Click here to load reader
View
117
Download
6
Embed Size (px)
DESCRIPTION
Porticos Ejercicios Resueltos
exposion
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCOFACULTAD DE INGENIERIA CIVILEJERCICIOS RESUELTOS
ASIGNATURA: ANALISIS MATRICIAL DE ESRUCTURASESTUDIANTE: TORRES APAZA DIEGO ARMANDO 111845
1. Resolver por el mtodo de rigidez, para el siguiente prtico que se muestra en la figura: Considere I=500in^4, A=10in^2, E=29(10^3)ksi
AE/L00-AE/L00
012EI/L^36EI/L^20-12EI/L^36EI/L^2
K=06EI/L^24EI/L0-6EI/L^22EI/L
-AE/L00AE/L00
0-12EI/L^3-6EI/L^2012EI/L^3-6EI/L^2
06EI/L^22EI/L0-6EI/L^24EI/L
0000
0000
T=001000
000
0
000
0
000001
Solucin
1.1. Matriz de rigidez en coordenadas locales para la barra 1
E(ksi)A(in^2)I(in^4)L(in)
2900010500240
AE/L12EI/L^36EI/L^24EI/L2EI/L
1208.3333312.58680561510.41667241666.667120833.333
NodosXY
100(240-0)/240(0-0)/240
2240010
465123
1208.3300-1208.33004100000
012.58681510.420-12.58681510.426010000
K1=01510.422416670-1510.421208335T=001000
-1208.33001208.33001000100
0-12.5868-1510.42012.5868-1510.422000010
01510.421208330-1510.422416673000001
465123
1000001208.300-1208004
010000012.5871510.40-12.591510.46
=00100001510.42416670-15101208335
000100-1208001208.3001
0000100-12.59-1510012.587-15102
00000101510.41208330-15102416673
1.2. MATRIZ DE RIGIDEZ EN COORDENADAS LOCALES PARA LA BARRA 2
123789
1208.3300-1208.330010-10000
012.58681510.420-12.58681510.422100000
K=01510.422416670-1510.421208333T=001000
-1208.33001208.330070000-10
0-12.5868-1510.42012.5868-1510.428000100
01510.421208330-1510.422416679000001
123789
01000012.58701510.4-12.5901510.41
-10000001208.300-120802
0010001510.40241667-151001208333
000010-12.590-151012.5870-15107
000-1000-1208001208.308
0000011510.40120833-151002416679
1.3. MATRIZ DE RIGIDEZ EN COORDENADAS GLOBALES
123456789
1220.9201401510.41667-1208.333300-12.58680601510.416671
01220.92014-1510.41670-1510.4167-12.5868060-1208.333302
1510.41667-1510.4167483333.3330120833.3331510.41667-1510.41670120833.3333
KCG=-1208.3333001208.33333000004
0-1510.4167120833.3330241666.6671510.416670005
0-12.5868061510.4166701510.4166712.58680560006
-12.5868060-1510.416700012.58680560-1510.41677
0-1208.3333000001208.3333308
1510.416670120833.333000-1510.41670241666.6679
1.4. CALCULO DE LOS DESPLAZAMIENTOS DESCONOCIDOS
51220.9201401510.41667-1208.33330D1
001220.92014-1510.41670-1510.4167D2
0=1510.41667-1510.4167483333.3330120833.333D3
0-1208.3333001208.333330D4
00-1510.4167120833.3330241666.667D5
D10.69575393
D2-0.00155071
D3=-0.0024876
D40.69575393
D5,0.00123411
1.5. CALCULO DE LAS REACCIONES DESCONOCIDAS
Q6-1.87378009K
Q7=-5K
Q81.873780091K
Q9750.2927781K.in
1.6. CALCULO DE FUERZAS PARA LA BARRA 1
q1KTD
N41208.3300-1208.33001000000.695754
N6012.58681510.420-12.58681510.420100000
N5=01510.422416670-1510.421208330010000.001234
F1-1208.33001208.33000001000.695754
F20-12.5868-1510.42012.5868-1510.42000010-0.00155
F301510.421208330-1510.42241667000001-0.00249
q1
N40
N6-1.8737801
N5=5.6843E-14
F10
F21.87378009
F3-449.70722
1.7. CALCULO DE FUERZAS PARA LA BARRA 2
q2KTD
N11208.3300-1208.33000-100000.695754
N2012.58681510.420-12.58681510.42100000-0.00155
N3=01510.422416670-1510.42120833001000-0.00249
F7-1208.33001208.33000000-100
F80-12.5868-1510.4012.5868-1510.420001000
F901510.421208330-1510.422416670000010
q2
N11.87378
N25
N3=449.707
F7-1.8738
F8-5
F9750.293
1.8. GRAFICA DE LA SOLUCION
2. ANALICE EL PORTICO DE LA FIGURA POR EL METODO MATRICIAL DE LOS DESPLAZAMIENTOS.
Dimensiones bxh (mm) Viga 300x500Columna 300x300E=19KN/mm^2
Solucin
2.1. Matriz de rigidez en coordenadas locales para la barra 1
E(KN/m2)A(m2)I(m^4)L(m)
190000000.150.0031256
AE/L(KN/m)12EI/L^3(KN/m)6EI/L^2(KN)4EI/L(KN.m)2EI/L(KN.m)
4750003298.6111119895.83333339583.3333319791.66667
NodosXY
103(6-0)/6(3-3)/6
26310
123456
47500000-47500000100000
03298.619895.830-3298.69895.83010000
[K]=09895.8339583.30-9895.819791.7[T]=001000
-4750000047500000000100
0-3298.6-9895.803298.61-9895.8000010
09895.8319791.70-9895.839583.3000001
123456
10000047500000-475000001
01000003298.61119895.83330-3298.6119895.83332
[T]t=001000[KCG]=09895.833339583.3330-9895.83319791.6673
000100-47500000475000004
0000100-3298.611-9895.83303298.6111-9895.8335
00000109895.833319791.6670-9895.83339583.3336
2.2. Matriz de rigidez en coordenadas locales para la barra 2
E(KN/m2)A(m2)I(m^4)L(m)
190000000.090.0006753
AE/L(KN/m)12EI/L^3(KN/m)6EI/L^2(KN)4EI/L(KN.m)2EI/L(KN.m)
57000057008550171008550
NodosXY
300(0-0)/3(3-0)/3
10301
57000000-57000000010000
0570085500-57008550-100000
[K]=08550171000-85508550[T]=001000
-5700000057000000000010
0-5700-855005700-8550000-100
0855085500-855017100000001
789123
0-1000057000-8550-57000-85507
100000057000000-57000008
[T]t=001000[KCG]=-85500171008550085509
0000-10-5700085505700085501
0001000-5700000057000002
000001-85500855085500171003
2.3. Matriz de rigidez en coordenadas locales para la barra 3
E(KN/m2)A(m2)I(m^4)L(m)
190000000.090.0006753
AE/L(KN/m)12EI/L^3(KN/m)6EI/L^2(KN)4EI/L(KN.m)2EI/L(KN.m)
57000057008550171008550
NodosXY
263(6-6)/3(0-3)/3
4600-1
57000000-570000000-10000
0570085500-57008550100000
[K]=08550171000-85508550[T]=001000
-57000000570000000000-10
0-5700-855005700-8550000100
0855085500-855017100000001
456101112
010000570008550-5700085504
-100000057000000-57000005
[T]t=001000[KCG]=8550017100-8550085506
000010-57000-855057000-855010
000-1000-57000000570000011
000001855008550-855001710012
2.4. MATRIZ DE RIGIDEZ EN COORDENADAS GLOBALES123456789101112
48070008550-47500000-5700085500001
0573298.69895.8330-3298.619895.8330-57000000002
85509895.83356683.330-9895.8319791.67-8550085500003
-4750000048070008550000-5700085504
0-3298.61-9895.830573298.6-9895.830000-57000005
[KCG]=09895.83319791.678550-9895.8356683.33000-8550085506
-57000-855000057000-85500007
0-5700000000057000000008
855008550000-85500171000009
000-57000-855000057000-855010
0000-57000000000570000011
000855008550000-855001710012
2.5. CALCULO DE LOS DESPLAZAMIENTOS DESCONOCIDOS 048070008550-47500000D1
-750573298.69895.8330-3298.6119895.833D2
-75=85509895.83356683.330-9895.83319791.67D3
0-4750000048070008550D4
-750-3298.611-9895.8330573298.6-9895.833D5
7509895.83319791.678550-9895.83356683.33D6
D11.8225E-05m
D2-0.0001316m
D3=-0.0020372rad
D4-1.823E-05m
D5-0.0001316m
D60.0020372rad
2.6. CALCULO DE LAS REACCIONES DESCONOCIDAS Q7-57000-85500001.8225E-0517.314KN
Q80-5700000000-0.0001315875.000KN
Q9=855008550000-0.0020372=-17.262KN.m
Q10000-57000-8550-1.8225E-05-17.314KN
Q110000-5700000-0.0001315875.000KN
Q120008550085500.002037217.262KN.m
2.7. CALCULO DE FUERZAS PARA LA BARRA 1q1KTD
N147500000-475000001000001.8225E-0517.314KN
N203298.6119895.8330-3298.6119895.833010000-0.00013160KN
N3=09895.83339583.330-9895.83319791.67001000-0.0020372=-40.32KN.m
F4-4750000047500000000100-1.823E-05-17.314KN
F50-3298.611-9895.83303298.611-9895.833000010-0.00013160KN
F609895.83319791.670-9895.83339583.330000010.002037240.32KN.m
2.8. CALCULO DE FUERZAS PARA LA BARRA 2q2KTD
N757000000-57000000010000075KN
N80570085500-57008550-1000000-17.314KN
N9=08550171000-855085500010000=-17.262KN.m
F1-57000000570000000000101.8225E-05-75KN
F20-5700-855005700-8550000-100-0.000131617.314KN
F30855085500-855017100000001-0.0020372-34.68KN.m
2.9. CALCULO DE FUERZAS PARA LA BARRA 3q3KTD
N457000000-570000000-10000-1.823E-0575KN
N50570085500-57008550100000-0.000131617.314KN
N6=08550171000-855085500010000.0020372=34.68KN.m
F10-57000000570000000000-100-75KN
F110-5700-855005700-85500001000-17.314KN
F120855085500-855017100000001017.262KN.m
2.10. GRAFICA DE LA SOLUCION
3. RESOLVER EL SIGUIENTE PORTICO
3.1. Matriz de rigidez en coordenadas locales para la barra 1123456
0.1666700-0.166700100000
00.111110.333330-0.11110.33333010000
[K]=00.333331.333330-0.33330.66667[T]=001000
-0.1667000.1666700000100
0-0.1111-0.333300.11111-0.3333000010
00.333330.666670-0.33331.33333000001
123456
1000000.16666700-0.166667001
01000000.1111110.3333330-0.1111110.3333332
[T]t=001000[KCG]=00.3333331.3333330-0.3333330.6666673
000100-0.166667000.166667004
0000100-0.111111-0.33333300.111111-0.3333335
00000100.3333330.6666670-0.3333331.3333336
3.2. Matriz de