    ham

    ber.

    H O

    Substrate surface (e.g. Si)

  • CH

    H

    H

    H

    Al

    Reaction of

    TMA with OH

    Methane reaction

    product CH4

    H

    HH

    HHC

    C

    ALD

    Cycle

    for

    Al 2O

    3

    Al(CH3)3 (g)+ : Si-O-H (s)

    :Si-O-Al(CH3)2(s)+ CH4

    Trimethylaluminum(TMA) reacts with the adsorbed hydroxyl groups,

    producing methane as the reaction product

    O

    Substrate surface (e.g. Si)

  • CHH

    Al

    Excess TMA

    Methane reaction

    product CH4

    HHC

    ALD

    Cyc

    le f

    or

    Al 2

    O3

    Al

    O

    TrimethylAluminum (TMA) reacts with the adsorbed hydroxyl groups,

    until the surface is passivated. TMA does not react with itself, terminating the

    reaction to one layer. This causes the perfect uniformity of ALD.

    The excess TMA is pumped away with the methane reaction product.

    Substrate surface (e.g. Si)

  • CHH

    Al

    H2O

    HHCO

    HH

    ALD

    Cyc

    le f

    or

    Al 2

    O3

    Al

    O

    After the TMA and methane reaction product is pumped away,

    water vapor (H2O) is pulsed into the reaction chamber.

  • H Al

    OO

    Al

    Al

    New hydroxyl group

    Oxygen bridges

    Methane reaction product

    Methane reaction

    product

    ALD

    Cyc

    le f

    or

    Al 2

    O3

    2 H

    2O

    (g)+ :Si-O-Al(CH3)2(s)

    :Si-O-Al(OH)2(s)+ 2 CH4

    O

    H2O reacts with the dangling methyl groups on the new surface forming aluminum-

    oxygen (Al-O) bridges and hydroxyl surface groups, waiting for a new TMA pulse.

    Again metaneis the reaction product.

    Al

  • H Al

    OO

    O

    Al

    Al

    ALD

    Cyc

    le f

    or

    Al 2

    O3

    O

    The reaction product methane is pumped away. Excess H

    2O vapor does not react with

    the hydroxyl surface groups, again causing perfect passivationto one atomic layer.

    Al

  • HH

    H

    OO

    OO

    OAl

    Al

    Al

    OO

    OO

    OAl

    Al

    Al

    OO

    OO

    O

    ALD

    Cyc

    le f

    or

    Al 2

    O3

    One TMA and one H

    2O vapor pulse form one cycle. Here three cycles are shown, with

    approximately 1 Angstrom per cycle. Each cycle including pulsing and pumping takes e.g. 3 sec.

    O

    Al

    Al

    Al

    OO

    OO

    Al(CH3)3 (g)+ :Al-O-H (s)

    :Al-O-Al(CH3)2(s)+ CH4

    2 H

    2O

    (g)+ :O-Al(CH3)2(s)

    :Al-O-Al(OH)2(s)+ 2 CH4

    Two reaction steps in each cycle:

  • Ma

    in C

    om

    po

    ne

    nts

    of

    an

    ALD

    Sys

    tem

    Ch

    am

    be

    r

    Ma

    in V

    acu

    um

    Va

    lve

    Ca

    rrie

    r G

    as

    Lin

    e

    (Va

    po

    r D

    raw

    )

    ALD

    Ma

    nif

    old P

    recu

    rso

    r C

    yli

    nd

    ers

    ALD

    Pu

    lse

    Va

    lve

    s

    Ma

    in V

    acu

    um

    Va

    lve

    Pro

    cess

    Va

    cuu

    m i

    n 1

    00

    -

    10

    00

    mT

    ra

    ng

    e

  • Ad

    van

    tag

    es

    of

    ALD

    U

    niq

    ue C

    hem

    istr

    y D

    rive

    n P

    rocess

    Self-saturating reactions with surface

    Thermal decomposition of precursor not-allowed

    Low temperature and low stress

    (molecular self assembly)

    Excellent adhesion

    20

    0

    30

    0

    40

    0

    50

    0

    60

    0

    Film Thickness ()

    Gro

    wth

    Rate

    per

    Cyc

    le

    C

    onfo

    rmal C

    oating

    Perfect 3D conformality: no line of sight issues

    Ultra high aspect ratio (>2,000:1)

    Large area thickness u

    niform

    ityand s

    cala

    bility

    C

    hallengin

    g S

    ubstr

    ate

    s

    Gentle deposition process for sensitive substrates

    (i.e. biomaterials, plastics)

    Coats challenging substrates (teflon, graphene

    gold)

    0

    10

    0

    02

    00

    40

    06

    00

    Film Thickness ()

    Num

    ber of C

    ycle

    s

    Typical ALD processes have a growth

    rate between 0.5-1.5 per cycle

  • Dis

    ad

    van

    tag

    es

    of

    ALD

    U

    niq

    ue, C

    hem

    istr

    y D

    rive

    n P

    rocess

    Not every material possible

    Precursors can limit process due to reactivity / availability

    Process limited by activation energy

    No thermal decomposition of precursor allowed

    C

    onfo

    rmal C

    oating

    Deposition can be comparably slow: cycles tim

    es of 1 second to >1

    minute depending on substrate and temperature

    Removal of excess precursor and by-products is required

    C

    hallengin

    g S

    ubstr

    ate

    s

    Functionalizationsteps may be required

  • ALD

    W

    ind

    ow

    Co

    nd

    en

    sati

    on

    lim

    ite

    dD

    eco

    mp

    osi

    tio

    n l

    imit

    ed

    Gro

    wth

    Rat

    e

    /cyc

    le

    Ea

    ch A

    LD p

    roce

    ssh

    as

    an

    id

    ea

    l p

    roce

    ss

    win

    do

    w

    in w

    hic

    h g

    row

    th i

    s sa

    tura

    ted

    at

    a

    mo

    no

    laye

    r o

    f fi

    lm.

    ALD

    Win

    do

    wTe

    mp

    erat

    ure

    De

    sorp

    tio

    n l

    imit

    ed

    Act

    iva

    tio

    n e

    ne

    rgy l

    imit

    ed

    /c

    ycle

    Sa

    tura

    tio

    n

    Leve

    l

  • Go

    od

    ALD

    pre

    curs

    ors

    ne

    ed

    to

    ha

    ve t

    he

    fo

    llo

    win

    g c

    ha

    ract

    eri

    stic

    s:

    1.

    Vo

    lati

    lity

    Va

    po

    r p

    ress

    ure

    (>

    0.1

    Torr

    at

    T