Presentation Innovation 2010

Embed Size (px)

Citation preview

  • 8/7/2019 Presentation Innovation 2010

    1/30

    Synthesis and Photocatalytic Applications of

    of TiO2 and its Nanocomposites

    Pragati R. Thakur

    Department of Chemistry

    University of Pune

  • 8/7/2019 Presentation Innovation 2010

    2/30

    2

    Applications of TiO2 in heterogeneous photocatalysis

    Limitations of TiO2 as an efficient photocatalyst

    Ways to surmount these limitations

    Synthesis, characterization and applications of TiO2

    Synthesis and applications of composites of TiO2

    OUTLINE

  • 8/7/2019 Presentation Innovation 2010

    3/30

    3

    HETEROGENEOUS PHOTOCATALYSIS

    Complete mineralization of pollutants to environmentally harmless compounds.

    Destruction of non-biodegradable refractory contaminants.

    Operate at or slightly above ambient conditions.

    Mechanism of Photocatalysis

    e -

    h +

    O2.

    Reduction

    O2

    OH.

    Oxidation

    H2O

    OH. + Pollutants

    CO2 + H2O

    Schematic representation of the processes occurring in and

    on semiconductor particles during the photo-catalytic mineralization

    of organic molecules by oxygen.

    hR P < 390 nm

  • 8/7/2019 Presentation Innovation 2010

    4/30

    4

    THESE LIMITATIONS CAN BE SURMOUNTED BY

    Composite photocatalyst preparation

    Metal/Nonmetal doping

    LIMITATIONS OF TiO2 AS AN EFFICIENT PHOTOCATALYST

    Only active in near UV region

    Charge carrier recombination

    Low surface area for adsorption

  • 8/7/2019 Presentation Innovation 2010

    5/30

    5

    SYNERGISTIC EFFECT OF CARBON NANOTUBES ON COMPOSIT PHOTOCATALYST

    Applied Catal. B: Environ. 2005, 56, 305-312

    Environ. Sci. Technol. 2008, 42, 4952-4957

    AdsorbentDispersing agent

    Large surface area

    JMaterial Sci. 2008 43, 2348-2355.

  • 8/7/2019 Presentation Innovation 2010

    6/30

    6

    Preparation of TiO2 nanoparticles

    (i) Microemulsion method

    (ii) Sol gel method

    Characterization of as prepared TiO2 nanoparticles by XRD, FTIR,

    DRS, TG-DTA, BET, SEM and TEM.

    Application of as prepared TiO2 nanoparticles for the

    photocatalytic degradation of targeted pollutant Methyl Orange.

    Experimental

  • 8/7/2019 Presentation Innovation 2010

    7/30

    7

    TiO2/activated carbon (TA) composite has been prepared with

    enhanced photocatalytic activity by a very simple mechanical

    grinding method, which could preserve the respective initial surface

    states of the individual solid constituents, giving a synergistic effect.

    The as prepared composite was characterized by SEM, XRD, BET

    surface area, UV-visible absorbance spectroscopy and Raman

    spectroscopy.

    p-Nitrophenol was used as target pollutant to test the photocatalytic

    activity.

    ACTIVATED CARBON-TiO2 COMPOSITE

    Synergistic effect of Adsorption and Photocatalysis

  • 8/7/2019 Presentation Innovation 2010

    8/30

  • 8/7/2019 Presentation Innovation 2010

    9/30

    9

    XRD ofMerck TiO2, AC-200 and TA-200(5:1)

    Raman spectra

    UV-Visible diffuse reflectance

    CHARACTERIZATION OF ACTIVATED CARBON-TiO2 COMPOSITE

  • 8/7/2019 Presentation Innovation 2010

    10/30

    10

  • 8/7/2019 Presentation Innovation 2010

    11/30

    11

    Synthesis of Silver Doped TiO2 NanoparticlesSynthesis of Silver Doped TiO2 Nanoparticles

    TiOTiO22 nanoparticles were prepared by solnanoparticles were prepared by sol--gel method using Titaniumgel method using Titanium

    tetraisotetraiso--propoxide as precursor.propoxide as precursor.

    Silver was then photodeposited on the TiOSilver was then photodeposited on the TiO22 Nanoparticles byNanoparticles by

    Photodeposition method.Photodeposition method.

    Photocatalytic activity was determined by degradation of Methyl OrangePhotocatalytic activity was determined by degradation of Methyl Orange

    Dye as target pollutant.Dye as target pollutant.

  • 8/7/2019 Presentation Innovation 2010

    12/30

    12

    a. Ag-TiO2 b. TiO2 c. Merck TiO2

    Characterization of Prepared TiO2 and AgCharacterization of Prepared TiO2 and Ag--TiO2TiO2

    The XRD pattern shows theThe XRD pattern shows the

    presence of pure anatasepresence of pure anatase

    phase in TiOphase in TiO22 ..

    Solid UVSolid UV--Visible absorbance spectraVisible absorbance spectra

  • 8/7/2019 Presentation Innovation 2010

    13/30

    13

    SEM images of TiOSEM images of TiO22 and Agand Ag--TiOTiO22

    TEM images of TiOTEM images of TiO22 and Agand Ag--TiOTiO22

    Characterization of Prepared TiOCharacterization of Prepared TiO22 and Agand Ag--TiOTiO22

  • 8/7/2019 Presentation Innovation 2010

    14/30

    14

  • 8/7/2019 Presentation Innovation 2010

    15/30

    15

    AeratorPump

    Magnetic Stirrer

    Water OutletWater Inlet

    Sample Aliquot

    Mercury Vapor Lamp

    Quartz Tube

    EXPERIMENTAL SET UP FOR PHOTOCATALYSIS

  • 8/7/2019 Presentation Innovation 2010

    16/30

    16

    TiO2 Samples BET Surface Area in m2/g

    TiO2 microemulsion method

    TiO2 Sol-gel method

    27.012 0.138 m2/g

    150 m2/g

  • 8/7/2019 Presentation Innovation 2010

    17/30

    200 300 400 500 600 700 8000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Absorbance

    wavelength in nm

    DiffuseReflectance Spectra ofRT-TiO2 Nanoparicles

  • 8/7/2019 Presentation Innovation 2010

    18/30

  • 8/7/2019 Presentation Innovation 2010

    19/30

    Spectral changes occurred during the photodegradation of MO dye

    350 400 450 500 550 600-0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0 min.

    30 min.

    60 min.

    90 min.

    120 min.

    150 min.

    Absorbance

    wavelength in nm

    Spectral changes occurred during

    the photodegradation of MO at RT

    3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

    0 . 0 0

    0 . 0 5

    0 . 1 0

    0 . 1 5

    0 . 2 0

    0 . 2 5

    0 . 3 0

    0 . 3 5

    0 . 4 0

    0 m in.

    30 m in .

    60 m in .

    90 m in .

    120 m in .

    150 m in .

    A

    bsorbance

    w a v e l e n g t h i n n m

    Specta l changes occurred dur ing

    the photod egradat ion of M O at RT

    T iO2(w ithout surfactant )

    3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

    0 . 0 0

    0 . 0 5

    0 . 1 0

    0 . 1 5

    0 . 2 0

    0 . 2 5

    0 . 3 0

    0 . 3 5

    0 . 4 0S p e c t r a l c h a n g e s o c c u r r e d d u r i n g

    t h e p h o t o d e g r a d a t i o n o f

    M O for w itho ut T iO2

    0 m in .

    3 0 m in .

    6 0 m in .

    9 0 m in .

    1 2 0 m in .

    1 5 0 m in .

    A

    bsorban

    ce

    w a ve le n g th in n m

  • 8/7/2019 Presentation Innovation 2010

    20/30

    COD graph of photodegradation of TiO2

    0 30 60 90 120

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    %C

    D

    ti

    i

    i

    i

    .

    0 30 60 90 120

    0

    10

    20

    30

    40

    %C

    D

    ti

    i i i .

    80% COD reduction of TiO2(with

    surfactant)41% COD reduction of TiO2 (without

    surfactant)

  • 8/7/2019 Presentation Innovation 2010

    21/30

    SEM image of TiO2

  • 8/7/2019 Presentation Innovation 2010

    22/30

    Photocatalytic degradation ofMO dye using TiO2

    0 20 40 60 80 100 120 140 1600.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    TiO2

    with surfactant

    TiO2

    without surfactant

    without TiO2

    /

    0

    Irradiation time in min.

  • 8/7/2019 Presentation Innovation 2010

    23/30

    XRD pattern of TiO2

    2 0 3 0 4 0 5 0 6 0 7 0 8 0

    1 0 0

    2 0 0

    3 0 0

    4 0 0

    5 0 0

    6 0 0

    B

    I

    t

    ityi

    .

    U

  • 8/7/2019 Presentation Innovation 2010

    24/30

    FTIR of TiO2

    40 00 3 50 0 30 00 25 0 0 20 00 15 0 0 10 00 5 0 0

    10

    15

    20

    25

    30

    35

    40

    45

    B

    %

    r i-1

  • 8/7/2019 Presentation Innovation 2010

    25/30

    TG-DTA plot of prepared TiO2

  • 8/7/2019 Presentation Innovation 2010

    26/30

    Results and discussion

    TiO2 nanoparticles have been synthesized by a reverse microemulsion process using TiCl4

    as a precursor and sol-gel method. XRD study shows pure rutile phase for TiO2 prepared by microemulsion method and pure

    anatase phase by using sol-gel method.

    FTIR study shows strong band for surfactant and broad band corresponding to surface

    hydroxyl group on TiO2

    TGA shows observable weight loss about 19% and exhaust of HCl gas from the precursor

    which is confirmed by chloride test and DTA shows decomposition of hydrated oxide. From DRS calculated band gap energy is 3.0 eV.

    BET Analysis shows surface area of microemulsion mediated TiO2 is 27.012 0.138 m2/g

    and 150 m2/g for sol-gel method.

    TEM images shows spherical shape of TiO2 for both methods.

    HigherPhotocatalytic degradation of MO dye has been found for TiO2 prepared by using

    surfactant as compared to TiO2 prepared without surfactant.

  • 8/7/2019 Presentation Innovation 2010

    27/30

    27

    REFERENCES

    1. Wang Y., Jiang Z., Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity

    through a nanocoating-hydrothermal process. J NanoparticleRes. 2007, 9, 1087-1096.

    2. Yan J., Song H., Yang S., Yan J., Chen X., Preparation and electrochemical properties of carbon nanotubes loaded with

    Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochimica Acta. 2008, 53, 6351-6355.

    3. Yu Y., Yu J.C., Chan C.Y., Che Y. K., Zhao J.C., Ding L., Ge W. K., Wong P.K., Enhancement of adsorption andphotocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A: Gen. 2005, 289, 186-196.

    4.Mishra A., Banerjee S., Sushanta K.M., Graeve O.A.,MishraM., Synthesis of carbon nanotube-TiO2 nanotubular

    material for reversible hydrogen storage J. Nanotech. 19, 2008, 445607.

    5. Yu H., Quan X., Chen S., Zhao H., TiO2-Multiwalled carbon nanotube heterojunction arrays and their charge

    separation capability, J. Phys. Chem. C, 2007, 111, 12987-12991.

    6. Rim S., Vittal R., Kim K. J., Incorporation of funtionalized single wall carbon nanotubes in dye sensitized TiO2 solar

    cells, Langmuir, 2004, 20, 9807-9810.

  • 8/7/2019 Presentation Innovation 2010

    28/30

    28

    1.EI-Sharkawy E.A.,Soli

    a

    A.Y.,Al-A

    er K.M.,Co

    parative study for the re

    oval of

    ethyle

    e blue via adsorptio

    a

    d photocatalytic degradatio

    , J.Colloide and Int

    1.Syoufia

    A.,Nakashi

    a K., Deradatio

    of

    ethyle

    e blue i

    aqueous dispersio

    of hollow tita

    ia photocatalyst:Study of reactio

    e

    ha

    ce

    e

    t by various electro

    scave

    gers,J.Colloid.Interface.Sci.,317,507(2008)

    Zha

    g T.,Oya

    a T., Aoshi

    a A., Hidak H., ZhaoJ., Serpo

    e N., Photooxidative N-de

    ethylatio

    of

    ethyle

    e blue i

    aqueous TiO2

    dispersio

    s u

    der UV irradiatio

    ,J.Phot

    (2001)

    1.Choy W.K.,Chu W.,The use of oxyhaloge

    i

    photocatalytic reactio

    to re

    ove o-chloroa

    ili

    e i

    TiO2dispersio

    ,Chemosphere.,66,2106 (2007)

    1.tos J.N.R.D.,Souza D.S.,Souza E.E.S.,Decolourisatio

    effect of Vat Gree

    01 textile dye a

    d textile wastewater usi

    g H2O

    2/UV process, J.Photochem.and

    Photobiol.A:Chem.,186,125(2007)

    1.Schra!

    k S.G.,Sa!

    tos J.N.R.D.,Souza D.S.,Souza E.E.S.,Decolourisatio!

    effect of Vat Gree!

    01 textile dye a!

    d textile wastewater usi!

    g H2O

    2/UV process, J.Photochem.and

  • 8/7/2019 Presentation Innovation 2010

    29/30

  • 8/7/2019 Presentation Innovation 2010

    30/30

    30

    Thank You !