18
Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN) J.Vaitkus , V.KAZUKAUSKAS, V.KALENDRA, J.STORASTA, A.MEKYS, (Vilnius U), E.Fretwurst (Hamburg U)

Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

  • Upload
    caine

  • View
    28

  • Download
    1

Embed Size (px)

DESCRIPTION

Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN). J.Vaitkus , V.KAZUKAUSKAS, V.KALENDRA, J.STORASTA, A.MEKYS, (Vilnius U), E.Fretwurst (Hamburg U). E C. E M.  E T.  E Opt. E V.  E Opt.  E T. Deep centre model. 1e13 vs 1e14. - PowerPoint PPT Presentation

Citation preview

Page 1: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Photoconductivity spectra and persistent conductivity in the

irradiated Si samples (WODEAN)

J.Vaitkus , V.KAZUKAUSKAS, V.KALENDRA, J.STORASTA, A.MEKYS,

(Vilnius U), E.Fretwurst (Hamburg U)

Page 2: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Deep centre model

-15 -10 -5 0 5 10 15 20

0

400

800

1200

1600

2000E

nerg

y, a

.u.

Q, config. coordinate

ET

ET EOpt

EOpt

EV

EM

EC

Page 3: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

1e13 vs 1e14

Page 4: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

1e13 vs 1e14

Page 5: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

1e14 vs 1e15

Page 6: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

1e15

1,2 1,4 1,6 1,8

0,0

2,0x10-8

4,0x10-8

6,0x10-8

8,0x10-8

initial to 2,1eV initial from 2,1eV

4 min 80oC to 2,1eV

4 min 80oC from 2,1eV

15 h 80oC to 2,1eV

15 val 80oC from 2,1eV

I (A)

heV

ST-Wf03W337-H31E15

T=18KU= -50VDelay 6s

0,6 0,8 1,0 1,2 1,4

0,0

0,5

1,0

1,5

2,0

initial

4 min 80oC

15 h 80oC I (nA

)

heV

ST-Wf03W337-H31E15

T=18KU= -50VDelay 6s

Page 7: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

A fit to Lucovsky model n-Si 1e15

0,8 1,0 1,2 1,41E-10

1E-9

0.98 * col(F)+1.4 col(G)

0.8*col(c) +1.2*col(g)

1.1 * col(c) +1.32*col(D)

initial

4 min 80oC

15 h 80oC 0.89 eV + 1.06 eV 0.89 eV + 1.07 eV 0.90 eV + 1.07 eV

ab

s I (

A)

eV

ST-Wf03W337-H31E15

T=18KU= -50VDelay 6s

c- 0.89 d- 1.06 g - 1.07, f - 0.9 eV

Page 8: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

1e15 vs 1e16

Page 9: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

1e-15 vs 1e16337-H3 E, meV ±Eblue 3,5 0,1

218,3 0,2391,8 0,3465,3 0,6

615,1 0,1violet 519,9 0,1

442,7 0,3398,2 0,3219,7 2,4

Page 10: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Epi-n-Si 1e-16

Page 11: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

The spatial distribution of vacancies varies significantly from one event to the other.

A single silicon Primary Knock-on Atom (PKA) with an energy typical of1 MeV neutronscattering has been simulated.

A characteristic tree-like structure with several sub-clusters can be observed.

These sub-clusters correspond to lower energy ions knocked-off from their lattice sites.

Ifthe PKA energy is increased above 50 keV a largertree with several branches—each resembling that of Fig—will be observed.

Page 12: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Epi-n-Si, 1e14

Page 13: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

260 280 300

0

200

400

600

800

1000

1200

1400

Hall a

nd m

agne

tore

sista

nce

mob

ility,

cm

2 /sV

T, K

M+ 1012cm-2

M- 1012cm-2

H 1012cm-2

M+ 1013cm-2

H 1013cm-2

M- 1013cm-2

Hall and magnetoresistance mobility dependence vs irradiation doze (RD50-10)

It does not give the real mobilities, but shows an existence of spatial ingomogeneities and can be proposed that the existing clusters create valleys that become more narrow at higher at higher fluences.

At high field (full depletion), the influence of these inhomogeneities decreases, but this field is related to the barrier between the inhomogeneities (A.Rose, RCA)

Page 14: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Epi-p-Si -3e13

0,01 0,02 0,03 0,04 0,0510-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

5K/min dark current 10K/min persistant current

260868-1-163E13p-type

I, A

1/T, K-1

E, meV±E190,1 0,1395,4 0,568,1 0,719,4 0,1

Page 15: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Epi-p-Si 3e13

Page 16: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Epi-n-Si 2e15

0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

(hv-1,05)1.5/(hv)3

(hv-0,89)1.5/(hv)3

(hv-0,78)1.5/(hv)3

(hv-0,58)1.5/(hv)3 2007.10.16 iki 0,6eV 2007.10.16 nuo 0,6eV 2007.10.16 iki 0,8eV 2007.10.16 nuo 0,8eV 2007.10.16 iki 1,0eV 2007.10.16 nuo 1,0eV 2007.10.16 iki 2,1eV 2007.10.16 nuo 2,1eV

ab

s I (

A)

, eV

6336-04-172E15n-type

T=18KU= -50VDelay 6s

Page 17: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Conclusions:

• Midgap centres in n-Si and p-Si can be reveled

• Thermal treatment changes mostly shallow levels region

• Thermally stimulated persistent conductivity demonstrate the percolation at low temperature and activation current properties at higher temperature.

• Thermal treatment changes mostly percolation current region.

Page 18: Photoconductivity spectra and persistent conductivity in the irradiated Si samples (WODEAN)

Thank You for Your attention !