73
Jan Flusser, Filip Sroubek, Barbara Zitova Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Prague Handling Blur Image Restoration Handling Blur - ICPR 2016 1

Prezentace aplikace PowerPoint - avcr.czzoi.utia.cas.cz/files/ICPR2016_part2.pdf · Blur estimation Handling Blur - ICPR 2016 70. Patch-wise Deconvolution Handling Blur - ICPR 2016

Embed Size (px)

Citation preview

Jan Flusser, Filip Sroubek, Barbara Zitova

Institute of Information Theory and AutomationAcademy of Sciences of the Czech Republic

Prague

Handling BlurImage Restoration

Handling Blur - ICPR 2016 1

Contents• Non-blind deconvolution

– Wiener, Energy minimization, regularization

• Blind deconvolution

– MAP, VB

• Multichannel (multiframe)

– Super-resolution

• Space-variant blind deconvolution

– Patch-wise, Parametric, Object motion, Conversion to space-invariant

• Hybrid methods

– Fusion approach, High-speed cameras, Inertial sensors

Handling Blur - ICPR 2016 2

Inverse Filter

Handling Blur - ICPR 2016 3

Add noise

equivalent

Wiener Filter

Handling Blur - ICPR 2016 4

Ratio of power spectraReplace by a constant

equivalent

Deconvolution as energy minimization

• Regularization: ill-posed problem --> well posed

Enforce image smoothness

– Wiener:

– Tikhonov:

– Total Variation:

– Non-convex 𝐿𝑝 quasi-norm:Handling Blur - ICPR 2016 5

Data term Regularization

Regularization

Handling Blur - ICPR 2016 6

Different regularization 𝑄(𝑢)

Estimated image 𝑢(𝑥)

Regularization

Handling Blur - ICPR 2016 7

Statistics of sharp images

Handling Blur - ICPR 2016 8

Intensity

Gradient

Statistics of blurred images

Handling Blur - ICPR 2016 9

Intensity

Gradient

How to tackle the blind case?

• When the blur kernel ℎ(𝑥) is not known.

• One is tempted to:

1) Add blur regularization

2) Perform alternating minimization

Handling Blur - ICPR 2016 10

Alternating Minimization

• Alternating Minimization

1. 𝑢-step:

2. ℎ-step:

3. repeat 1 and 2.

Handling Blur - ICPR 2016 11

• In theory any pair (𝑢, ෨ℎ) is a solution remember inverse filter

• common regularization “NO-BLUR” solution

No-blur solution

Handling Blur - ICPR 2016 12

Regularization favors blur

Handling Blur - ICPR 2016 13

Regularization favors blur

Handling Blur - ICPR 2016 14

Artificially sparsifyimages

We need tricks!

• To avoid “no-blur” solution:

– Artificial sharpening

– Remove spikes

– Adjusting priors on the fly

– Hierarchical approach

Handling Blur - ICPR 2016 15

Chan TIP1998 Shan SigGraph08Cho SigGraph 09Xu ECCV09, 13Almeida TIP10Krishnan 11Zhong 13Sun 13Michael 14Perrone 15Pan 16

Artificial Sharpening

16

Shock filter

Blur predictionh-step

Deconvolutionu-step

Blurred image

Cho et al., SIGGRAPH 2009

Handling Blur - ICPR 2016

Remove Spiky Objects

17

Xu et al., ECCV 2010

Handling Blur - ICPR 2016

Remove Spiky Objects

18

Mask out small objects

Xu et al., ECCV 2010

Handling Blur - ICPR 2016

Remove Spiky Objects

19

Reconstructed image with small objects removed

Xu et al., ECCV 2010

Handling Blur - ICPR 2016

Adjusting priors

20

• Start with an overestimated noise level and slowly decrease it to the correct level.

• Start with p<<1 and slowly increase it to p=1. Handling Blur - ICPR 2016

Hierarchical Deconvolution

21

Scale N-1

Scale N-2

Scale N

image blur

Handling Blur - ICPR 2016

• Maximum a posteriori (MAP): max𝑝 𝑢, ℎ 𝑧

Bayesian Paradigm

a posteriori distributionunknown

likelihoodgiven by our problem

a priori distributionour prior knowledge

22Handling Blur - ICPR 2016

• max a posteriori probability 𝑝(𝑢, ℎ|𝑧)

==> min− log 𝑝(𝑢, ℎ|𝑧)

• Exponential family

Blind deconvolution with MAP

23Handling Blur - ICPR 2016

Bayesian Paradigm revisited

• Marginalize the posterior

• Maximize the marginalized prob.

• and then maximize the posterior

Handling Blur - ICPR 2016 24

Handling Blur - ICPR 2016 25

𝑢(1)

𝑢(2)

ℎ(1)

blurred image𝑢 = 𝑧(𝑥)

sharp image 𝑢 = 𝑢(𝑥)

no-blur solution

correct solution

Delta function෨ℎ = 𝛿(𝑥)

෨ℎ = ℎ(𝑥)

MAP𝑝(𝑢, ℎ|𝑧)

Marginalize𝑝(ℎ|𝑧)

How to marginalize?

• If Gaussian distributions analytic solution exists in the form of Gaussian distribution

• If not (our case) approximation • Laplace approximation

• Factorization with Variational Bayes

Handling Blur - ICPR 2016 26

Variational Bayes

• Factorization of the posterior

and then marginalization is trivial.

• Every factor q depends on moments of other variables => must be solved iteratively.

Handling Blur - ICPR 2016 27

Miskin 01Fergus 06Whyte 10Levin 11Babacan 12Wipf 14

Example of blind deconvolution

Handling Blur - ICPR 2016 28

Blurred image𝑧(𝑥)

Reconstructed image𝑢(𝑥)

original image

𝑢

acquired images

= 𝑧𝑝

channel P

channel 2

channel 1

[𝑢 ∗ ℎ𝑝]

Multichannel Model

+ 𝑛𝑝

noise

Handling Blur - ICPR 2016 29

Image

regularization

term

Blur

Regularization

term

Data

term

Gaussian noise

L2 norm

Image Restoration

• Acquisition model:

• Optimization problem

Handling Blur - ICPR 2016 30

0

Multichannel Blur Regularization

u

h2*u uh1 *= =z1 z2

Handling Blur - ICPR 2016 31

z1 * *u h1= * z2*h2 u* =*

in focus

reconstructed

Out-of-focus Camera

Handling Blur - ICPR 2016 32

Camera motion

Handling Blur - ICPR 2016 33

Degraded images

Reconstructed image

Astronomical images

PSF estimation

Handling Blur - ICPR 2016 34

Misregistration of the channels

... leads to artefacts if not handledproperly

Handling Blur - ICPR 2016 35

Handling Blur - ICPR 2016 36

Robustness to misalignment

Handling Blur - ICPR 2016 37

original image PSF degraded image

Handling Blur - ICPR 2016 38

Slight misalignment Misalignmentcompensated

No compensation

With compensation

Handling Blur - ICPR 2016 39

Image acquisition with aliasing

Handling Blur - ICPR 2016 40

Aliasing

• The loss of the high frequencies (details)

due to an insufficient resolution of the camera

Handling Blur - ICPR 2016 41

To suppress aliasing, apply multiple

acquisitions with sub-pixel shifts

Handling Blur - ICPR 2016 42

The image resolution has increased

This process is called super-resolution

Handling Blur - ICPR 2016 43

Realistic superresolution

SR must

include also

de-blurring

Handling Blur - ICPR 2016 44

original image

u

acquired images

= zk

channel K

channel 2

channel 1

[u * hk]

MC Model with Decimation

+ nk

noise

D

Handling Blur - ICPR 2016 45

Superresolution

Handling Blur - ICPR 2016 46

Superresolved image (2x)

Optical zoom (ground truth)

rough registration

8 images

SR 3x

SR 2x

original

Handling Blur - ICPR 2016 47

Input video Super-resolution

Video Restoration

Handling Blur - ICPR 2016 48

Space-variant Blurs

Handling Blur - ICPR 2016 49

Camera Motion

50Handling Blur - ICPR 2016

Object Motion

51Handling Blur - ICPR 2016

Optical aberrations

Handling Blur - ICPR 2016 52

Space-variant Out-of-focus Blur

p1

p2

p3

p4𝒉 𝒙; 𝒑𝟒

𝒉(𝒙; 𝒑𝟏)

.

.

.

53Handling Blur - ICPR 2016

Approximation of SV Blur

• Patch-wise convolution– General SV PSF– Locally convolution may not hold

• Parametric model (Blur Basis)– More accurate– Model may not hold

• Local object motion– Segmentation– Line blur

• Conversion to space-invariant– HW design

Handling Blur - ICPR 2016 54

Joshi CVPR08, Sorel ICIP09,Ji CVPR12,Sun CVPR15

Levin NIPS06, Shan ICCV07, Dai CVPR08, Chakrabarti CVPR10, Kim CVPR14

Whyte CVPR10, Gupta ECCV10, Hirsch ICCV11, Zhang NIPS13

Levin SIGGRAPH08

Patch-wise restoration

Handling Blur - ICPR 2016 55

Handling Blur - ICPR 2016 56

Parametric Model (Blur Basis)

Handling Blur - ICPR 2016 57

Hirsch ICCV2011

Object motion

• Estimate locally linear motion blur

line (2 parameters)

• Ignore occlusion

• Consider occlusion

Handling Blur - ICPR 2016 58

Shan ICCV07Dai CVPR08

Levin NIPS06Chakrabarti CVPR10Oliveira TIP14Sun CVPR15

Ignore occlusion

• Local image statistics:

Image autocorrelation increases in the blur direction

Handling Blur - ICPR 2016 59

Blur direction

Perpendicular direction

Derivatives histogram

Levin NIPS06Chakrabarti CVPR10Oliveira TIP14

Sun CVPR15

- Correlation- Histograms- CNN

Ignore occlusion

• Blind deconvolution with linear motion constraint

Handling Blur - ICPR 2016 60

Kim CVPR14

Occlusion

Handling Blur - ICPR 2016 61

Alpha matting

Blind deconvolution

Easier to solveresult is binary

Conversion to space-invariant

• Wavefront coding – out-of-focus blur

Handling Blur - ICPR 2016 62

Conversion to space-invariant

• Wavefront coding

Handling Blur - ICPR 2016 63

Space-invariantnon-blind deconvolution

Conversion to space-invariant

• Motion-invariant photography

– Space-variant linear motion blur

Handling Blur - ICPR 2016 64

Levin SIGGRAPH08

x

t

High-speed cameras

• Low FPS HR camera with high FPS LR camera

Handling Blur - ICPR 2016 65

Ben-Ezra PAMI04Tai PAMI10

High-speed camera

Handling Blur - ICPR 2016 66

Sampled trajectory (secondary detector)

Estimated PSFInterpolated trajectory

Space-time Processing

Handling Blur - ICPR 2016 67

Takeda TIP11

3D steering kernel regression

Simple deconvolution in time

Gyroscopes

Handling Blur - ICPR 2016 68

Joshi ACM Trans.Graph.10Sindelar JEI11Levoy

Acquired blurred image

Handling Blur - ICPR 2016 69

Blur estimation

Handling Blur - ICPR 2016 70

Patch-wise Deconvolution

Handling Blur - ICPR 2016 71

Final Remarks

• MC is far more stable than SC BD.

• How to make SC more robust?

• Can Deep Learning make classical BD methods obsolete?

Handling Blur - ICPR 2016 72

Thank You…

Handling Blur - ICPR 2016 73