66
Physics of Chromospher ic Evaporation in Sola r Flares K. Shibata 2003 . Apr 28 Solar Seminar

Physics of Chromospheric Evaporation in Solar Flares

  • Upload
    jimbo

  • View
    49

  • Download
    2

Embed Size (px)

DESCRIPTION

2003 . Apr  28    Solar Seminar. Physics of Chromospheric Evaporation in Solar Flares. K. Shibata. Best 10 of Most cited papers based on Hida-DST observations 6 th -10 th (ADS : 2003 Apr 27). 6. Brueckner, G. E., et al. (1988) ApJ, 335, 986 ------------------- 18 回 - PowerPoint PPT Presentation

Citation preview

Page 1: Physics of Chromospheric Evaporation in Solar Flares

Physics of Chromospheric Evaporation in Solar Flares

K. Shibata

2003 .   Apr  28    Solar Seminar

Page 2: Physics of Chromospheric Evaporation in Solar Flares

Best 10 of Most cited papers based on Hida-DST observations 6th-10th

(ADS : 2003 Apr 27)

• 6. Brueckner, G. E., et al. (1988) ApJ, 335, 986 ------------------- 18 回

• 7. Kurokawa, H., Hanaoka, H., et al. (1987) Solar Phys., 108, 251 --------- 17

• 8. Tsubaki, T., et al. (1988) PASJ, 40, 121 ----------------- 17

• 9. Culhane, J. L. et al. (1994) Solar Phys., 153, 307 -------- 16

• 10. Kitai, R. (1986) Solar Phys., 104, 287 -------- 16

Page 3: Physics of Chromospheric Evaporation in Solar Flares

Best 10 of Most cited papers based on Hida-DST observations 1st – 5th

• 1.

• 2 . Ichimoto, K. (1987) Solar Phys. 39, 329 ------------ 22

• 3. Kurokawa, H., (1987) Solar Phys., 113, 259 --------- 20

• 4 . Kurokawa, H. (1989) Space Sci. Rev. 51, 49 ------- 19

• 5. Kurokawa, H., Takakura, T., et al. (1988) PASJ, 40, 357 ------------------ 18

Ichimoto, K. and Kurokawa, H. (1984) Solar Phys. 93, 105 ---------- 69 回

Page 4: Physics of Chromospheric Evaporation in Solar Flares

Introduction: what is flare ?

• Preflare energy buid-up• Trigger• Energy release --- magnetic reconnection

– Heating– Particle acceleration– Mass ejection– Shock wave

• Energy transport– Nonthermal electron beam– Heat conduction– Chromospheric evaporation– Radiation

Page 5: Physics of Chromospheric Evaporation in Solar Flares

Energy buidup

Page 6: Physics of Chromospheric Evaporation in Solar Flares

Energy release – magnetic reconnection

Unified model (Shibata 1997)

Page 7: Physics of Chromospheric Evaporation in Solar Flares

Energy transport

Bright soft X-ray Flare loop Is a Consequence of chromosphericevaporation !

Page 8: Physics of Chromospheric Evaporation in Solar Flares

Neupert (1968) ApJ 153, 59

• obs. soft X-ray line + microwave in flares => “additional material, not originally at coronal temperature, is rapidly heated and elevated to high stages of ionization during the event”

Page 9: Physics of Chromospheric Evaporation in Solar Flares

Neupert effect

• Time derivative of soft X-ray intensity ~ hard X-ray intensity

Hard X-raymicrowave

Soft X-ray

Dennis and Zarro (1993) OK(80%)Lee et al. (1995) no Tomczak (1999) spatial info OK

Page 10: Physics of Chromospheric Evaporation in Solar Flares

Theory and numerical simulations of

chromospheric evaporation

Page 11: Physics of Chromospheric Evaporation in Solar Flares

Hirayama (1974)

• “Particles observed in the corona and the solar wind are evaporated from the chromosphere during the flare”

Page 12: Physics of Chromospheric Evaporation in Solar Flares

x

TTpv

2

5

0

2

5

0)(

xt

TR

p

t - 2/7  ∝   T

=   const.

Evaporation cooling (Antiochos and Sturrock 1978)

Page 13: Physics of Chromospheric Evaporation in Solar Flares

Nagai (1980) Solar Phys.1D-Hydro-sim.

F ~ 3x10^{9} erg/cm^2/s

Page 14: Physics of Chromospheric Evaporation in Solar Flares

Nagai (1980)

F ~ 3x10^{9} erg/cm^2/s

Page 15: Physics of Chromospheric Evaporation in Solar Flares

Nagai (1980)

F ~ 3x10^{9} erg/cm^2/s

Page 16: Physics of Chromospheric Evaporation in Solar Flares

Nagai (1980)

F ~ 3x10^{9} erg/cm^2/s

Page 17: Physics of Chromospheric Evaporation in Solar Flares

Nagai (1980)

F ~ 3x10^{10} erg/cm^2/s Strong downflow ~ 40km/s

Page 18: Physics of Chromospheric Evaporation in Solar Flares

Fisher et al. (1985) ApJ thick target heating by nonthermal electrons

Page 19: Physics of Chromospheric Evaporation in Solar Flares

Scaling law (Fisher 1985)

7/2

9

7/2

2107

7/20max

0

103//10310

)/(

/

cm

L

scmerg

FK

FLT

LTF

Flare maximum temperature

Maximum velocity of evaporation upward flow

2/1

7

max

10/1000

35.2

K

Tskm

CV s

Page 20: Physics of Chromospheric Evaporation in Solar Flares

MHD Simulation of Reconnection with Heat Conduction and Chromospheric Evaporation

(Yokoyama and Shibata 1998, 2001)7/27/6 LBT

Page 21: Physics of Chromospheric Evaporation in Solar Flares

Reconnection heating = conduction cooling

Flare temperature scaling law( Yokoyama and Shibata 1998 )

2 B

LTVB A 2/4/ 2/72

7/6BT

7/27/6 LBT

Page 22: Physics of Chromospheric Evaporation in Solar Flares

Simulation of soft X-ray and radio observations

Page 23: Physics of Chromospheric Evaporation in Solar Flares

Prediction of Yokoyama-Shibata

1998

Page 24: Physics of Chromospheric Evaporation in Solar Flares

Observational evidence of chromospheric evaporation

Page 25: Physics of Chromospheric Evaporation in Solar Flares

Antonucci et al. (1982) SP 78, 107detected blue shift of evaporation upward flow

Page 26: Physics of Chromospheric Evaporation in Solar Flares

Antonucci et al. (1982)

Page 27: Physics of Chromospheric Evaporation in Solar Flares

Antonucci et al. (1982)

Page 28: Physics of Chromospheric Evaporation in Solar Flares

Ichimoto and Kurokawa (1984) SP

93, 105solved red asymmetry

problem

• “The spectroscopy of Ichimoto and Kurokawa (1984) represents the zenith of what has been achieved up to now by conventional photographic spectroscopy”

(Canfield et al. 1990)

Page 29: Physics of Chromospheric Evaporation in Solar Flares
Page 30: Physics of Chromospheric Evaporation in Solar Flares
Page 31: Physics of Chromospheric Evaporation in Solar Flares
Page 32: Physics of Chromospheric Evaporation in Solar Flares

Can red asymmetry be explained by absorbing material ?

Page 33: Physics of Chromospheric Evaporation in Solar Flares

Redshift cannot be explained byabsorbtion

Page 34: Physics of Chromospheric Evaporation in Solar Flares

Temporal variation of downward velocity in theflare emitting region

(Ichimoto and Kurokawa 1984)

●   wing shift x peak shift ○   Halpha intensity

Page 35: Physics of Chromospheric Evaporation in Solar Flares
Page 36: Physics of Chromospheric Evaporation in Solar Flares

Ichimoto and Kurokawa (1984)

• H alpha red asymmetry (40-100 km/s) is is due to downward motion of the compressed chromospheric flare region produced by the impulsive heating by energetic electrons or thermal conduction

Page 37: Physics of Chromospheric Evaporation in Solar Flares

Canfield et al. (1990) H alpha + Hard X-ray confirm Ichimoto-Kurokawa, but show

also blue shifted H alpha emssion

Page 38: Physics of Chromospheric Evaporation in Solar Flares

Wuelser et al. (1992) ApJ 384, 341

• SMM X-ray + Sacpeak H alpha line

upflowing coronal material (as seen in Ca XIX soft X-rays) and downflowing chromospheric material (as seen in redshifted H alpha) appear simultaneously at the beginning of impuslive hard X-ray emission, with the total momenta of oppositely directed plasmas being equal to the observational uncertainties

Page 39: Physics of Chromospheric Evaporation in Solar Flares

Wuelser et al. (1992)

Page 40: Physics of Chromospheric Evaporation in Solar Flares
Page 41: Physics of Chromospheric Evaporation in Solar Flares
Page 42: Physics of Chromospheric Evaporation in Solar Flares

Nogami, Brooks, Isobe, Shibata,,,(2003-2004)

• We want to observe stellar flares with the scientific purpose similar to that of Wuelser et al. (1992)’s solar flare observations by using both Subaru and XMM-Newton

Page 43: Physics of Chromospheric Evaporation in Solar Flares

Further developments

• Wuelser et al. (1994)– Yohkoh-Mees – Upflowing coronal plasma and downflowing chromospheric plas

ma at the same locations, at footpoints of a soft X-ray loop– Footpoints are not heated by nonthermal electrons but by heat c

onduction

• Shoji and Kurokawa (1995)– Hida DST– Impulsive phase spectra of flares for Halpha, CaIIK, HeID3, NaI

D1,2, other metalic lines– Emitting region of chromospheric flare consists of two regions;– Thin fast downward moving layer, and stationary optically thick l

ayter (for metalic lines)

Page 44: Physics of Chromospheric Evaporation in Solar Flares

Latest paper

• Teriaca et al. (2003) ApJ 588, 596– SOHO/CDS, SacPeak, GOES

first quasi-simultaneous and spatially resolved observations of velocity fields during the impulsive phase of a flare, in both the chromosphere and upper atmospehre

Page 45: Physics of Chromospheric Evaporation in Solar Flares

Shimojo et al. (2001)evaporation occurs also in X-ray jets

(see also Miyagoshi and Yokoyama 2003)

Page 46: Physics of Chromospheric Evaporation in Solar Flares

Shimojo-Shibata (2000) ApJ

Page 47: Physics of Chromospheric Evaporation in Solar Flares
Page 48: Physics of Chromospheric Evaporation in Solar Flares
Page 49: Physics of Chromospheric Evaporation in Solar Flares

X-ray jets are evaporation flows(Shimojo and Shibata 2000)

Page 50: Physics of Chromospheric Evaporation in Solar Flares

Future Subjects

• Spectroscopic observatsions of flares should be done at Hida with DST as the most important priority projects in 2003

• H alpha red asymmetry of surges would be observed (at the footpoint of surges/X-ray jets)

• stellar flares observations will be interesting to detect evaporation flows

• Remaining puzzles: – blue shifts ?– Nonthermal electrons or thermal conduction ?

• Develop further MHD simulations with evaporation in 2D and 3D, incorporating effects of nonequilibrium ionization, nonthermal electrons, and radiative transfer

Page 51: Physics of Chromospheric Evaporation in Solar Flares
Page 52: Physics of Chromospheric Evaporation in Solar Flares
Page 53: Physics of Chromospheric Evaporation in Solar Flares

飛騨天文台観測論文引用ベスト10

ADS 調べ: 2003 年 4 月27日• 1. Ichimoto, K. and Kurokawa, H. (1984)

Solar Phys. 93, 105 ---------- 69 回• 2. Ichimoto, K., Kubota, J., et al. (1985)

Nature, 316, 422 -------------- 49• 3. Oda, N. (1984)

Solar Phys. 93, 243 ----------- 34• 4. Hanaoka, Y., Kurokawa, H., et al. (1994)

PASJ, 46, 205 ------------------ 28• 5. Ichimoto, K. (1987)

Solar Phys. 39, 329 ------------ 22

Page 54: Physics of Chromospheric Evaporation in Solar Flares

• 6. Kurokawa, H., (1987) Solar Phys., 113, 259 -------- 20 回

• 7. Kurokawa, H. (1989) Space Sci. Rev. 51, 49 ------ 19

• 8. Kawaguchi, I. (1980) Solar Phys. 65, 207 ----------- 19

• 9. Kitai, R. and Muller, R. (1984) Solar Phys. 77, 121 ------------18

• 10. Kurokawa, H., Takakura, T., et al. (1988) PASJ, 40, 357 ------------------ 18

Page 55: Physics of Chromospheric Evaporation in Solar Flares

• 11. Brueckner, G. E., et al. (1988) ApJ, 335, 986 --------------- 18 回

• 12. Kurokawa, H., Hanaoka, H., et al. (1987) Solar Phys., 108, 251 ------ 17

• 13. Tsubaki, T., et al. (1988) PASJ, 40, 121 --------------- 17

Page 56: Physics of Chromospheric Evaporation in Solar Flares

Al.1 Al  Mg

温度が求ま

実際のデータで見てみましょう

Page 57: Physics of Chromospheric Evaporation in Solar Flares

温度は・・・

Page 58: Physics of Chromospheric Evaporation in Solar Flares

410)(

3 TnQkT

trad

2

25

0

2

103 T

nkLtcond

coolingmechanism

conductive cooling

2.2.2 理論から予測されるcooling

Page 59: Physics of Chromospheric Evaporation in Solar Flares

evaporation の 効果無し (密度一定)

evaporation の 効果有り (密度変化)

t - 2/5  ∝   T

(Antiochos and Sturrock , 1978)

詳細

詳細

t - 2/7  ∝   T

conduction & evaporation

Page 60: Physics of Chromospheric Evaporation in Solar Flares

コロナ(密度 小)

彩層(密度 大)

evaporation により、ループ内の密度が上昇 する。

彩層蒸発

熱伝導が彩層へ

evaporation (彩層蒸発)

Page 61: Physics of Chromospheric Evaporation in Solar Flares

2.2.3. 理論と観測値の比較

フレア全体Local

-0.281 -0.187

t - 2/7   )∝( T

‐2/7   =  ‐0.286比較 その1(97 / 1

1 / 06)

Page 62: Physics of Chromospheric Evaporation in Solar Flares

比較 その2(94 / 11 / 13)

Local フレア全体

-0.241 -0.177

Page 63: Physics of Chromospheric Evaporation in Solar Flares

   Local フレア全体

97/11/06

 -0.281  -0.187

94/11/13

 -0.241  -0.177

t - 2/7  ∝   T

(evaporation 効果有り )

286.072

とよく一致cooling が緩やか

観測値まとめ

Page 64: Physics of Chromospheric Evaporation in Solar Flares

2.4 結論

   Yohkoh の温度域( )で、    

67 10~10~

(1) cooling mechanism  ⇒ conduction cooling(2) フレア全体解析 → (1)より緩やか    Local な解析   → (1)とほぼ同じ

Page 65: Physics of Chromospheric Evaporation in Solar Flares

・戻る

2

7

2

0

3LT

nkTt

t - 2/5  ∝   T

evaporation 無し

Page 66: Physics of Chromospheric Evaporation in Solar Flares

xTT

pv

2

9

0

25

0)(

xt

TR

p

t - 2/7  ∝   T

=  一定・戻る

evaporation 有り