336
PEROXI DASES 1970 -

peroxidases ( peroksida )

Embed Size (px)

DESCRIPTION

PEROXI DASES1970 1-9~OPEROXIDASES 1970 ·1980A SURVEY OF THEIR BIOCHEMICAL AND PHYSIOLOGICAL ROLES IN HIGHER PLANTSThomas GASPAR, Claude PENEL, Trevor THORPE and Hubert GREPPINUNIVERSITÉ DE GENÈVE - CENTRE DE BOTANIQUE GENÈVE 1982Thomas GASPARHead Laboratory of Fundamental and Applied Hormonology, Botanical Institute, University of Liège, Belgium, and Lecturer, University of Genève, Switzeriand.Claude PENELChef de Service, Laboratory of Plant Physiology, and Lecturer, U

Citation preview

Page 1: peroxidases ( peroksida )

PEROXI DASES 1970 - 1-9~O

Page 2: peroxidases ( peroksida )

PEROXIDASES 1970 ·1980

A SURVEY OF THEIR BIOCHEMICAL AND PHYSIOLOGICAL ROLES IN HIGHER

PLANTS

Thomas GASPAR, Claude PENEL, Trevor THORPE :" ...... and Hubert GREPPIN

UNIVERSITÉ DE GENÈVE - CENTRE DE BOTANIQUE

GENÈVE 1982

Page 3: peroxidases ( peroksida )

Thomas GASPAR

Head Laboratory of Fundamental and Applied Hormonology, Botanical Institute, University of Liège, Belgium, and Lecturer, University of Genève, Switzeriand.

Claude PENEL

Chef de Service, Laboratory of Plant Physiology, and Lecturer, University of Genève, Switzeriand.

Trevor THORPE

Professor of Botany, Department of Biology, University of Calgary, Canada. Past-Chairman of the International Association for Plant Tissue Culture.

Hubert GREPPIN

Professor of Plant Physiology and Ecophysiology, Head Laboratory of Plant Physiology, Past-Chairman Department of Biology Department, Dean Faculty of Sciences, University of Genève, SwÏtzeriand.

1

Page 4: peroxidases ( peroksida )

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the support of the Centre de Botanique and the Centre Universitaire d'Informatique of Genève, which made this volume possible. The authors express their appreciation to their respective secretary-typists for their cooperation, and particularly to Mrs. Christiane Tschopp for her assistance with the editorial work on the word processing machine BG-lOOO. Thomas Gaspar and Claude Penel thank the University of Genève as weil as the Swiss and Belgian National Science Foundations which facilitated the scientific exchanges between Genève and Liège.

Page 5: peroxidases ( peroksida )
Page 6: peroxidases ( peroksida )

CONTENTS

PART ONE

Chapter 1. INTRODUCTION 3

Chapter 2. CHEMISTRY AND BIOCHEMISTRY OF PEROXIDASES 9

2.1. CHEMICAL STRUCTURE 9

2.\.\. Prosthetic group 10 2.1.2. Protein \1 2.1.3. Compounds 13

2.2. FORMATION OF COMPOUNDS l, II and III AND CATALYTIC REACTIONS 14

2.2.\. 2.2.2.

Reaction mechanisms in presence of H20

2 Reaction mechanisms in absence of H

20

2

17 19

2.3. PARTICULAR PEROXIDASE REACTIONS 21

2.3.1. Types of reactions and substrates 21 2.3.2. IAA degradation 25 2.3.3. 2.3.4.

H20

2 formation and .Iignin biosynthesis

Ethylene biosynthesis 33 44

2.4. TYPES OF PEROXIDASES 48

1

Page 7: peroxidases ( peroksida )

Chapter 3. ISOPEROXIDASES: FACT OR FICTION ? 61

Chapter 4. SUBCELLULAR LOCALIZATION AND BIOSYNTHESIS OF PEROXIDASES 71

4.1. CELLULAR LOCALIZATION OF PEROXIDASES 71

4.1.1. TechnicaI aspects 71 4.1.2. Cellular localization 73

4.2. BIOSYNTHESIS OF PEROXIDASES AND ITS REGULATION 79

4.2.1. De nova synthesis or activation 79 4.2.2. Transcription 80 4.2.3. Translation 81 4.2.4. Post-translational steps and secretion 82

Chapter 5. PHYSIOLOGICAL PROCESSES MEDIATED BY PEROXIDASES 89

5.1. AUXIN CATABOLISM 90

5.1.1. Growth 91 5.1.2. Morpho- and organogenetic processes 97

5.2. LIGNIN FORMATION 101

5.2.1. Growth 101 5.2.2. Ditferentiation, vascularization 102

5.3. DEFENSE MECHANISMS AGAINST PATHOGENS 103

Page 8: peroxidases ( peroksida )

5.4. RESPIRATION 107

5.5. UGHT MEDIATED PROCESSES 108

5.5.1. Peroxidases as pigments 108 5.5.2. Peroxidases and phytochrome 109 5.5.3. Photoperiodic control and flowering 112

!

,-:

Chapter 6. PRACTICAL APPLICATIONS OF PEROXIDASES 123

Chapter 7. CONCLUDING REMARKS AND PROSPECTS 131

PART TWO

REFERENCES 137

AUTHOR INDEX 255

ORGANISMIC INDEX 303

SUBJECT INDEX 313

. j

i

Page 9: peroxidases ( peroksida )

ccc

ABBREVIATIONS

ACC

C l, Il, III

CCP

con A

2,4-0

DAB

DCP

DHF

EDTA

EGTA

Fe J+ P

Fe 2+ P

GA

GC-ECO

GLC-ECD

1-aminocycJopropane- 1-carboxylic acid

Compound l, Il, III

2-chloro-ethyltrimethylammonium chloride

cytochrome c peroxidase

concanavalin A

2,4-dichlorophenoxyacetic acid

3,3'-diaminobenzidine

2,4-dich lorophenol

dihydroxyfumarate

ethylenediamine tetraacetic acid

ethylene glycol-bis (2-aminoethylether) N,N'-tetraacetic acid

ferriperoxidase

ferroperoxidase

gibberellic acid

gas chromatography - electron capture detection

gas liquid chromatography - electron capture detection

Page 10: peroxidases ( peroksida )

HRP

IAA

Kapp

KMBA

NAD

SAM

horseradish peroxidase

indole-3-acetic acid

apparent dissociation constant

cx-keto-y-methylthiopropionaldehyde

nicotinamide adenine dinucleotide

S-adenosyl-methionine

Page 11: peroxidases ( peroksida )
Page 12: peroxidases ( peroksida )

3NO ~HVd

Page 13: peroxidases ( peroksida )
Page 14: peroxidases ( peroksida )

CHAPTER 1

INTRODUCTION

Peroxidases (donor : H20

2 oxidoreductase; EC. 1.11.1.7) are

enzymes, whose primary function is to oxidize molecules at the expense of hydrogen peroxide. Since they are widely distributed in living organisms, and show dramatic color-product formation as a resultof their catalytic effect, these enzymes have been among the most extensively investigated since the beginnings of enzymology (1459).

Perhaps the earliest report on peroxidase activity was in 1855 by Schonbein, who observed that certain organic compounds could be oxidized by dilute solutions of hydrogen peroxide in the presence of substances occurring in plants and animais (Saunders et al., 1964). The name peroxidase was first given by Linossier, who in 1898 isolated it from pus.

Studies carried out in the period up to 1918 showed that peroxidase activity was widely found in plants. Relatively pure peroxidase was also obtained during this period. It was also shown that the peroxidase system could oxidize pyrogallol, gallic acid and certain amines (Saunders et al., 1964).

During the period 1918-1931, the enzyme was purified, and the determination of its activity was carried out by assessing the oxidation of pyrogallol to purpurogallin. In 1931 it was shown that peroxidase was a hematin (Saunders et al., 1964). The last 50 years has seen an exponential increase in the number of people working on peroxidase, so much so that during the 1970-1980 period sorne 1600 plus references have appeared on the enzyme (see bibliography Section).

The phenomenon of peroxidase multiplicity has been known for many years but it was not until the development of the zymogram technique by Hunter and Market (1957) that the occurence of isoperoxidases came under extensive investigation. It is now an established

Page 15: peroxidases ( peroksida )

4 PEROXIDASES 1970/1980

fact that most enzymes exist in multiple molecular forms. Tt is further acknowledged that a large amount of the variation detected in isozyme studies has a genetic base, thus rendering isozymes as useful markers in the analysis of gene functions and metabolic regulation in growing and differentiating cells and tissues (1159).

Peroxidase is probably the enzyme appearing under the largest number of isoforms (up to 42 in horseradish, ref. 584) in plants examined.. This fact makes them suspect as native molecules as such (see Chapter 3) and automatically renders studies involving isoperoxidases doubtful as to their real significance. The problem is further complicated by the obligatory or non-obligatory enzyme intermediate Compounds l, II and III and the relative specificity towards a wide range of hydrogen donors such as phenolic substances, cytochrome c, nitrite, leuco-dyes, ascorbic acid, indole amines, and certain inorganic ions, especially the iodide ion. Moreover, besides peroxidasic oxidation of electron donor molecules, various reactions have been found to be catalyzed by peroxidase. These are aerobic oxidations of dihydroxyfumarate (Swedin and Theorell, 1940; Chance, 1952), IAA (see Section 2.3.2), triose reductone (Yamazaki et al., 1956), NADH (Akazawa and Conn, 1958; Yokota and Yamazaki, 1965) and naphthohydroquinone (Klapper and Hackett, 1963), hydroxylation of aromatic molecules (Mason et al., 1957; Buhler and Mason, 1961), formation of ethylene (see Section 2.3.4), halogenation (Morrison et al., 1970; Hager et al., 1970) and antimicrobial activity (see Section 5.3).

If the cornmon feature of these reactions appears to be an involvement of HzOz' from the point of view of function, however, peroxidase is rather similar to oxidase, the name of which is now used in a narrow sense for electron transfer oxidases. The name 'oxygenase' is restricted to enzymes that catalyze the incorporation of atmospheric oxygen into substrate molecules (Hayaishi, 1974). Thus based on the acceptor specificity and by analysis of final reaction products, the distinction between electron transfer oxidase, oxygenase and peroxidase appear to be weil established (1459).

Reaction of mixed types suchas monooxygenase (mixed function oxidase by Mason's (1957, 1965) terminology) and peroxidase-oxidase have been reported. If peroxide is an intermediate product of Oz reduction it might be said that in many cases peroxide metabolism is involved as a part of the overall oxygen metabolism. Detailed analysis of the mechanism of Oz metabolism have revealed that three types of reactions are correlated in complicated ways as indicated below :

Page 16: peroxidases ( peroksida )

5 INTRODUCTION

oxidase (electron transfer)

I~ oxygenase .. ~ peroxidase

The recently established idea of the oxyferroperoxidase structure for so-called Compound III would make it easy to relate the function of peroxidase- with those of electron transfer oxidase and oxygenase (1459, see Chapter 2).

Peroxidases have the capacity to catalyze a large number of biochemical reactions. In plants and in animais, they apparently fulfil many different functions and certainly we are far from knowing everything about them. Their ubiquity and their biochemical versatility explain why peroxidases are the subject of so many publications. But despite the fact that peroxidases are among the most studied enzymes, or, perhaps due to the great number and the diversity of the articles devoted to their study, there has been no comprehensive review, since Saunders, Holmes-Siedle and Stark published their book in 1964. That book essentially dealt with the biochemical aspects of peroxidases. Since that time, peroxidases have been extensively examined in biological and physiological studies.

One major objective of the present book is to gather in one place the references of articles concerned with peroxidases that have appeared during the last ten years. These references coyer ail the aspects of peroxidase research (biochemistry, physiology, genetics, histo- and cytochemistry). This bibliographic matter mainly concerns higher plant peroxidases, but there are also a few hundred references dealing with animal or human biology. These latter are of general interest. Three indexes (authors names, subjects and organisms) facilitate the search of references. The second major objective is to critically review what is known about the enzyme. Thus, the reader will also find several chapters covering all aspects of the peroxidase story.

It is our hope that this book, which is written by plant physiologists from a physiological viewpoint, will be of value to all people working with peroxidases. For those unfamiliar with the enzyme we hope that our synthesis of the available information will lead to a clearer understanding of peroxidase, the most extensively examined enzyme in plants.

Page 17: peroxidases ( peroksida )

6 PEROXIDASES 1970/1980

REFERENCES

For numbered references in the text, see bibliographical section

AKAZA\VA, T.; CONN, E.E. 1958. The oxidation of reduced pyridine nucleotides by peroxidase. J. BIOL. CHEM. 232: 403­415.

BUHLER, D.R.; MASON, H.S. 1961. Hydroxylation catalyzed by peroxidase. ARCH. BIOCHEM. BIOPHYS. 92: 424-437.

CHANCE, B. 1952. Oxidase and peroxidase reactions in the presence of dihydroxymaleic acid. J. BIOL. CHEM. 197: 577-589.

HAGER, L.P.; THOMAS, J.A.; MORRIS, D.R. 1970. Studies on the relationship ofchloroperoxidase - halide and chloroperoxidase ­hydrogen peroxide complexes to the mechanism of the halogenation reaction. In 'BIOCHEMISTRY OF THE PHAGOCYTIC PROCESS'. Schultz, J. (Ed.). North-Holland Publ., Amsterdam, pp. 67-87.

HAYAISHI, O. 1974. General properties and biological functions of oxygenases. In 'MOLECULAR MECHANISMS OF OXYGEN ACTIVATION'. Hayaishi, O. (Ed.). Academie Press, New York, pp. 1-28.

HUNTER, R.L.; MARKERT, C.L. 1957. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. SCIENCE 125: 1294-1295.

KLAPPER, M.H.; HACKETT, D.P. 1963. The oxidatic activity of horseradish peroxidase. II. Participation of ferroperoxidase. J. BIOL. CHEM. 238: 3743-3749.

MASON, H.S. 1957. Mechanisms of oxygen metabolism. ADV. ENZYMOL. 19: 79-233.

MASON, H.S. 1965. Oxidases. ANN. REV. BIOCHEM. 34: 595-634. MASON, H.S.; ONOPRYENKO, 1.; BUHLER, D.R. 1957.

Hydroxylation: The activation of oxygen by peroxidase. BIOCHIM. BIOPHYS. ACTA 24: 225-226.

MORRISON, M.; BA YSE, G.; DANNER, D.J. 1970. The role of mammalian peroxidase in iodination reactions. In 'BIOCHEMISTRY OF THE PHAGOCYTIC PROCESS'. Schultz, J. (Ed.). North-Holland Publ., Amsterdam, pp. 51-66.

Page 18: peroxidases ( peroksida )

INTRODUCTION 7

SAUNDERS, Re.; HOLMES-SIEDLE, A.G.; STARK, RP. 1964. Peroxidase. The properties and uses of a versatile enzyme and sorne related catalysts. Butterworths, London, 271 p.

SWEDIN, B.; THEORELL, H. 1940. Dioximaleic acid oxidase action of peroxidases. NATURE 145: 71-72.

y AMAZAKI, 1.; FUJINAGA, K.; TAKEHARA, 1.; TAKAHASHI, H. 1956. Aerobic oxidation of triose reductone by crystalline tumip peroxidase. J. BIOCHEM. 43: 377-386. '

YOKOTA, K.; YAMAZAKI, 1. 1965. The activity of the horseradish : peroxidase compound Ill. BIOCHEM. BIOPHYS. RES. COMM. 18: 38-53.

Page 19: peroxidases ( peroksida )
Page 20: peroxidases ( peroksida )

CHAPTER 2

CHEMISTRY AND BIOCHEMISTRY OF PEROXIDASES

Today, much is known about the chemistry and biochemistry of peroxidases. As a matter of fact, much more has been definitively determined in this area than on any other aspect of the peroxidase story. In this chapter, we will discuss the chemical structure, the formation of various peroxidase compounds and their catalytic mechanisms, specifie peroxidase reactions and final1y the ditferent types of peroxidases known to date.

2.1. CHEMICAL STRUCTURE

Peroxidases and isoperoxidases have been purified from ditferent plant material and it appears that they do not significantly ditfer in size (from 40,000 to 50,000 daltons), absorption spectrum and activity (Theorell, 1942; Jermyn and Thomas, 1954; Paul, 1958; Klapper and Hackett, 1965). They are formed (Fig. 1a) from a colourless glycoprotein combined to a brown-red ferriporphyrin (Fig. 1b).

Page 21: peroxidases ( peroksida )

10 PEROXIDASES 19701 J 980

o Peroxidase 1

1 1

Protohaematin IX: GlycoproteinLr 1

Fe 3+ Protoporphyrin :IX

® ,r CH2

CH

CH~CH2H3C

H3C CH3

CH2/

CH2 \. /C~

HO "'0

Protohaematin JX

Fig. J. a. Structure of peroxidase. b. Structure of protohaematin IX.

2.1.1. Prosthetic group

The prosthetic groups of horseradish peroxidase (HRP), Japanese radish peroxidase, cytochrome c peroxidase (CCP) and chloroperoxidase are known to be ferriprotoporphyrin IX (Fig. lb). Its spectrum gives the same general picture, with bands ex, 13 and y, as that of other metallic phorphyrins (Nari and Penon, 1968; 432). The heme groups in animal peroxidases are much more tightly bound to the protein that are the hemes in plant peroxidases (1459).

CH2 "CH2/C

cf 'OH

Page 22: peroxidases ( peroksida )

BIOCHEMISTRy Il

2.1.2. Protein

Little was known about the chemical structure of peroxidases until relatively recently. Amino acid analysis have been carried out for isoenzyme preparations of HRP (Shannon et a/., 1966; 1208), for two isoenzyme preparations of Japanese radish peroxidase (Morita and Kameda, 1959; Shimizu and Morita, 1966), two peroxidases of wheat (619), five peroxidases from turnip and horseradish (1425) and eight isoperoxidases of tobacco (680). About 300 residues of 16 amino acids were found together with +/- 20% sugars (glucose, galactose, mannose, arabinose, xylose, fucose, hexosamine).

The first complete amino acid sequence of a plant peroxidase was obtained by Welinder (1424). A refined analysis of the quantitatively dominant HRP peroxidase C among the isoperoxidases of horseradish root (l424a) indicates that it consists of a hemin prosthetic group, 2Ca2

+ and 308 amino acid residues, including 4 disulfide bridges, in a single polypeptide chain that carries 8 neutral carbohydrate side­chains. The molecular weight of the polypeptide chain is 33,890. Assuming an average carbohydrate composition of (G le NAc)2' Man

3,

Fuc, Xyl for each carbohydrate chain, the molecular weight of native HRP C is close to 44,000. The complete amino acid sequence of turnip peroxidase P

7 has since also been determined and compared to

that of HRP C (853, 854). The calcium binding by two HRP isoenzymes has been confirmed

and already has been related to its properties (530, 966). Calcium particularly contributes to maintaining the structural conformation of the protein as indicated by the effects of calcium removal (by guanidine hydrochloride and EDTA) on the thermal stability of the protein. Calcium-free HRP isoenzyme C, but not isoenzyme A, can be reconstituted upon addition of calcium and regains enzymatic activity. Free calcium readily exchanges with isoenzyme C, but only to a small extent with isoenzyme A (530). ft must be mentioned that sorne isoperoxidases apparently do not contain carbohydrate (679, 1054).

ft appears on the other hand that sorne soluble (Shannon et al., 1966; 904) and cell wall bound (283) peroxidases might contain hydroxyproline.

Page 23: peroxidases ( peroksida )

12 PEROXIDASES 1970/1980

The conformation of different HRP and tumip isoenzymes has been investigated by means of circular dichroism, and it has been suggested that although the active sites are similar, sorne small differences did exist (Strickland et al., 1968; 624), and that the isoenzymes differed in amino acid and carbohydrate compositions (Mazza et al., 1968; 851). Since their secondary structures appeared to be very similar, it was suggested that only a few amino acid residues around the heme group goVem the spectral characteristics. It was shown that peroxidases from tumip and an isoperoxidase from horseradish contain highly homologous peptides, thought to be located in proximal and distal positions of the heme iron (1425).

The environment surrounding the heme of CCP has been found to be hydrophobie (Asakura and Yonetani, 1969). This is possibly the case with ail plant peroxidases. The hydrophobie structure of the heme environment of myoglobin and hemoglobin was disclosed by X-ray analyses.

The influence of the heme environment on physicochemical properties and catalytic activity is clearly manifested in the peroxidase isoenzymes from tumip. Thus the most basic isoperoxidase P differs

7 from the other tumip enzymes in possessing low peroxidase and high 'oxidase' activities towards IAA (627, 852). The electronic structure of the heme· and the tertiary structure of the heme crevice are essentially the same in the acidic tumip peroxidases, PI and Pz, and isoperoxidase P

7 (1438). The postulated difference between PI and P

7, i.e., that a

carboxyl group is replaced by a histidine residue as distal groups of the proteins, is in agreement with the amino-acid content of the proteins (1102).

A possibility that the fifth coordination position in HRP is occupied by an imidazole group of the protein was suggested by several workers (Brill and Williams, 1961; Nakamura et al., 1963; 1208, 1474a). By elaborate experiments using '4NO, Yonetani (1474a) concluded that the fifth ligand of the heme iron in CCP and HRP may be the imidazole group of a histidine residue and that the unpaired electron of NO sits in the sixth coordination position although it is considerably delocalized to the heme iron and the proximal nitrogen in these NO compounds of ferrous peroxidases.

Page 24: peroxidases ( peroksida )

13BJOCHEMISTRY

2.1.3. Compounds

Peroxidase reacts with numerous substances (cyanide, fluoride, etc.) and fonus with them stable complexes which can be detected by spectrophotometry. The enzyme can also be reduced by strong reductants such as. hydrosulfite, methylviologen semiquinone, etc. : the ferroperoxidase fonu is then generated. It shows a low affinity towards cyanide (Keilin and Hartree, 1955) but a high specificity in binding carbon monoxide to fonu the photodissociable carboxyferroperoxidase. Cyanide and CO then were often used during peroxidase catalyzed reactions in order to detect the ferri- and/or the ferroperoxidase forms. Ferroperoxidase also reacts with oxygen to form oxyferroperoxidase.

~

1 E ~ '\:J~u 100

1 ~

-1

1 ID

1

1

1 UJ

E ~ 1

l

TT

-T E U

T 5 ~

-E W

400 500 600 700 wovelenglh (nm)

Fig 2. Absorption spectra offerriperoxidase (P) and Compounds 1, II and III (from 432).

Plant peroxidases generally fonu with peroxides three types of compounds called Compounds J, II and III, which have characteristic absorption spectra (Fig. 2). The state of the knowledge of the electronic structure of the heme in these three compounds has been given by Yamazaki (1459) and further studied by several authors (106, 225a, 625, 628, 633, 678, 1002, 1004).

Page 25: peroxidases ( peroksida )

14 PEROXIDASES 1970/1980

2.2. FORMATION OF COMPOUNDS l, Il AND III

AND CATALYTIC REACTIONS

Peroxidase Compounds 1 and II are formed in the presence of low peroxide concentration only. The green Compound l appears first. It is further transformed in Compound II through reduction by an electron donor. The following reactions have been confirmed for the peroxidase catalysis of its characteristic one-electron oxidation of donor molecules :

Peroxidase + HzOz ----+~ Compound l

Compound 1 + AH2

~ Compound II + AH"

Compound II + AH ~ peroxidase + AH"z

2AH- ~ A + AH (or AH - AH)z

Compounds 1 and Il are thus considered to be obligatory enzyme intermediates in an overall peroxidase reaction regenerating the original ferriperoxidase.

Judged by the hyperfine structure of the electron spin resonance spectra, the free radicals derived from several donor molecules in the above reactions were judged to be free in solution (Yamazaki et al., 1960; Piette et al., 1961). These free radicals are very reactive, and their reactions will result in a variety of peroxidase functions (see below).

Compound III has been identified as a product formed in the presence of excess HzOz (Keilin and Hartree, 1951; George, 1953). It was shown by Chance (1952) and George (1953) that Compound III was formed from the reaction of Compound Il and H

Z02" On the other

hand, Yokota and Yamazaki (1965) observed that Compound III disappeared in the presence of electron donors and acceptors to give ferriperoxidase, which led them to propose the fol1owing reactions :

Page 26: peroxidases ( peroksida )

15BIOCHEMISTRY

+e Compound III ------........ Fep3+ + H2 ° 2(Fe 2+0 ) (2H+)

P 2

or -e

Compound III -------+. Fep3+ + °2

(Fe 3+0-) p 2

This makes Compound III a hybrid between the complexes ferroperoxidase-oxygen and ferriperoxidase-superoxide anion.

This also would mean that Compound III can react with ferroperoxidase and Compound II (Bjorksten, 1968; 1033) :

C III + ferroperoxidase --+ 2 ferriperoxidase + H20 2

CIII+CII ----+ 2 ferriperoxidase + 02

An oxyferroperoxidase structure has been suggested for peroxidase Compound III (Mason, 1957, 1958; George, 1952; Yamazaki & Piette, 1963; Yamazaki el al., 1965). This idea, however, was not generally accepted since reduced peroxidase was thought to be oxidized to the ferric enzyme without an intermediate similar to Compound III (Theorell, 1947; Harbury, 1957). Recently, the oxyferroperoxidase structure of Compound III has been confirmed on the basis of the following data :

(a) Ferroperoxidase reacted with oxygen to form Compound III, when excess hydrosulfite that reduced Compound III was not present (Yamazaki and Yokota, 1965; Yamazaki el al., 1966; Wittenberg el a/., 1967).

(b) Compound III was formed by photolysis of an aerobic solution of CO-ferroperoxidase (Blumberg et a/., 1968; 1312).

(c) Titrimetric experiments showed that Compound III was at a three equivalent oxidized state above the ferric enzyme (Wittenberg et a/. , 1967; 1312; Yamazaki el a/., 1968).

Page 27: peroxidases ( peroksida )

16 PEROX]DASES 1970/1980

Fig. 3. The live redox states of HRP. The numbers in the circles indicate the effective oxidation number of heme. See Yamazaki (1459) for the oxidation potentials.

Figure 3 shows the relationship between the five redox forms of HRP. Ali these forms can be obtained in fairly stable states under suitable experimental conditions and have been crystallized using a basic HRP preparation, named 'isoenzyme F'. Higher oxidation forms of HRP can be reduced to the ferric enzyme by various electron donars. The most active form is Compound 1. ]t has been shown that nitrous acid (Chance, 1952) and p-aminobenzoic acid (Chance and Ferguson, 1954) reduce Compound ] 100 and 25 times faster than Compound Il. Similar results have been obtained by Cormier and Prichard (1968) with luminol, by Dunford and colleagues with ferrocyanide (532) and iodide (1120, 1122), and by Yamazaki et al. (1 460a) with ascorbic acid and anthranilic acid. The conversion of HRP Compound] to the ferric enzyme without an appreciable formation of Compound II was reported by Bjorksten (117) and Roman and Dunford (1120), using iodide as an electron donor.

HRP Compound III also reacted with various electron donars which are not autoxidizable (Yamazaki et al., 1965; 1312; Yokota and Yamazaki, 1965). Compound III was less reactive with electron donars than Compound Il, while in the absence of such donars Compound II was less stable than Compound III. The stability of Compound Il varied greatly with enzyme preparations, but that of Compound III was almost independent of the purity of the enzyme preparations (13 J2).

Page 28: peroxidases ( peroksida )

17 BIOCHEMISTRy

HRP Compound III was shown to undergo spontaneous decay to the ferric enzyme without detectable intermediates like Compounds 1 and II (Yamazaki el al., 1966; Wittenberg el al., 1312). This might be explained by assuming that the oxidative decomposition of Compound III occurs in the presence of one-eJectron oxidants such as Compounds 1 and II.

Compound III + e- , peroxidase + Oz

Rate constants of the reactions of Compound III with Compounds 1 and II can be measured. However, the release of Oz during the reaction has not been confirmed. For the decomposition of Compound III a mechanism, in which dissociation of Compound III into Compound II and HzOz is rate limiting, was proposed (1312), but this needs further proof.

The reaction of Compound III with electron donors is of particular interest. Undoubtedly, Oz is activated when it combines with ferroperoxidase. It might be reasonable to assume that Compound III is reduced by electron donors via the intermediates Compound 1 and II. As mentioned above, these intermediates are much more active oxidants for the electron donors used so far. Therefore, an ingenious device would be needed to identify the intermediates in the reduction process of Compound III.

The direct conversion from ferrous HRP to Compound II was demonstrated by Noble and Gibson (950).

2.2.1. Reaction mechanisms in presence of HO z z

During the course of peroxidase reactions, oxygen is consumed. This a priori couId be due to two quite different processes :

- a direct interaction of the reduced hemoprotein formed during the reaction with oxygen,

Page 29: peroxidases ( peroksida )

18 PEROXIDASES 1970/1980

- a reaction with oxygen of intermediary unstable degradation products of the electron donor.

ln the former case, the formation of Compound III during the reactions has to be considered. In the latter one, only Compounds 1 and II would play a role.

The formation of Compound III during the aerobic oxidation of dihydroxyfumarate (DHF) (Swedin and Theorell, 1940; Lemberg and Legge, 1949; Mason, 1958; Yamazaki and Piette, 1963; Yamazaki et al., 1965) and NADH (Yokota and Yamazaki, 1965) catalyzed by the system peroxidase-H

20

2 has been observed. This formation as well as

that of ferroperoxidase might be the result of secondary reactions and Compound III would not be necessarily involved in the 'peroxidation' pathway mediated essentially by Compounds 1 and II.

The transitions C 1 to C II and C II to Fe 3+, coupled with electron donor oxidations, give rise to donor radicals (yamazaki et al., 1960; Ray, 1962; Parups, 1969). The reaction of these reducing radicals with oxygen certainly permits the use of the gas during the peroxidase reactions. This reaction subsequently generates a superoxide radical which itself would oxidize another donor molecule and thereby would contribute to the propagation of a free radicals' chain as illustrated in Figure 4.

-----_ .... ------ , : 1

1 1

1 1

1

1

1 1

1

1 , 1

1

1

1

CN­ 1

1

1

1

1AH·"'" "'02 1

1 l ' , 1 L ~

Fig. 4. Oxidation mechanism of an e1ectron donor (AHz) by the peroxidase-peroxide system. The enclosed part corresponds to the free radicals's chain propagation (afier Yamazaki, 1958 and Ricard and Nari, 1967).

Page 30: peroxidases ( peroksida )

BIOCHEMISTRY 19

In this mechanism, there would be no reaction of the enzyme with oxygen at any time and the formation of Compound III, as already mentioned above, would be the result of a reaction between Fe 3+ and the superoxide radical.

p

2.2.2. Reaction mechanisms in absence of H 0 2 2

Substances such as hydro- and naphthoquinones (Klapper and Hackett, 1963) and IAA (see 432) can be oxidized by peroxidase in the absence of peroxide being introduced in the reaction mixture. The medium has been suspected of containing peroxide traces from the beginning and more peroxide could be formed later on through autooxidation of electron donors.

Klapper and Hackett (1963) however did not exclude the possibility of a direct reduction of ferriperoxidase into ferroperoxidase by the electron donors and therefore proposed a mechanism of peroxidase oxidation without participation of peroxide (Fig. 5). An analogous mechanism involving ferriperoxidase reduction and the subsequent formation of the reactive oxyferroperoxidase (C III) has been proposed by Ricard and Nari (1966) for IAA oxidation (see below).

c:r" °2Fe~+ «7' ~ Fe~+ '>. COMPOUND /II

{~~1 (~r'~ ~ (FepOJ+)

AH AH 2

A+ Hp2 A+H 0 2

COMPOUND 1/ (Fep0 2+)

Fil? 5. Oxidation mechanism of hydro- and naphthoquinones (alier Klapper and Hackett. (963).

Page 31: peroxidases ( peroksida )

20 PEROXIDASES 1970/1980

The peroxidase mediated IAA oxidation in the absence of peroxide has also been explained by Fox et al. (1965, 1968) through an interaction of ferriperoxidase with oxygen and IAA in order to form a compound identical to C 1. This C 1 would further generate C II which would oxidize IAA. The following sequence has been proposed :

Fe 3+ + 0 ------+. Fe 3+0 p 2 p 2

Fe 3+0 + IAA -----+. CI p 2

e CI -----.... CIl

C II + IAA -----....... Fe 3+ + IAA" p

This IAA- radical would finally react with oxygen as does the AH in the Yamazaki's scheme (Fig. 4).

The binding ofdifferent hydrogen donars and inhibitors to peroxidase will not be examined here, although it has been studied by several authors (744,1162).

Page 32: peroxidases ( peroksida )

21 BIOCHEMISTRy

2.3. PARTICULAR PEROXIDASE REACTIONS

2.3.1. Types of reactions and substrates

Substrate Product Reference

Oxidation with H 02 2

acetosyringone dimethoxyquinone 1476

2,2'-azino-di- corresponding 217 (3-ethyl-benzthia- azodication zoline-6-sulphonic acid) (ABTS)

benzidine benzidine blue Maehly and Chance (1954)

betacyanin unknown 723

chlorophyllides unknown 840

chlorpromazine semi-quinone free radical 239

crocin unknown 325

N,N-dialkyl- secondary amines + 421a, 422 anilines aldehydes

o-dianisidine bis (3,3'-dimethoxy- Moller and 4-amino)azo-biphenyl Ottolenghi

(1966)

Page 33: peroxidases ( peroksida )

22

dihydroxyphenyl­alanine

di-isopropyl-N­nitrosamine

ferulic acid

guaiacol

3-hydroxy­flavone

indolyl-3­acetaldehyde

kaempferol

leuco-malachite green

lignins

pyridoxal

pyrogallol

scopoletin

vanillic acid

PEROXIDASES 1970/1980

dopachrome

hydroxy-N-nitrosamine

unknown

tetraguaiaco1

salicylic acid + phenylglyoxylic acid + benzoic acid

indole-3-carbaldehyde

2,3,4,5,7,4'-penthydroxy­flavanone + p-hydroxy­benzoic acid

malachite green

corresponding quinones

unknown

purpurogallin

unknown

dehydrovanillic acid

84

349

1036

Maehly and Chance (1954)

1178

1467

573

Maehly and Chance (1954)

1476

566

Maehly and Chance (1954)

1085

97

Page 34: peroxidases ( peroksida )

23

Oxidation with Oz

dihydroxymaleie aeid (Mnz+)

dithiothreitol

NAD(P)H(Mnz+, ROH)

2,4,6/3,5 penta­hydroxyeyclohexane (Mnz+)

phenylaeetal­dehyde (Mnz+)

phenylpyruvate (Mnz+, DCP)

2',4,4'-trihydroxy­ehalcone

4,2',4'-trihy­droxy-ehalcone

BIOCHEMISTRy

diketomaleie aeid + HzOz

disulfide bond

NAD(P)

DL-3,5/4,6-tetra­hydroxyeyclohexane­1,2-dione

benzaldehyde + forroie aeid

unknown

3,4',7-trihydroxy­flavanone + 4',6­dihydroxy-2-(a.­hydroxybenzyl) eoumaranone

benzoxepinone-spiro eyclohexadienone

4',7-dihydroxyflavon-3-o1

Chance (1952)

973

Akazawa and Conn (1958)

681a

350

618

1076

1149

996

Page 35: peroxidases ( peroksida )

24

Decarboxylation

oxaloacetate (Mn2+)

syringic acid

vanillic acid

Halogenation

tyrosine + r­(or 1 )

2

Hydroxylations

p-hydroxyphenyl­acetonitrile (Mn2+)

tyrosine

tyrosine (DHF)

PEROXIDASES 1970/1980

malonate Shannon, de VeiHis and Lew (1963)

2,6-dimethoxy-p­ 97,703 benzoquinone

4,4'-dimethoxy-2,5, 97 2'5'-dibenzoquinone

methoxy-p-benzoquinone 703

3-monoiodotyrosine 85

p-hydroxymandelonitrile 765

dihydroxyphenylalanine 997

dihydroxyphenylalanine Buhler and Mason (1961)

Polymerization (condensation)

phenol 0,0'-biphenol 273

tyrosine dimer (0,0' -biphenyl linkage)

lignins

83

Page 36: peroxidases ( peroksida )

25 BIOCHEMISTRY

2.3.2. IAA degradation

Evidence has accumulated which indicates that the reaction of HRP with IAA differs from those with other substrates such as NADH and DHF. It is indeed very interesting to note here a feature of IAA­HRP reactions that is rather similar to an oxygenase type. Through the efforts of many workers (Kenten, 1955; Ray, 1956; Ray and Thimann, 1956; Morita et al., 1962; 1967; Hinman and Lang, 1965) the following stoichiometry has been confirmed :

~CH2COOH

~ .. ) + °2N

H lperoxidase

~CHO ~CH2 ~J or ~",A

° +C02 +H2 0

H ~

The products were found to be indole-3-aldehyde and 3-methylene oxindole. Morita et al. (1962) showed that the dominant product was indole-3-aldehyde when higher enzyme concentrations were used. Apparently the reaction is similar to the lactate oxidative decarboxylase reaction, which is monooxygenase type (Bloch and Hayaishi, 1966) or an internai mixed function oxidase type (Mason, 1965). Indole-3-acetic acid was found to react with HRP Compound III at a relatively high rate (Yamazaki et al., 1965; Yokota and Yamazaki, 1965; 1312). In this respect the reaction is similar 10 the tryptophan pyrrolase reaction, in which the oxygenated enzyme was considered to be an obligatory intermediate (Ishimura et al., 1967; 605a). Many features of the mechanism of the IAA reaction, however, still remain to be elucidated. The key points of the mechanism can be summarized as follows :

Page 37: peroxidases ( peroksida )

26 PEROXIDASES 1970/1980

a. The IAA free radical formed by peroxidase catalysis is an important intermediate (Hinman and Lang, 1965; Morita et al., 1967; Yamazaki and Souzu, 1960; Ray, 1960, 1962; Ricard and Nari, 1966, 1967; 924). Hinman and Lang (1965) proposed a mechanism in which the radical reacts with molecular oxygen to fonn 3-methylene oxindole as a main product through several nonenzymic steps (Fig. 6a). Although it is unknown whether the radical is free or attached to the enzyme, it may react with external oxidants such as ferric cytochrome c and ferric o-phenanthroline complexes (Yamazaki and Souzu, 1960). A question which arises is why the nature of the final products depends upon the concentration of enzymes in the reaction (Morita et al., 1962, 1967; Hinman and Lang, 1965). An answer to this question is proposed through the reaction scheme (Fig. 6b) of Bemiller and Colilla (90). The proposed pathway requires as a key step a two-electron oxidation catalyzed by a metal ion, be it the iron of the peroxidase heme or Mn3

+. It is proposed that the enzyme oxidizes Mn2

+ to Mn3 + and that IAA is subsequently

oxidized non-enzymatically by Mn3 + to 3-methylene-indolenine with

the kind and amount of subsequent products being detennined by the pH and composition of the reaction mixture. This scheme also explains the ability of cx-methyl-IAA and cx,cx-dimethyl-IAA to act as substrates for peroxidases, while indole-3-propionic and indole­3-butyric acids cannat.

b. During the reaction with IAA a part of the enzyme, spectrally similar ta Compounds II and III is observed as an intennediate (Morita et al., 1967; Yamazaki and Souzu, 1960; Ricard and Nari, 1966, 1967; Fox et al., 1965; Degn, 1969; 697, 875). From the visible spectrum between 500 and 600 nm the intennediate is judged to be Compound III at around pH 4.0 (Morita et al., 1967) and Compound II at pH 5.0 (Fox et al., 1965; 1461). It has been concluded that Compound III, accumulated during the reactions of DHF and NADH, is not a Michaelis type of intennediate (Chance, 1952; Yokota and Yamazaki, 1965; Yamazaki and Piette, 1963). Since IAA .!eacts ~R~!!?-p~~~~.~~~.at a.~~~E~~J!.LJJigh !2te, ~tion of~~ml?2...l!.~~L!!L9Ùr..mK.Jhe.JAA.....Q!-~<!~tion must have a positIve mèaniQKin the catalysis. However, it is still uncertam whetIféfôTnotth~ mai~rëactron' proceeds via Compound II or III, mainly because of the difficulty in distinguishing between these two HRP compounds.

Page 38: peroxidases ( peroksida )

"(06) 1l1l!10.) pUll J;JII!W;J8 J;J!JV "q "(Zn7 oS11l ;J;Js) Ç961 'l}ul11 pUll UIlWU!H J;J!JV "11

·UO!lllpI1Jl};Jp VV( JOj SlillM41lld p;JsodoJd

c

-~ -~ :I:% I%9 o %8.~4o 0-0-08 40 8l 1 N o n n/ ni

IO<9 ~ @ J' © N n

l

8o o-~ l

I%

Ô N~ 8 l

A1I1.SIW3H:J0I8

Page 39: peroxidases ( peroksida )

28 PEROXIDASES 1970/1980

c. A small amount of HzOz eliminates the lag phase and promotes the 0z-consuming oxidation of IAA under certain experimental conditions (Kenten, 1955; Yamazaki and Souzu, 1960; Ray, 1960, 1962; Shin and Nakamura, 1962; Morita et al., 1967). It is also true that the inhibition by catalase is negligible under certain experimental conditions (Fox et al., 1965; 1461). Consequently, the raie of HzOz does not appear to be essential even as an initiator of the reaction. Using superoxide dismutase, it has recently been found that superoxide anions are not involved in the reactions of IAA with HRP (875, 1461). This fact seems to be a peculiar property of the IAA reaction since the oxidations of NADH and DHF by HRP are strongly inhibited by superoxide dismutase (1461). This fact is compatible with the mechanism (Hinman and Lang, 1965; Ray, 1962) that the IAA peroxide radical instead of the superoxide anion radical is a product of the reaction between the IAA radical and Oz (see also 697). A significant question to be answered is how the IAA radical can be formed without an involvement of the superoxide anions. An answer to this question is given by Ricard and Nari. The mechanism they praposed (852; Nari, 1967; Nari et al., 1967; Ricard and Nari, 1966; Ricard and Nari, 1967; Ricard, 1969) involves the effective participation of ferroperoxidase in IAA oxidation (already postulated by Ray, 1960), at acidic pH and is based on the following arguments :

1) Carboxyferroperoxidase is partially decomposed by light (Iight suppresses the CO inhibition of IAA-oxidase) not into ferro- but into ferriperoxidase. CO inhibition and its suppression by light argue against the participation of a unique free radicals'chain. Thus contrary to Yamazaki's opinion, peroxidase reduction cannot be entirely due to highly reducing radicals generated through prior formation of Compounds 1 and II. Furthermore peroxidase reduction is obtained in a medium in such poor oxygen content that IAA destruction does not occur and evidently in these conditions, IAA autooxidation cannot occur and consequently no peroxide can be formed.

2) Substances such as IBA (indolebutyric acid), IPA (indolepropionic acid) which appear unable to reduce peroxide (and indicators such as methylene blue, Laught violet and phenosafranin which are reduced by IAA) are not degradable in the absence of peroxide.

Page 40: peroxidases ( peroksida )

29 BIOCHEMISTRy

3) The impossibility of a complete inhibition of IAA degradation by high catalase concentrations (Iargely sufficient to completely inhibit the typical peroxidation of IBA and IPA) which cannot be interpreted otherwise than by a partial IAA oxidation without a peroxide requirement.

4) Cyanide does not stop the reaction when added during its course. When present in the mixture before the reaction initiation, the reaction is completely blocked even in presence of H 0 •

2 2

Ricard's group furthermore demonstrated that Compound III (obtained by reduction of ferriperoxidase in the presence of methylviologen and 0) is decomposed by IAA which is simultaneously destroyed. This was confirmed by Yamazaki et al. (1967). Indoleacrylic

•acid is similarly destroyed by Compound III (429).

Klapper and Hackett's proposaIs and partiaily those of Yamazaki's group were integrated in a summary scheme (Fig. 7a) by Ricard and Nari (1966).

This scheme shows that IAA can be destroyed in the absence of peroxide :

a) either through a typical peroxidase reaction (peroxide is formed in the mixture) involving Fe 3+, C l, C II and free radicals of IAA,

p

b) or through a cycle involving Fe 2+ and C III. p

The latter functions only at acidic pHs (3 to 4), is blocked by carbon monoxide (to form carboxyferroperoxidase) and by ferricyanide (which oxidizes Fe 2+ into Fe 3+) as weil. The former peroxidase reaction is insensitive to these two s~bstances. The whole system is dependent upon the IAA-mediated ferriperoxidase reduction into ferroperoxidase.

Employing stopped-flow and low-temperature spectroscopic techniques, Ricard and Job (110 1) further elucidated the reaction sequences and the nature of the intermediate peroxidase compounds leading either to indole-3-aldehyde or to methyleneoxindole (Fig. 7b).

Page 41: peroxidases ( peroksida )

30 PEROXIDASES 1970/1980

COMPfUNO Il

o COMPOUND 1 [:0.

~--....,..,H202 ----.f -=--~-"'.Fe 3+

IAA f ~F~ ox

---- COMPOUND 1I1..Jl--IAA

(FepO~+)®r Fe~+~IAA

P2 !_ IAA peroxide.LIAÂ- FeJ+ IAA

3-methyleneoxindole j;s: : 2+

COMPOUND 1 !'d Fep +~----.,IAA;:::::::,. epoxIe + lAI>: COMPOUNUDI COMPOUND III

1AAi Jt Fe 3+IAA· Fe 3+0'­

IAA-? 2p r Oz 3+· F':+3+0.- Fe 2+IAAO-Fep IAA02 CO2 ep 2 IAA P 2

l:AA ~C02+0W 21 A A' 4 \ Fe~+02'-IAA2 FeJ+epoxide

indole-3 -aldehyde

u O2 CO2

1AA' ---":::::""'IAAOi ~epoxide ..{>3-methyleneoxindole

Fig. 7. a. Possible pathways for IAA degradation by HRP(afier Ricard and Nan, 1966).

b. 1. Proposed reaction sequences for the oxygen consuming degradation of IAA.

II. Non-enzymatic evolution of IAA free radical to methylene oxindole (afier Ricard and lob, 110 1).

Page 42: peroxidases ( peroksida )

BIOCHEMISTRY 31

It can be added that the ferric enzyme could be reduced by the IAA free radical rather than by IAA itself (924). In addition to these pathways, it must be mentioned that a considerable amount ofperoxidase is inactivated during the oxidation of IAA (Fox et al., 1965). The process of heme degradation has been described by Yamazaki (1459).

Isoenzymes involved in IAA destruction

To date, three hypotheses, with varying degrees of substantiating evidence, have been suggested in relation to the molecular 'residence' (582) of IAA oxidase activity. The first considers that the two types of activity (i.e., IAA oxidase and peroxidase) are present on separable and distinct enzymes; the second considers that the two types of activity are resident on one enzyme (peroxidase) but with two active centers; and the third calls attention to the presence of peroxidase isoenzymes where one member of the family of isoenzymes may be the primary residence of IAA activity. These alternatives are examined briefly.

The idea of separate enzymes was reported by Sequeira and Mineo (1966). They had noted that fresh preparations (tobacco roots) lost IAA oxidase activity after several weeks in storage, whereas peroxidase activity was unchanged. Further, they found that thermal inactivation points and pH optima were different. Attempts to separate the two types of activity on columns of silica gel, carboxymethyl cellulose, diethylaminoethyl cellulose, and diethylaminonethyl Sephadex failed, but with SE-Sephadex and 0.1 M eluting buffer they reported a major IAA oxidase peak (at 5.4 elution volumes) with little or no peroxidase activity from both tobacco root extracts and commercial HRP. Hoyle results (582) obtained with the same HRP and a purified Betula enzyme preparation did not support Sequeira and Mineo's contention.

The belief that both types of activity reside in one enzyme (i.e., peroxidase) is more widely held. Evidence offered in support of this belief is mainly that both types of enzyme activity remain together through various stages of purification and also there is evidence that thermal inactivation is the same for both (Ray, 1960). The work of Siegel and Galston (1967, confirmed by Hoyle, 582) suggests that the dual catalytic functions of peroxidase may result from two active sites on the enzyme. By separating the apoenzyme from its heme prosthetic group with acidified acetone, they found that apoenzyme alone would

Page 43: peroxidases ( peroksida )

32 PEROXIDASES 1970/1980

oxidize IAA, but was devoid of peroxidase activity. However, partial restoration of peroxidase activity occurred with recombination of heme and apoenzyme. They concluded that apoenzyme possesses the IAA oxidase function, and that a heme-protein attachment is needed for the peroxidase function.

Their work was challenged by Ku et al. (709) who used a mixture of an acid and butanone (instead of the acid-acetone) for dissociation of the heme group from its apoenzyme and were not able to effect the oxidation of IAA in the presence of the apoenzyme alone or with Mn2

+ and DCP as cofactors. The residual enzyme activity of the apoenzyme thus might be due to a slight contamination by unresolved holoenzyme in that fraction rather than to the apoenzyme itself.

In most studies, the total oxidase and/or peroxidase activity has been measured without consideration of the multiple forros of an enzyme (i.e. isoenzymes). MacNicol (1966) has separated four isoenzymes (three cationic and one neutral) from Alaska peas. He found that aIl of the isoenzymes could catalyze the peroxidation of guaiacol and the oxidation of IAA, but the C cationic species had an IAA oxidase­

J guaiacol peroxidase ratio that was 10-fold higher than the next most active species.

There is probably no example in the literature of a peroxidase extract or purified isoperoxidase unable to develop a so-called IAA­oxidase activity in vitro when placed in suitable conditions of pH and effectors, and/or after adequate purification (473). The question thus is whether any peroxidase isoenzyme encounters such favourable conditions - and IAA - in situ in order to develop the auxinolytic activity.

IAA destruction capacity of different types of isoperoxidases has been studied in vitro (697, 852, 1101). Mazza et al. (852) and Ricard et al. (1102) established a strong positive correlation between the oxygenase IAA-destroying activity (in absence of exogenously supplied peroxide or other cofactors) of different purified turnip peroxidases and their midpoint oxido-reduction potential value. They concluded that the most basic isoenzyme was the best candidate to be 'IAA-oxidase' in vivo. Nakajima and Yamazaki (924) showed that the oxygen-consuming oxidation of IAA occurred much faster in the presence of the HRP neutral isoenzyme C than in the presence of the acidic isoenzyme A. Physiological studies, which attempt to establish a relationship between endogenous IAA level, intensity of the IAA-dependent process and prior qualitative changes in peroxidase zymograms generally support the view that auxin catabolism is mediated by the most cationic isozymes (see Section 5.1).

Page 44: peroxidases ( peroksida )

BIOCHEMISTRy 33

The oxidation of IAA by a purified anionic tomato peroxidase (697) was found to be negligible unless reaction mixtures were supplemented with H

20

2• A similar dependence on H

20

2 has been

shown for the IAA oxidase-peroxidase complex of yellow birch (587). From a physiological standpoint, such a result suggests that the destruction of IAA in tissue could be controlled by the availability of H

20

2 or other peroxides, as probably are lignin and ethylene biosynthesis.

This view was first expressed by Siegel and Galston (1955) and has been extended to coyer the role of auxin protectors (1281).

2.3.3. H 0 formation and lignin biosynthesis 2 2

Metabolic pathways leading to the main families of plant phenolic compounds are relatively weil known. Shikimic acid and cinnamic acid pathways constitute a common sequence from which originate the different groups of polyphenols and lignin particularly (Fig. 8).

The pathway of lignin biosynthesis and the enzymes involved are weil established. Several excellent recent reviews treat these subjects in detail (20,890a). Phenylalanine ammonia Iyase (PAL) catalyzes the conversion of phenylalanine to trans-cinnamic acid. Cinnamic acid is hydroxylated at the para position by cinnamic acid-4-hydroxylase to form p-coumaric acid; however, p-coumaric may also be formed by the deamination of tyrosine catalyzed by tyrosine ammonia Iyase. p­Coumaric acid is further hydroxylated by p-coumaric acid hydroxylase to give caffeic acid. o-Methyltransferase then methylates caffeic acid to ferulic acid. Sinapic acid is formed by hydroxylation and methylation of ferulic acid. Coumaric, ferulic, and sinapic acid are converted to their respective CoA esters by cinnamate acid-CoA-ligase. The esters of cinnamic acid derivatives are reduced to the corresponding aldehydes and further reduced to alcohols by cinnamoyl-CoA-oxidoreductase and cinnamyl alcohol dehydrogenase. These enzymes would form the cinnamylic alcohols into the secretory vesicles during their migration towards the wall.

Page 45: peroxidases ( peroksida )

34 PEROXIDASES 1970/1980

phenylalanine

~ cinnamic acid caffeic acid

~ ft ~ ~ p-co~oriC ocid~ferUI~oCid%,OPiC acid

CinnO~YI CoA esters tyrosine

cinnamyl aldehydes

cr lignins 4@1--- cinnamyl alcohols

Fig. 8. Metabolic pathway and enzymes involved in lignin biosynthesis: l. phenylalanine ammonia Iyase 2. cinnamic acid-4-hydroxylase 3. p-coumaric hydroxylase 4. o-methyltransferase 5. cinnamic acid-CoA­ligase 6. cinnamoyl-CoA-oxidoreductase 7. cinnamyl alcohol dehydrogenase 8. peroxidases.

Polymerization due to peroxidase could begin during this transport (20). Polycondensation of the cinnamyl alcohols probably occurs through the mediation of wall peroxidases. Free radicals, formed by oxidation of these alcohols by peroxidase-H

20

2 exist in several resonance forms

and couple in an essentially random manner, although participation of the more stable resonance forms is statistically favored. Coupling between radicals of the alcohols occurs readily. In the lignifying plant cell wall, however, coupling is primarily between incoming radical species and the growing lignin polymer which itself contains phenolic hydroxyl groups that are oxidized to radicals by peroxidase.

Page 46: peroxidases ( peroksida )

BIOCHEMISTRY 35

Since different esters of cinnamic acids have been identified in sorne lignins, it is conceivable that sorne vesicles, unfused and lacking reductases, directly bring their esters to the wall, where further trans­esterification occurs.

A review of the available data on the localization in the cell of the enzymes of phenolic metabolisrn, the organization of the different sequences at the subcellular level, the existence of transport processes between different organelles and finally the participation of soluble and wall-peroxidases in lignin formation and integration in the wall has been presented schematically (Fig. 9) by Alibert et al. (20),

pheny 1- alanine

----------t------------------­ENDOPL ASMIC

RETICULUM --------i-----i-------------j---­GOLGI cinnamic A PPARATUS caffeic acids

'dp - cou!.ma ri c .derP 0 x 1 ose s . . oc 1 s

SECRETORY VESICLES

Slna!1C

p-coumarate-CoA sinapate-CoA

cinntmYliC alcohols

dimerization .. _ poly mer iz a tian

ci nnom y 1ici i 9 n i ilS '1i-- - - - - - - - - - - - - - Pe r 0 x id ose s esters -----___.WALL bound to li gn ins - - - - - - -H20 2

Fig 9. Fonnation of lignin precursors and lignin in the cell (after Alibert el al.. 20),

Page 47: peroxidases ( peroksida )

36 PEROXIDASES 197011980

Peroxidase involvement

On the basis of histochemical studies, Freudenberg et al. (1952) proposed that peroxidase was involved in lignification in vivo in spruce. This view was supported by the work of Jensen (1955), and Siegel (1956, 1957) who later demonstrated that peroxidase would efTect an in vitro oxidation of eugenol to a lignin-like substance. Later studies by Van Fleet (1959), Wardrop and Bland (1959), and Koblitz and Koblitz (1966) argued against the direct involvement of peroxidase in the lignification process. In particular these workers have shown that maximum peroxidase activity occurs in prolignifying tissues, and that activity declines after lignification of the primary wall has commenced. Further, De Jong (1967) daims never to have observed a positive peroxidase reaction in xylem.

The discrepancies might come from the fact that sorne observations concemed ail the year xylem without distinguishing the difTerentiating stages. A more recent study by Czaninski (264) indeed showed that during the difTerentiation of wheat vascular cells, longitudinal primary walls exhibit a strong peroxidase activity. A similar reaction can be visualized in transverse walls but in this case, the contrast decreases sharply at the beginning of secondary wall deposition.

It is evident from studies such as those of Lipetz and Garro (1965) and Parish and Miller (1969), that there may be sorne relationship, even though an indirect one, between peroxidase and lignification. These workers have shown that treatments which cause leaching of wall-bound peroxidases also reduce lignification.

Isolated cell wal1s from Pinus ellioUii tissue cultures produce lignin having physical and chemical properties similar to that prepared from wood, when incubated in the presence of coniferyl alcohol and HzOz. The enzyme responsible for this production was shown to be peroxidase (1 436a). Indeed, 'laboratory' lignin can be prepared by the carefully controlled addition of dilute solutions of peroxidase and HzOz to a stirred solution of an appropriate mixture ofcinnamyl alcohols (Geissman and Grout, )969). However, it seems evident that only sorne of the various isoperoxidases isolated from plants are able to catalyze these reactions.

Page 48: peroxidases ( peroksida )

37 BIOCHEMISTRY

One may consider that peroxidases play a key role in the overall process of lignin formation by

1. generating HzOz necessary for oxidation and polymerization of cinnamyl alcohols (357, 488, 489, 808).

2. oxidizing cinnamyl alcohols to phenoxy radicals (525) with the rapid formation of oligomers.

3. converting ferulic to diferulic acid, which can act as a hemicellulose cross link (828a).

4. a) binding cinnamic acid to wall proteins or carbohydrates (1435, 1436, 1436a)

b) polymerizing cinnamyl alcohols in walls (Brown, 1961).

Formation of H2 0

Z by cel! walls and cinnamyl alcohols oxidation

Several factors appear to be of importance in the formation of HzO by cell walls with respect to the lignification process (357, 488, z 488a, 489, 518) :

1) A bound peroxidase catalyzes the formation of HzO at the expense z of NAD(P)H in a reaction that is stimulated by monophenols and Mnz

+. Similar reactions have also been reported for soluble peroxidases (Akazawa and Conn, 1958; 647).

2) HzO formation involves the superoxide radical 0z- as anz intermediate of the above-mentioned system.

3) 0z- equilibrates in part with a second mechanism, again producing HzO in a separate and peroxidase-independent system. z

4) The electron donor NADH can be provided by a bound malate dehydrogenase. In analogy to the known malate-oxalacetate shuttles, the possibility of a similar mechanism across the plasmalemma has

Page 49: peroxidases ( peroksida )

38 PEROXIDASES 1970/1980

been discussed (488). By this means, cytoplasmic reducing equivalents could be provided to the cell wall. Furthermore, the concomitant removal of accumulating oxalacetate would positively affect the unfavorable equilibrium. of this reaction. Eventually, malate dehydrogenase is also part ~ enzyme-NADH complex susceptible to the attack of 0z- as discussed in the preceding Section.

The reactions outlined above are illustrated in Figure 10.

R'OH R'O·....lignin

HO ~H+ ._.' 2 2 ----0

02~ pe'M~\;~:~:~· 2

ROH -"RO' Y2

~NAD'~NADH~ ~NAD+

_ r i ~

malate dehydrogenase

WALL oxalo- ma/ate

acetate t-­CYTOPLASM t

Fig. 10. Reactions generating hydrogen peroxide in higher plant cell wall (after Gross el al., 489).

Stimulation of H20

Z production by monophenols (and coniferyl

alcohol) is apparently due to their inhibiting effect on the formation of peroxidase Compound III (518) which appears as a blocker of HPz formation. It can also be mentioned here that the myeloperoxidase mediated H

Z0

2 formation accompanying phagocytosis also was related

to its NADPH oxidase activity in leukocytes (998a, 1308). Similarly the bactericidal activity of eosinophil peroxidase is seen through a perturbation of the plasma membrane with a respiratory burst, in which oxygen is converted to hydrogen peroxide (634, 635).

Page 50: peroxidases ( peroksida )

BIOCHEMISTRY 39

In comparison to previous theories on the origin of HzOz in cell waIls, the scheme proposed here offers several advantages. For example, the problems relatedto the transport of 'toxic' HzOz from cytoplasmatic sources to the cell wall compartment would be eliminated. Further, regulation of the lignification process would be facilitated, either by producing HzOz only within the lignifying areas or by degrading HzOz in the non lignifying parts by a wall-associated catalase that has been found in cell wall preparations (357). One also might visualize that both ROH and R'OH in Figure 10 represent hydroxycinnamyl alcohols. In this case, the operation of the entire reaction sequence would depend largely on the availability of these lignin precursors. The aforementioned appreciable stimulation of HzOz formation by coniferyl alcohol would support this idea. In this context, it should be noted that it was possible to polymerize coniferyl alcohol in vitro with this rather cornpIex system. Moreover, an analogous formation of HzOz has been reported with cell walls isolated from Forsythia xylem (448a). This result obtained with an actively lignifying tissue lends further support to the conclusions drawn above.

Three peroxidase isoenzyme groups found in cell walls of tobacco were tested for their capacity to form Hz Oz (808). Isoenzyme-group GI, located only in cell walls (GU and GIll are also found in protoplasts) showed the highest Kapp-value for HzOz formation. The lowest Kapp­value, i.e. maximal HzOz-formation, was received for group GIll which is ionically bound to cell wall. Stimulation of HzOz formation by coniferyl alcohol was much more significant than by p-coumaryl and sinapyl alcohol.

Gross' work (489) has been confirmed. Working with carnation stems, Czaninski and Catesson (191) discovered a heavy reaction in sieve plates after incubation in a medium containing DAB, malate, NAD and cofactors (MnClz and p-coumaric acid) as weil as in a medium containing only DAB and cofactors, i.e., in absence of exogenous HzOz. The fact that endogenous H 0 may be locally produced to start

2 Z the reaction is suggested by inhibition by catalase. On the other hand, phloem cell wall peroxidases were found to have no affinity towards cinnamic substrates except in differentiating and lignifying fibers. FinaIly, peroxidases reacting with syringaldazine can be localized in lignifying walls only (192).

::;.

Page 51: peroxidases ( peroksida )

40 PEROXIDASES 1970/1980

Ferulic ta diferulic acids. Binding ta wall carbahydrate and pratein

Diferulic acid, bound by ester linkages, has been identified in smal1 amounts in water-insoluble pentosans (arabinoxylans) of wheat endosperm (828a) and in cell walls of Lalium (Hartley and Jones, 1976). Ferulic acid and diferulic acid are found in the ratio of 5: 1. The coupling of ferulic acid side groups, attached to arabinoxylan chains occurs through an oxidative phenolic coupling in which peroxidase is involved as il1ustrated in the following scheme (828a)

° -o-oMe M-o-eo 0 Arabino- Il Il r i ­-O-C-CH=CH If ~ OH + HO r; ~ CH=CH-C-o-{A abno xy1an } _ _ xylan

l Peroxidase H2 °2

MeC

If ~ CH=CH-~ ~ 0_[ Arabino-H xylan

Arabino- - J OH}-ol~-cH=cH xylan ~ JI ~

OMe

Whitmore (1435) examined the capacity of soluble, ionical1y- and covalently- bound peroxidase of slash pine callus and seedlings to catalyze the binding of ferulic acid to cell wall carbohydrates. By using caHus (which forms little lignin) and cambium cells from seedlings he was able to show that the wall-bound peroxidases, particularly the ionically-bound enzyme, catalyzed the coupling of ferulic acid to carbohydrate most efficiently. With cambial cells phenol-phenol bindings (as would be important in lignification) also occurred. In the same way wall peroxidases catalyze the incorporation of dehydrogenation polymer of coniferyl alcohol to wall protein containing hydroxyproline during the early stages of lignification (1436, 1436a).

Page 52: peroxidases ( peroksida )

41 BIOCHEMISTRY

Polymerization

The studies begun nearly four decades aga by Freudenberg in Germany have given us a much clearer idea of the nature of the polymerization processes which constitute lignification in the truest sense of the term. Freudenberg and Richtzenhain (1943) found that press juice .from a cornmon mushroom, Psalliota campestris, contained an enzyme system which could polymerize added coniferyl alcohol to an amorphous product bearing a striking resemblance in both chemical and physical properties to the natural lignin of conifers. It has since been established that the enzyme responsible for this polymerization is a phenol oxidase, laccase (Lyr, 1957; Freundenberg et al., 1958; Higuchi, 1958), but it was still not completely clear at that time whether the polymerization in higher plants was catalyzed chiefly by laccase or by peroxidase (Lyr, 1957; Higuchi and Ito, 1958). A free­radical mechanism has been proposed (see Brown, 1961) for the formation of these condensation products, in which the central intermediate in the formation of coniferyl-type polymers is a quinone methide, illustrated below :

00= CH-~H-CH20H H3CO

Sorne evidence for the existence of such an intermediate has been presented (Freudenberg et al., 1958). In a similar way the formation of a quinone methide from the dimer could lead to molecules with a higher degree of polymerization (Brown, 1961).

The three tobacco cell wall peroxidase isoenzyme-groups tested before (808) for their capacity to form H

20

2 (and phenoxy radicals of

cinnamyl alcohols, see above) were also tested for their polymerization capacity (807,808). Isoenzyme-group G l, located only in cell walls, yield maximal polymerization rates for coniferyl and p-coumaryl alcohol. G III (also found, in protoplasts) showed the lowest rates. The values obtained for H20 2 formation were opposite, thus pointing to possible

Page 53: peroxidases ( peroksida )

42 PEROXIDASES 197011980

different catalytic functions of the peroxidase isoenzyme-groups within the œil wall. As a result, Miider et al. (808) proposed a scheme of lignification based on the different catalytic capacity of these peroxidase isoenzyme groups (Fig. 11).

malate malate dehyd ragenase

oxala­acetate

Fig. II. Involvement of three different groups of wall peroxidases (G!, II and III) in the lignification process (according to Miider et al., 808). .

OH R

RO«#O~B OH RO~Of B OH H0'Çr0§-0~R 1 1 - 1 - "'" 1 1 ~ OH

~:>.... OH C"'" OH H2 0 2 OR 0 OR 0 HO 8

Flayonol Choleon.

lpOO

H0'OQ=0 _ ,-dOH-0-~

:>.... 1 CH~OH H02C f B OH ~~ ­ H02C) \;;d

o Auronr a.nzoit acid Cinnamic acid

~/H202 iPOO/H2 0 2~A+Pt-

~ Q HO~OOHH0'Çr:0H HOÇQO ?'B~H02 C ~OCH3 1 1 1 + 1 1 POO 1 ­- R "'" OH:::"" 4:-:-=--"'" H

R 2 H20 2 H o OH OH 0 OH 0

Flavanon.

Fig. 12. Involvement of peroxidases (POO) in catabolic pathways of fJavonoids in plant cell cultures (after Barz and Nicolas, 1978).

H20 2

lignins

Page 54: peroxidases ( peroksida )

Phenolics and extensin

BIOCHEMISTRY 43

No direct evidence is available to indicate that phenolics are indeed cross-linked to extensin, although phenolics do occur in smaIl amounts in cell walls. In this respect the catabolism of phenolics is often overlooked. Barz and Nicolas (1978) indicated that peroxidases play a very important role in oxidizing various flavonoids and aromatic acids (Fig. 12). Zaprometov (1978) has also indicated that the lactonization step in coumarin biosynthesis may take place with the formation of free radicals generated through peroxidase. Many of these phenolics are found in cell walls.

FinaIly, it is not clear whether the carbohydrate present in peroxidase is there as a functional prosthetic group - in which case peroxidase would have two prosthetic groups - or if the carbohydrate which was added to the synthesized polypeptide, is simply there for transportation out of the cell to become incorporated into the hemicellulosic fraction of the cell wall, in the synthesis of which peroxidase plays a role.

Lignin degradation

Lignin degradation, namely by microorganisms, has been long suspected to involve polyphenoloxidases such as peroxidase and laccase. Based on multiple observations, a growing concept is being developed that freely soluble peroxidase is not a lignolytic enzyme (529).

Page 55: peroxidases ( peroksida )

44 PEROXIDASES 1970/1980

2.3.4. Ethylene biosynthesis

The fonnation of ethy1ene during the degradation or peroxidation of many kinds of organic mo1ecu1es has 1ed to extended studies of non­enzymic systems and the consideration that sorne of these mode1 systems might be operative in vivo (Osborne, 1978; 763a). Cu ions in particu1ar induce a 1ight-driven peroxidation of membrane 1ipids 1eading to ethy1ene fonnation (Sandmann and Bogger, 1980). As far as the enzymatic synthesis of ethy1ene is concerned, on1y one substance is known with certainty to be a precursor in vivo : L-methionine. Methionine is converted enzymatically (by a transaminase) to cx-hydroxy­y-methy1thiobutyric acid and further to cx-keto-y-methylthiobutyric acid (KMBA) and non-enzymatically (through the 1ight mediated action of flavine mononucleotide FMN) to methiona1 (B­methy1thiopropiona1dehyde). In a further in vitro but enzymic system consisting of precursor + peroxidase + cofactors, Ku et al. (1967, 1969) found that both methiona1 and KMBA 1ed to ethy1ene fonnation (Fig. 13). Ana1yzing their enzymic system, Mapson and Warda1e (1968) observed that next to peroxidase, a glucose-oxidase (generating peroxide) and two cofactors, an ester of p-coumaric acid and methanesu1phinic acid (Mapson and Mead, 1968; Mapson et al., 1969) were necessary for the conversion of a cx-hydroxy-y-methy1thiobutyric acid or KMBA to ethy1ene. These two latter substances, as weIl as methiona1, however were inactive in (non-buffer) intracellu1ar conversion systems.

Yang (1968) also showed that ethylene is rapidly fonned from methional or from KMBA by HRP in the presence of Mnz+, sot, oxygen and a specific phenol (the active phenols include sorne monophenols and rn-diphenols).

These two non-enzymic and peroxidase mediated ethylene generation schemes present sorne similarities with the two possible mechanisms of ethylene generation during host defense by neutrophils (neutrophil is one of five types of leukocytes which circulate in the blood and function as key elements in the defense of the host against invading pathogenic organisms) (Tauber and Babior, 1977, 1978; Weiss et al., 1977). The best characterized oxygen-requiring bactericidal mechanism in neutrophils is the myeloperoxidase-dependent system, in which myeloperoxidase mediates bacterial killing in the presence of HzO andz

Page 56: peroxidases ( peroksida )

45 BIOCHEMISTRY

CH,-5-CH2 - CH2- CH (NH2 l-COOH 1

(methionine)

.t CH 3-S-CH2-CH 2 -CH (OH )-COOH

(O(. - hydroxy- K- methylthiobutyrie aeid)

~ CH3-S-C H2 - C H2 -CO- COOH CH3 -S-CH2- CH2- CHa

(0(- keto-~- methylthiobutyrie aeid, KMBA) (methional)

0(.- D- glucose + glucose oxidase ....H2 ~

(H2 0 2 ) + peroxidase

{

P- cournarie ester

+ 1+ eofadors

methanesulphinie aeid

CH2 = CH2

\0 :r

o "'

(ethylene)

+ CH 3 -S-S-CH 3

(methyl disul fide )

+ HCOOH

(formie acid)

Fig 13. Alternative pathways of ethylene biosynthesis from methionine.

Page 57: peroxidases ( peroksida )

46 PEROXIDASES 1970/1980

a halide ion (probably Cl~ in the intact neutrophil). The H,O, used by this system arises by the dismutation of 0,-, the product -of an enzyme-catalyzed reaction in which NADPH reduces oxygen by one electron. The O,--forming system is dormant in resting cells, but is activated on exposure of the ceIls to suitable stimuli; the changes in oxygen metabolism that result from the activation of this system are designated the 'respiratory burst'. It was later shown that stimulated neutrophils produce the highly reactive oxidizing hydroxyl radical OH", which releases ethylene from methional (scheme beJow), and that the O - generated during the respiratory burst is involved in the production

2 of this reactive species :

H 0 + O - ~ OH" + OH- + O22 2 2

CH S - CH2 - CH2 - CHO + OH"--. CH S+ - CH - CHO + OH­3 3 2

CH $'" - CH - CH - CHO + OH~ 1/2 (CH S)2+ HCOOH + CH = CH23 2 2 3 2

The production of ethylene from methionine by Fentom's reagent (Fe-++ plus H,O,), a weil characterized source of OH", lends further support to the cliim that methional is oxidized to ethylene by OH".

Two purified horseradish isozymes differing in their specific peroxidase activity were tested as to their ethylene formation capacity (Yang, 1968). Although the anionic A-I isozyme had higher specific peroxidase activity (as measured by the peroxidation of o-dianisidine) than the cationic C isozyme, C isozyme was about 250 times more active (per unit peroxidase activity) than isozyme A-I in catalyzing ethylene formation from methional. More recent labeling studies of Adams and Yang (1979) provided evidence that ethylene was synthesized in apple tissue from methionine via S-adenosyl-methionine (SAM, after activation of methionine by ATP as the first reaction) and a 4-carbon amino acid, l-aminocyclopropane-1 carboxylic acid (ACe), i.e. : methionine ~SAM --.ACC ---+ethylene. The conversion of ACC to C

2H

4 was inhibited by anaerobic atmosphere, free radical scavengers

and strong reducing agents. The reaction converting ACC to C2H4

was

Page 58: peroxidases ( peroksida )

BIOCHEMISTRY 47

also inhibited strongly by various copper chelating agents (Apelbaum et al., 1981), which suggests that a copper enzyme, possibly a copper­peroxidase, may be involved in the final step of C H biosynthesis.

2 4

The inhibitory phenomena are in accord with the known 02 requirements for C H production (Lieberman, 1979), which now can be related to

2 4 the final reaction step from ACC to C

2H

4•

ln vivo peroxidase involvement ?

It is however doubtful if peroxidase is involved in the intracellular conversion, for additions of catalase enhance, rather than reduce, ethylene production, and endogenous peroxidase activity does not parallel ethylene production (Kang et al., 1971).

The relationship of the peroxidative indoleacetic acid oxidase system to in vivo ethylene synthesis in cotton was examined by Fowler and Morgan (398). Modifications of peroxidase and IAA oxidase activity in auxin-treated plants occurred weil after the elevation of internai ethylene levels. This would indicate that the enzymes are not rate­limiting factors when ethylene synthesis is increased. It seems also unlikely that peroxidase plays a role in producing C H from methionine

2 4 in the mungbean hypocotyl because chlorogenic or cafTeic acid, potent inhibitors of peroxidase-catalyzed C H formation from methionine

2 4 analogs, did not inhibit C H production in this tissue even at 0.5

2 4 mM (Sakai and Imaseki, 1972). It can be argued that sorne isoperoxidases only are concerned with the process. Considerable evidence indeed now links the rates of ethylene production of growing or expanding tissues with their levels of endogenous auxin and applications of auxin to isolated plant parts invariably enhance the evolution of ethylene (Osborne, 1978; Dubucq el al., 1978; Hofinger el al., 1980).

Since the specific activity of ethylene produced from C4C) methionine was similar in control and auxin stimulated treatments, Sakai and Imaseki (1972) concluded that the efTect of auxin was to stimulate the enzyme system converting methionine to ethylene, and not to enhance the formation of methionine. In addition, the Steen and Chadwick (1973) proposai that auxin has two efTects on ethylene biosynthesis, one immediate and cycloheximide-insensitive stimulation and a second,

Page 59: peroxidases ( peroksida )

48 PEROXIDASES 1970/1980

occurring after a lag period of 1-2 hr, which is sensItive to protein synthesis inhibitors, has some striking paralle1ism with simi1ar immediate and delayed auxin effects on activity and synthesis of specific peroxidases (Ga1ston et al., 1968).

ACC can be converted to C H in model systems which invo1ve 2 4

an oxidation reaction requiring H)O) (Bolier et al., 1979; Lizada and Yang, 1979). This suggests the possibi1ity of an in vivo peroxidase system, which cou1d react with ACC to form C

2H

4• Current1y, there

is no good evidence for such an in vivo reaction. However, the in vitro system iso1ated from pea seed1ings by Konze and Kende (697a) suggests such a system. Presumably, the enzyme could be present constitutive1y in all tissues. It may be membrane-associated, for it did not survive treatment with surface-active agents, and coId or osmotic shock reduced the capacity of the system to convert ACC to C H • Such treatments

2 4will affect peroxidase binding to membrane (see Chapter 3).

There is also some striking resemblance between the stimulated H)O)-dependent lignin synthesis and the increased ethylene synthesis düe -to the release and increased activity of the H

20

2 forming glucose

oxidase enzyme apparently attached to plant cell-wall material (and liberated by the action of bacterial pectic enzymes as an example, Lund and Mapson, 1970).

2.4. TYPES OF PEROXIDASES

Besides the higher plant peroxidases EC 1.11.1.7 which catalyze the reactions mentioned in section 2.3.1, peroxidases from other sources have been found with a particular affinity for specific substrates. Some of them received a different code number in the enzyme nomenclature. They are listed here below.

Page 60: peroxidases ( peroksida )

BfOCHEMfSTRY 49

Ascorbate peroxidase

L-ascorbic acid : hydrogen peroxide oxidoreductase Ascorbate + H 0 = dehydroascorbate + 2 H 0

2 2 2

Other donors : pyrogallol, guaiacol, 1-: Sources : higher plants, algae. References: 673, 1207.

Bromoperoxidase (Bromide peroxidase)

Bromide : hydrogen peroxide oxidoreductase p-hydroxybenzyl alcohol + Br-+ H,O, = 3-bromo-p-hydroxybenzyl alcohol Ferriprotoporphyrin IX, glycoprôteln. Other donors : 1-: / Sources : algae, marine invertebrates. References: 7, 50, 1009.

Ch/oride peroxidase (Ch/oroperoxidase)

Chloride : hydrogen peroxidase oxidoreductase. EC 1.11.1.10. 2 RH + 2 CI- + H,O, = 2 RCI + 2 H,O Ferriprotoporphyrin ïx, glycoprotein. -Other donors : I~ Br-: Sources : fungi. References: 246, 505,1325, Morris and Hager (1966).

Cytochrome C peroxidase

Ferrocytochrome c : hydrogen peroxide oxidoreductase. EC 1.11.1.5. Cytochrome c2

+ + H,O, = cytochrome c3 +

Ferriprotoporphyrin -IX. Sources : aerobically grown yeast. References: 170, 252, 328, 362, 363, 885, 941, 945, 1437.

Page 61: peroxidases ( peroksida )

50 PEROXIDASES 1970/1980

lodide peroxidase (/odopemr:idase)

lodide : hydrogen peroxide oxidoreductase. EC 1.11.1.8. 1- + H,O, + tyrosine = iodotyrosine + 2 HoO 21-+H,O,=I,+2H,O ­Sources- : -thyroid, algù. References : 915, 922.

Glutathione peroxidase

Glutathione : hydrogen peroxide oxidoreductase. EC 1.11.1.9. Glutathione + ROOH = glutathione oxided Selenium containing. Sources : animaIs : mitochondria and cytoso!. References: 474, 516, 783.

Lactoperoxidase

Donor : hydrogen peroxide oxidoreductase. EC 1.11.1. 7. Its electron donor profile only difTers from that of plant peroxidases regarding halide ions. Derivative of mesoheme IX, glycoprotein. Sources : milk, saliva. References : 907, 1003, Hultquist and Morrison (1963).

Myeloperoxidase (Verdoperoxidase)

Donor : hydrogen peroxide oxidoreductase. EC 1.1 1.1.7. Its electron donor profile only difTers from that of plant peroxidases regarding halide ions. Sources : leukocytes, macrophages. References : 893, 965, 1123, 1308.

Page 62: peroxidases ( peroksida )

BIOCHEMISTRy 51

REFERENCES

For numbered references in the text, see bibliographical section

ADAMS, 0.0.; YANG, S.F. 1979. Ethylene biosynthesis : Identification of I-aminocyclopropane-I-carboxylic acid as an intermediate in the conversion of methionine to ethylene. PROC. NATL. ACAD. SCI. U.S.A 76: 170-174.

AKAZAWA, T.; CONN, E.E. 1958. The oxidation of reduced pyridine nucleotides by peroxidase. J. BIOL. CHEM. 232: 403-415.

APELBAUM, A; BURGOON, AC.; ANDERSON, J.D.; SOLOMOS, T.; LIEBERMAN, M. 1981. Sorne characteristics of the system converting I-amino-cyclopropane-I-carboxylic acid to ethylene. PLANT. PHYSIOL. 67: 80-84.

ASAKURA, T.; YONETANI, T. 1969. Studies on cytochrome c peroxidase. XIII. Crystalline complexes of apoenzyme with porphyrins. J. BIOL. CHEM. 244: 537-544.

BARZ, W.; NICOLAS, H.-A 1978. Metabolism of phenolics and vitamins in cell cultures. In 'FRONTIERS OF PLANT TISSUE CULTURE 1978'. Thorpe, T.A (Ed.). University of Calgary Press, Calgary, Canada, pp. 345-358.

BJORKSTEN, F. 1968. Participation of horseradish oxyperoxidase (Compound III) in interenzymic reaction steps. BIOCHIM. BIOPHYS. ACTA 151: 309-311.

BLOCH, K.; HAYAISHI, O. 1966. Preface. In 'BIOLOGICAL AND CHEMICAL ASPECTS OF OXYGENASES'. Bloch, K.; Hayaishi, O. (Eds). Maruzen. Tokyo.

BLUM BERG, W.E.; PEISACH, J.; WITTENBERG, B.A.; WITTENBERG, J.B. 1968. The electronic structure ofprotoheme proteins. 1. An electron paramagnetic resonance and optical study of horseradish peroxidase and its derivatives. J. BIOL. CHEM. 243: 1854-1862.

BOLLER, T.; HERN ER, R.C.; KEN DE, H. 1979. An assay for the ethylene precursor I-aminocyclopropane-I-carboxylic acid and studies on its enzymatic formation. PLANTA 145: 293-303.

Page 63: peroxidases ( peroksida )

52 PEROXIDASES 1970/1980

BRILL, A.S.; WILLIAMS, R.J.P. 1961. The absorption spectra, magnetic moments and the binding of iron in sorne haemoproteins. BIOCHEM. J. 78: 246-253.

BROWN, S.A. 1961. Chemistry of lignification. SCIENCE 134: 305-313.

BUHLER, D.R.; MASON, H.S. 1961. Hydroxylation catalyzed by peroxidase. ARCH. BIOCHEM. BIOPHYS. 92: 424-437.

CHANCE; B. 1952. The spectra of the enzyme - substrate complexes of catalase and peroxidase. ARCH. BIOCHEM. BIOPHYS. 41: 404-415.

CHANCE, B. 1952. The kinetics and stoichiometry of the transition from the primary to the secondary peroxidase-peroxide complexes. ARCH. BIOCHEM. BIOPHYS. 41: 416-424.

CHANCE, B. 1952. Oxidase and peroxidase reactions in the presence of dihydroxymaleic acid. J. BIOL. CHEM. 197: 577-589.

CHANCE, B.; FERGUSON, R.R. 1954. In 'THE MECHANISM OF ENZYME ACTION'. Mac Elroy, W.D.; Glass, B. (Eds). John Hopkins Press, Baltimore, Maryland, p. 389.

CORMIER, M.J.; PRICHARD, P.M. 1968. An investigation of the mechanism of the luminescent peroxidation of luminol by stopped flow techniques. J. BIOL. CHEM. 243: 4706-4714.

DEGN, H. 1969. Compound III kinetics and chemiluminescence in oscillatory oxidation reaction catalyzed by horseradish peroxidase. BIOCHIM. BIOPHYS. ACTA 180: 271-290.

DE JONG, D.W. 1967. An investigation on the role of plant peroxidases in cell wall development by the histochemical method. J. HISTOCHEM. CYTOCHEM. 15: 335-346.

DU BUCQ, M.; HOFINGER, M.; GASPAR, Th. 1978. Auxin­controlled root growth and ethylene production. PLANT, CELL AND ENVIRONMENT 1: 151-153.

FOX, L.R.; PURVES, W.K. 1968. The mechanism of peroxidase catalysis of 3-indoleacetic acid oxidation. In 'BIOCHEMISTRY AND PHYSIOLOGY OF PLANT GROWTH SUBSTANCES'. Wightman, F.; Setterfield, G. (Eds). The Runge Press, Ottawa, Canada, pp. 301-309.

FOX, L.R.; PURVES, W.K.; NAKADA, H.!. 1965. The role of horseradish peroxidase in indole-3-acetic acid oxidation. BIOCHEM. 4: 2754-2763.

FREUNDENBERG, K.; GRION, G.; HARKIN, J.M. 1958. Nachweis von Chinonmethiden bei der enzymatischen Bildung des Lignins. ANGEW. CHEM. 70: 743-744.

Page 64: peroxidases ( peroksida )

53 BIOCHEMISTRY

FREUNDENBERG, K.; HARKIN, J.M.; REICHERT, M; FUKUZUMI, T. 1958. Die an der Verholzung beteiligten Enzyme. Die Dehydrierung der Sinapinalkohols. CHEM. BER. 91: 581-590.

FREUNDENBERG, K.; REZNIK, H., BOESENBERG, H.; RASENACK D. 1952. Das an der Verholzung beteiligte Fermentsystem. CHEM. BER. 85: 641-647.

FREUDENBERG, K.; RICHTZENHAIN, H. 1943. Enzymatische Versuche zur Entstehung des Lignins. BER. DEUT. CHEM. GES. 76 B: 997-1006.

GALSTON, A.W.; LAVEE, S.; SIEGEL, B.Z. 1968. The induction and repression of peroxidase isozymes by 3-indoleacetic acid. ln 'BIOCHEMISTRY AND PHYSIOLOGY OF PLANT GROWTH SUBSTANCES'. Wightman, F.; Setterfield, G. (Eds). The Runge Press, Ottawa, Canada, pp. 455-472.

GEISSMAN, T.A.; GROUT, D.H.G. 1969. Organic Chemistry of Secondary Plant Metabolism. Freeman, Cooper, California, 592 p.

GEORGE, P. 1952. The specifie reactions of iron in sorne hemoproteins. ln 'ADV. CAT ALYSIS'. Frankenburg, Komarewski, Rideal (Eds). Academie Press, New York, No. 4, pp. 367-428.

GEORGE, P. 1953. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. 1. Titration with reducing agents. BIOCHEM. J. 54: 267-276.

GEORGE, P. 1953. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. BIOCHEM. J. 55: 220-230.

GEORGE, P. 1953. Intermediate compound formation with peroxidase and strong oxidizing agents. J. BIOL. CHEM. 201: 413-426.

HARBURY, H.A. 1957. Oxidation-reduction potentials ofhorseradish peroxidase. J. BIOL. CHEM. 225: 1009-1024.

HARTLEY, R.D.; JONES, E.C. 1976. Diferulic acid as a component of cell walls of Latium mult!flarum. PHYTOCHEM. 15: 1157-1160.

HIGUCHI, T. 1958. Further studies on phenol oxidase related to the lignin biosynthesis. J. BIOCHEM. (Tokyo) 45: 515-528.

HIGUCHI, T.; no, Y. 1958. Dehydrogenation products of coniferyl alcohol formed by the action of mushroom phenol oxidase, Rhus laccase and radish peroxidase. J. BIOCHEM. (Tokyo) 45: 575-579.

Page 65: peroxidases ( peroksida )

54 PEROXIDASES 1970/1980

HINMAN, R.L.; LANG, J. 1965. Peroxidase-catalyzed oxidation of indole-3-acetic acid. BIOCHEM. 4: 144-158.

HOFINGER, M.; GASPAR, Th.; MENARD, D. 1980. Effets de l'acide indolylacrylique, de la kinétine, de l'acide abscissique et du méthylèneoxindole sur la croissance et la production d'éthylène par des racines de Lentille. C.R. ACAD. Sc. PARIS290: 139-142.

HULTQUIST, D.E.; MORRISON, M. 1963. Lactoperoxidase. 1. The prosthetic group of lactoperoxidase. J. BIOL. CHEM. 238: 2843-2846.

ISHIMURA, Y.; NOZAKI, M.; HAYAISHI, O.; TAMURA, M.; YAMAZAKI, 1. 1967. Evidence for the oxygenated intermediate in the tryptophan pyrrolase reaction. J. BIOL. CHEM. 242: 2574-2576.

JENSEN, W.A. 1955. Histochemical localization of peroxidase in roots and its induction by indoleacetic acid. PLANT. PHYSIOL. 30: 426-432.

JERMYN, M.A.; THOMAS, R. 1954. Multiple components in horseradish peroxidase. BIOCHEM. J. 56: 631-639.

KANG, B.G.; NEWCOMB, W.; BURG, S.P. 1971. Mechanism of auxin-induced ethylene production. PLANT PHYSIOL. 47: 504-509.

KEILIN, D.; HARTREE, E.F. 1951. Purification of horseradish peroxidase and comparison of its properties with those of catalase and methaemoglobin. BIOCHEM. J. 49: 88-104.

KEILIN, D.; HARTREE, E.F. 1955. Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation. BIOCHEM. J. 61: 153-171.

KENTEN, R.H. 1955. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. BIOCHEM. J. 59: 110-121.

KLAPPER, M.H.; HACKETT, D.P. 1963. The oxidatic activity of horseradish peroxidase. II. Participation of ferroperoxidase. J. BIOL. CHEM. 238: 3736-3749.

KLAPPER, M.H.; HACKETT, D.P. 1965. Investigations on the multiple components of commercial horseradish peroxidase. BIOCHIM. BIOPHYS. ACTA 96: 272-282.

KOBLITZ, H.; KOBLITZ, D. 1964. Participation of cytochrome oxidase in lignification. NATU RE 204: 199-200.

KU, H.S.; YANG, S.F.; PRATT, H.K. 1967. Enzymic evolution of ethylene from methional by a pea seedling extract. ARCH. BIOCHEM. BIOPHYS. 118: 756-758.

Page 66: peroxidases ( peroksida )

BIOCHEMISTRY 55

KU, H.S.; YANG, S.F.; PRATT, H.K. 1969. Ethylene formation from cx-keto-y-methylthiobutyrate by tomato fruit extracts. PHYTOCHEM. 8: 567-573.

LEMBERG, R.; LEGGE, J.W. 1949 Hematin compounds and bile pigments. Interscience Publ. Co., New York, 436 p.

LIEBERMAN, M. 1979. Biosynthesis and action of ethylene. ANN. REY. PLANT PHYSIOL. 30: 533-591.

LIPETZ, J.; GARRO, A.J. 1965. Ionic effects on lignification and peroxidase in (sunflower) tissue cultures. J. CELL. BIOL. 25: 109-116.

LIZADA, c.; YANG, S.F. 1979. A simple and sensitive assay for I-aminocyclopropane carboxylic acid. ANN. BIOCHEM. 100: 140-145.

LUND, B.M.; MAPSON, L.W. 1970. Stimulation by Erwinia carotovora of the synthesis of ethylene in cauliflower tissue. BIOCHEM. J. 119: 251-263.

LYR, H. 1957. Ueber die an der Ligninbildung beteiligten Fermentsysteme. NATURWISS. 44: 235.

MACNICOL, P.K. 1966. Peroxidases of the Alaska pea (Pisum sativum L.). ARCH. BIOCHEM. BIOPHYS. 117: 347-356.

MAEHLY, A.c.; CHANCE, B. 1954. The assay of catalases and peroxidases. In 'METHODS OF BIOCHEMICAL ANALYSIS'. Glick, D. (Ed.). Interscience Publ. Co., New York, pp. 357-424.

MAPSON, L.W.; MEAD, A. 1968. Biosynthesis of ethylene: dual nature of cofactor required for the enzymic production of ethylene from methional. BIOCHEM. J. 108: 875-881.

MAPSON, L.W.; SELF, R.; WARDALE, D.A. 1969. Biosynthesis of ethylene. Methanesulfinic acid as cofactor in the enzymic formation ofethylene from methional. BIOCHEM. J. III : 413-418.

MAPSON, L.W.; WARDALE, D.A. 1968. Biosynthesis ofethylene : enzymes involved in its formation from methional. BIOCHEM. J. 107: 433-442.

MASON, H.S. 1957. Mechanisms of oxygen metabolism. ADY. ENZYMOL. 19: 79-233.

MASON, H.S. 1958. The transfer of oxygen by peroxidase. In 'PROC. INTERN. SYMPOSIUM OF ENZYME CHEM. 1957'. Maruzen, Tokyo and Kyoto, pp. 220-224.

MASON, H.S. 1965. Oxidases. ANN. REY. BIOCHEM. 34: 595-634.

Page 67: peroxidases ( peroksida )

56 PEROXIDASES 1970/1980

MAZZA, G.; CHARLES, c.; BOUCHET, M.; RICARD, J.; REYNAUD, J. 1968. Isolement, purification et propriétés physico-chimiques des peroxydases de navet. BIOCHIM. BIOPHYS. ACTA 167: 89-98.

MOLLER, KM.; OTTOLENGHI, P. 1966. The oxidation of 0­

dianisidine by H 0 and (horseradish) peroxidase at neutral pH. 2 2

C.R. Trav. Lab. Carlsberg 35: 369-389. MORITA, Y.; KAMEDA, D. 1959. Bull. Agr. Chem. Soc. Japan

23: 284. MORITA, Y.; KAMEDA, K.; MIZUNO, M. 1962. Studies on

phytoperoxidase. XVI. Aerobic destruction of indole-3-acetic acid catalyzed by crystalline japanese-radish peroxidase a and c. AGR. BIOL. CHEM. 26: 442-446.

MORITA, Y.; KOMINATO, Y.; SHIMIZU, K 1967. Studies on phytoperoxidase. XIX. Sorne further aspects of oxidation of indole-3-acetic acid by peroxidase. MEM. RES. INST. FOOD SCI. KYOTO UNIV. 28: 1-17.

MORRIS, D.R.; HAGER, L.P. 1966. Chloroperoxidase. 1. Isolation and properties of the crystalline glycoprotein. J. BIOL. CHEM. 242: 1763-1768.

NAKAMURA, Y.; TOHJO, M.; SHIBATA, K 1963. Peroxidase activities of hemoproteins. V. Hematin complexes with heterogeneous ligands. ARCH. BIOCHEM. BIOPHYS. 102: 144-151.

NARI, J. 1967. Contribution à l'étude de quelques réactions d'oxydation catalysées par la peroxydase de Raifort. Thèse (No. enregistrement C.N.R.S. : 1632) Univ. Aix-Marseille.

NARI, J.; PENON, P. 1968. Nature des composés hématiniques chez les végétaux. PHYSIOL. VEG. 6: 47-66.

NARI, J.; RICARD, J.; VINCENT, M. 1967. Contribution à l'étude de la formation de divers composés de la peroxydase de Raifort en présence de l'acide ~-indolylacétique. C.R. ACAD. Sc. PARIS 264: 1108-1111.

OSBORNE, D.J. 1978. Ethylene. In 'PHYTOHORMONES AND RELATED COMPOUNDS - A COMPREHENSIVE TREATISE, VOL. l'. Letham, O.S.; Goodwin, P.B.; Higgins, T.J.V. (Eds). Elsevier - North-Holland Biomedical Press, pp. 265-294.

PARISH, R.W.; MILLER, F.L. 1969. The uptake and efTects of calcium and phosphate on maturity, lignification and peroxidase activityon wheat intemodes. AUST. J. BIOL. SCI. 22: 77-85.

Page 68: peroxidases ( peroksida )

57 BIOCHEMISTRY

PARUPS, E.V. 1969. Involvement of free radicals in the oxidative degradation of indole-3-acetic acid. CAN. J. BIOCHEM. 47: 220-224.

PAUL, K.G. 1958. Die Isolierung von Meerrettich-Peroxydase. ACTA CHEM. SCAND. 12: 1312-1318.

PIETTE, L.H.; YAMAZAKI, 1.; MASON, H.S. 1961. In 'FREE RADICALS IN BIOLOGICAL SYSTEMS'. Blois, M.S. et al. (Eds). Academie Press, New York, p. 195.

RAY, P.M. 1956. The destruction of indoJeacetic acid. II. Spectrophotometric study of the enzymatic reaction. ARCH. BIOCHEM. BIOPHYS. 64: 193-216.

RAY, P.M. 1960. The destruction of indoleacetic acid. III. Relationships between peroxidase action and indoleacetic acid oxidation. ARCH. BIOCHEM. BIOPHYS. 87: 19-30.

RAY, P.M. 1962. Destruction of indo1eacetic acid. IV. Kinetics ofenzymicoxidation. ARCH. BIOCHEM. BIOPHYS. 96: 199-209.

RAY, P.M.; THIMANN, K.V. 1956. The destruction of indole acetic acid. Action of the enzyme from Omphalia fla vida. ARCH. BIOCHEM. BIOPHYS. 64: 175-192.

RICARD, J.; NARI, J. 1966. Contribution à l'étude des mécanismes de la dégradation de l'acide ~-indolylacétique par la peroxydase de Raifort. BlOCHlM. BIOPHYS. ACTA 113: 57-70.

RICARD, J.; NARI, J. 1966. Mise en évidence de la réactivité de l'oxyferroperoxydase. c.R. ACAD. Sc. PARIS 262: 1784-1787.

RICARD, J.; NARI, J. 1966. Réduction de la peroxydase de Raifort par l'acide J3-indolylacétique. C.R. ACAD. Sc. PARIS 262: 1898-1900.

RICARD, J.; NARI, J. 1966. Les réactions d'oxygénation catalysées par la peroxydase. BULL. SOc. FRANC. PHYSIOL. VEG. 12: 29-43.

RICARD, J.; NARI, J. 1967. The formation and reactivity of peroxidase compound III. BIOCHIM. BIOPHYS. ACTA 132: 321-329.

RICARD, J. 1969. Les peroxydases des végétaux supérieurs. BULL. SOc. FRANC. PHYSIOL. VEG. 15: 331-362.

SAKAI, S.; IMASEKI, H. 1972. Ethylene biosynthesis: methionine as an in vivo precursor of ethylene in auxin-treated mungbean hypocotyl segments. PLANTA 105: 165-173.

SANDMANN, G.; BOEGER, P. 1980. Copper-mediated lipid peroxidation processes in photosynthetic membranes. PLANT PHYSIOL. 66: 797-800.

Page 69: peroxidases ( peroksida )

58 PEROXIDASES 1970/1980

SEQUEIRA, L.; MINEO, L. 1966. Partial purification and kinetics of indoleacetic acid oxidase from tobacco roots. PLANT PHYSIOL. 41: 1200-1208.

SHANNON, L.M.; DE VELUS, J.; LEW, J.Y. 1963. Malonie acid biosynthesis in bush bean roots. II. Purification and properties of enzyme catalyzing oxidative decarboxylation of oxaloacetate. PLANT PHYSIOL. 38: 691-697.

SHANNON, L.M.; KAY, E.; LEW, J.Y. 1966. Peroxidase isozymes from horseradish roots. 1. Isolation and physical properties. J. BIOL. CHEM. 241: 2166-2172.

SHIM IZU, K.; MORITA, Y. 1966. Studies on phyto-peroxidase. XVIII. Chemical composition of japanese-radish peroxidase c. AGR. BIOL. CHEM. (Tokyo) 30: 149-154.

SHIN, M.; NAKAMURA, W. 1962. Indoleacetic acid oxidase activity of wheat peroxidase. J. BIOCHEM. 52: 444-451.

SIEGEL, B.Z.; GALSTON, A.W. 1967. Indoleacetic acid oxidase activity of apoperoxidase. SCIENCE 157: 1557-1559.

SIEGEL, S.M. 1956. The chemistry and physiology of lignin formation. QUART. REV. BIOL. 31: 1-18.

SIEGEL, S.M. 1956. The biosynthesis of lignin; evidence for the participation of cellulose as sites for oxidative polymerization of eugenol. 1. AMER. CHEM. SOc. 78: 1753-1755.

SIEGEL, S.M. 1957. Non-enzymatic macromolecules as matrices in biological synthesis. The role of polysaccharides in peroxidase catalyzed lignin polymer formation from eugenol. J. AMER. CHEM. SOc. 79: 1628-1632.

SIEGEL, S.M.; GALSTON, A.W. 1955. Peroxide genesis in plant tissues and its relation to indoleacetic acid destruction. ARCH. BIOCHEM. BIOPHYS. 54: 102-113.

STEEN, D.A.; CHADWICK, A.W. 1973. Effects of cycloheximide on indoleacetic acid-induced ethylene production in pea root tips. PLANT PHYSIOL. 52: 171-173.

STRIKLAND, E.H.; KAY, E.; SHANNON, L.M.; HORWITZ, J. 1968. Peroxidase isoenzymes from horseradish roots. III. Circular dichroism of isoenzymes and apoisoenzymes. J. BIOL. CHEM. 243: 3560-3565.

SWEDIN, B.; THEORELL, H. 1940. Dioximaleic acid oxidase action of peroxidases. NATURE. 145: 71-72.

Page 70: peroxidases ( peroksida )

BIOCHEMISTRy 59

TAUBER, AT.; BABIOR, B.M. 1977. Evidence for hydroxyl radical production by human neutrophils. J. CLIN. INVEST. 60: 374-379.

T AUBER, AI.; BABIOR, B.M. 1978. O2- and host defense: the

production and fate of O ' in neutrophils. PHYTOCHEM.2

PHOTOBIOL. 28: 701-709. THEORELL, H. 1942. The preparation and sorne properties of

crystalline horseradish peroxidase. ARK. KEMI. MIN. GEOL. A 16-: 1-11.

THEORELL, H. 1942. Crystalline peroxidase. ENZYMOLOGIA 10: 250-252.

THEORELL, H. 1947. Heme-linked groups and more of action of sorne hemoproteins. ADVAN. ENZYMOL. 7: 265-303.

VAN FLEET, D.S. 1959. Analysis of the histochemical localization of peroxidase related to the difTerentiation of plant tissues. CAN. 1. BOT. 37: 449-458.

WARDROP, A.B.; BLAND, D.E. 1959. Process of lignification in woody plants. In 'BIOCHEMISTY OF WOOD'. Kratzl, K.; Billek, G. (Eds). Pergamon Press, London, pp. 92-116.

WEISS, S.J.; KING, G.W.; LOBUGLIO, AF. 1977. Evidence for hydroxyl radical generation by human monocytes. J. CLIN. INVEST. 60: 370-373.

WITTENBERG, J.B.; NOBLE, R.W.; WITTENBERG, B.A.; ANTONINl, E.; BRUNORI, M.; WYMAN, J. 1967. Studies on the equilibria and kinetics of the reactions of peroxidase with ligands. II. The reaction of ferroperoxidase with oxygen. J. BIOL. CHEM. 242: 626-634.

y AMAZAKl, 1. 1958. PROC. INTERN. SYMPOSIUM ON ENZYME CHEM., Tokyo and Kyoto, 1947, Maruzen, Tokyo, p. 224.

YAMAZAKI, 1.; MASON, H.S.; PIETTE, L. 1960. Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase. J. BIOL. CHEM. 235: 2444-2449.

YAMAZAKI, 1.; PIETTE, L.H. 1963. The mechanism of aerobic oxidase reaction catalysed by peroxidase. BIOCHEM. BIOPHYS. ACTA 77: 47-64.

YAMAZAKI, 1.; SOUZU, H. 1960. The mechanism of indoleacetic acid oxidase reaction catalysed by turnip peroxidase. ARCH. BlOCHEM. BIOPHYS. 86: 294-301.

Page 71: peroxidases ( peroksida )

60 PEROXIDASES 1970/1980

y AMAZAKI, 1.; YAMAZAKI, H.; TAMURA, M.; OHNISH1, T.; NAKAMURA, S.; IYANAGI, T. 1968. Analysis of the O

2 reduction process of the peroxidase system. ADV. CHEM. SER. 77: 290-306.

y AMAZAKI, 1.; YOKOTA, K. 1965. Conversion offerrous peroxidase into compound III in the presence of NADH. BIOCHEM. BIOPHYS. RES. COMM. 19: 249-254.

YAMAZAKI, 1.; YOKOTA, K; NAKAJIMA, R. 1965. Amechanism and model of peroxidase-oxidase reaction. In 'OXIDASE AND RELATED REDOX SYSTEMS'. King, Mason and Morrison (Eds). John Wiley, New York, vol. 1, pp. 485-513.

YAMAZAKI, 1.; YOKOTA, K; TAMURA, M. 1966. In 'HEMES AND HEMOPROTEINS'. Chance, B.; Estabrouk, R.W.; Yonetani, T.(Eds). Academie Press, New York, p. 319.

YANG, S.F. 1968. Biosynthesis of ethylene. In 'BIOCHEMISTRY AND PHYSIOLOGY OF PLANT GROWTH SUBSTANCES'. Wightman, F.; Setterfield, G. (Eds). The Runge Press, Ottawa, Canada, pp. 1217-1228.

YOKOTA, K.; YAMAZAKI, 1. 1965. Reaction of peroxidase with reduced nicotinamide - adenine dinucleotide and reduced nicotinamide - adenine dinucleotide phosphate. BIOCHIM. BIOPHYS. ACTA. 105: 301-312.

ZAPROMETOV, M.N. 1978. Enzymology and regulation of the synthesis of polyphenols in cultured cells. In 'FRONTIERS OF PLANT TISSUE CULTURE 1978'. Thorpe, T.A. (Ed.). University of Calgary Press, Calgary, Canada, pp. 335-343.

Page 72: peroxidases ( peroksida )

CHAPTER 3

ISOPEROXIDASES : FACT OR FICTION?

The large number of peroxidase 'isoforms' appearing in most plants examined casts a certain amount of doubt as to them being native molecules. The actual number obtained is dependent largely on the separation techniques used (Brewbaker et al., 1968; 280; 584; 585; 738; 803). This, therefore, makes comparison of results from different laboratories very difficult. Thus the non-initiated reader of a peroxidase paper must be aware of the main factors causing this variation.

Buffer extractibility

The nature of the buffer used, its ionic strength, and its pH affect the peroxidase recovery both quantitatively and qualitatively (Adatthody and Racusen, 1967; Gaspar et al., 1969; 510; 796). Part of the explanation certainly lies in the relative buffer solubilization capacity for the (natural or artificiai) enzyme ionic association to cell organelles and the wall. It certainly can be said that most peroxidase extractions reported in papers dealing with plant physiological problems are imperfect.

Page 73: peroxidases ( peroksida )

62 PEROXIDASES 1970/1980

Extract manipulation, binding to organelles

The above statement also may explain the modifications in number, intensity, size and aggregation properties, and migration speed of peroxidases (304, 10 17, 1258) due to in vitro manipulations of the extracts. Besides this differential release of cellular, intercellular and organelle-bound peroxidases, the partial 'solubility' or 'pelletability' of organelles indeed has to be taken into account in the crude or even purified extracts. As an exemple, it has been demonstrated that peroxidases appearing with an abnormally high molecular weight with the peak of proteins after Sephadex (G-100 or G-200) filtration (Cronenberger et al., 1966; Gaspar et al., 1969; Weber, 1970; 280, 610) were basic peroxidases apparently not different from those of the second peak with a normal molecular weight : they simply had been filtrated through Sephadex with the membrane structures on which they were attached (282). Darimont and Baxter (279) state that such membrane structures are still present in ribosomes and mitochondria­enriched preparations which renders the identification of the specifie organelle-attached peroxidases uncertain. Peroxidases can be detached from membrane structures in vitro and further reassociated with the specifie aid of the calcium ion (1016).

It can be added also that the visualization of isoperoxidases in gels is strongly influenced by the substrate concentration (Novacky and Hampton, 1968), the pH of incubation and the hydrogen donor used for the image enhancement (370, 651, 723).

Inhibitors, binding to phenolics, interconversion

The control of peroxidase activity through physical or chemical factors may of course pass through repression or derepression of genes leading to de novo synthesis (Galston et al., 1968; 1175) but it can also be the result of activation of preformed inactive enzyme molecules (Zucker, 1972) or mediated by non-protein effectors, mainly of a

Page 74: peroxidases ( peroksida )

ISOPEROXIDASES 63

phenolic nature (Gaspar, 1965; Dinant and Gaspar, 1967; 387, 619, 745, 1385, 1386). Peroxidase of Cichorium intybus is under the photocontrol of phenolic inhibitors and sorne isoperoxidases submitted to electrofocussing may migrate together with inhibitors (749). It is possible that such an association exists in vivo (1002).

Following the disruption ofplant-cell organization, cellular phenolics may be oxidized by phenol oxidase (Sheen and Calvert, 1969) or peroxidase(Sheen, 1969) to quinones, condensed tannins, and ultimately

i'·:'· to brown pigments (Webb, 1966). Many examples are cited in the literature showing that phenolics inhibit various enzymes during their extraction from plant tissues (Anderson, 1966; Loomis and Battaile, 1966; Walker, 1980). A report from Fieldes and Tyson (387) suggested a phenolic-peroxidase interaction during the extraction of the enzyme from flax tissues. Data from Srivastava and Van Huystee (1257) suggest that treatment with Dowex l-X l, which removes phenolics from proteins, converts five anodic isoperoxidases into a single one. A same result is obtained with albumin and cystein (1378). Along the same line, Penel et al. (1017) found that a peroxidase from lentil root may be transformed into several peaks after addition of a boiled extract. As a general rule, it is advisable to remove phenolics from an extract before the separation of peroxidases by electrophoresis. For this purpose, many reducing or absorbent chemicals such as carbowax (1391), ascorbic acid and/or cystein (499), insoluble polyvinylpyrollidone (Jones et al., 1965; Castillo et al., 1981; 440, 510), collagen and casein dispersion (500), etc., have been used. It is understandable, therefore, that the physiological meaning of measurements made from such extracts is subject to discussion. Effectors may have as an important regulatory role as the enzyme activity per se. This seems to be particularly the case for the so-called auxin-protectors (Rethore et al., 1974; Kevers et al., 1981 a and b; 134, 137,436,955, 1305, 127, 1281).

Changes in number or properties of isoperoxidases have also been reported fol1owing heat treatment (304), storage (1158), gel chromatography at room temperature (616, 10 17) or incubation at increasing pH (768). Recently, Decedue and Borchert (1980) claimed that it is possible to convert the various isoperoxidases from potato into a single electrophoretic species. This was obtained after chromatography of potato juice in a column of Sephadex G-IOO. in the presence of 2 M CaCI

2 "

Page 75: peroxidases ( peroksida )

64 PEROXIDASES 1970/1980

It thus appears from the literature that the numerous isoperoxidases may be the product of interaction of a: few or even a single isoform with other molecules. In addition, according to the method of separation, the same biological material may exhibit a variable number of isoperoxidases. For example, a separation of an extract from spinach leaves yields nine bands after acrylamide gel electrophoresis, ten bands with column isoelectric focusing, fifteen after isoelectric focusing in acrylamide gel and up to sixteen bands after starch gel electrophoresis (Pene!, 1976; 658). It was also reported that a single peak collected after column isoelectric focusing may be resolved into several bands by starch gel electrophoresis (Darimont, 1977).

Peroxidase-like activity

Other sources of misinterpretations have come from the state'ment that peroxidase also display phenoloxidase activity and that other heme­containing molecules also catalyze the decomposition of hydrogen peroxide and consequently the oxidation of classical peroxidase substrates (Saunders et al., 1964). The apparent identity of polyphenoloxidases and peroxidases revealed with sorne substrates has been discussed by Van Loon (1393), who has developed a specific staining method indicating non-identity with peroxidases.

Several isozymes from peanut cells in suspension medium however possess peroxidase, IAA-oxidase and polyphenol oxidase activities (1255, 1257). The studies on the active site revealed that polyphenol oxidase and IAA-oxidase share the same active site on the apoenzyme (1257). Catalase is even able to function as IAA-oxidase (Avelia et al., 1966). An additional source of error, when interpreting a peroxidase zymogram, is the presence of cytochrome c which oxidizes guaiacol in the presence of HzOz and shows three distinct bands of activity after starch gel electrophoresis (434).

Page 76: peroxidases ( peroksida )

65 ISOPEROXIDASES

Cellular redistribution

Apparent absence of visible changes in peroxidases relative to sorne particular phenomenon does not necessarily ref1ect the in vivo situation. It has already been mentioned that possible release as soluble peroxidases in the extracts of enzymes attached to organelles, by simple ionic exchange due to buffers or by chelation, may occur. Fractionation of extracts (with similar total enzyme activity) of different plants (133, 143, 1016, 1024) sometimes indicates a cellular redistribution of peroxidases. This may or may not be associated with qualitative and quantitative changes taking place in the course of sorne physiological process. Thus, e.g., in vitro far-red and red irradiations of extracts of spinach Ieaves modify the pelletability of peroxidase activity (\0\9). These findings may render the comparison of results from different sources more difficult and their interpretation doubtful.

Immunochemical and peptide mapping studies

In order to solve the problem of the existence of several distinct forros of peroxidases, two techniques are feasible. The first one is the immunochemical study of peroxidases. The second one is the comparison of tryptic peptide maps or the elucidation of the complete amino-acid sequence. There are only few reports concerning immunochemical characteristic of peroxidase proteins. Bakardjieva and Georgiev (58) showed that the peroxidase function in plants at different phylogenetic positions may be realized by proteins differing in immunochemical and serological properties. However, there is sorne antigenic similarity among sorne plant species such as horseradish, pea, maize and barley, but this similarity was not observed for aIl the peroxidase isoenzymes.

According to Cairns et al., (182) different peroxidase isoenzymes from peanut Ieaves, peanut cells and peanut suspension cell medium share cornmon antigenic deterroinants. There is also an immunological relatedness between peanut and a horseradish peroxidase. These results suggest an evolutionary conservatism in peroxidase structure. There is however sorne reports on the distinct antigenic specificities of

Page 77: peroxidases ( peroksida )

66 PEROXIDASES 1970/1980

isoperoxidases in the same organism. Such data were reported by Daussant el al. (287) in Datura stramonium and by Kahlem (645) in Merclirialis annua.

The tryptic digestion of apoperoxidases gives peptides which can be separated by two-dimensional electrophoresis. After staining, a peptide map is obtained, which is characteristic of a protein. The comparison of such maps is a mean of comparing the degree of similarity between two proteins. This technique was used by several authors. Shih et al. (1208) found that horseradish peroxidase isoenzymes could be segregated into at least three distinct groups and it appeared that there are many points of difference in the primary structure among the three groups. In turnip root (1425), the two most acidic peroxidases only differ significantly in one peptide and a third one is related to these two. Horseradish isoperoxidase c also belongs to this group. But the most cathodic peroxidase of turnip differs from this group, at least around two disulfide bridges, and therefore, probably was different from the other four in parts of its three dimensional structure. From this study, it appears that each peroxidase contains two highly homologous sequences.

In tobacco tissue culture eight isoperoxidases have been subjected to trypsin digestion followed by peptide mapping. The peptide maps of two of them were identical and ail the other isoperoxidases did not appear to be dramatically dissimilar in certain portions oftheir sequence, since many matching peptides were found when various isoperoxidases were cross-compared. However, only two or three highly homologous peptides were present in ail of the isoperoxidases. It therefore appears that at least sorne portions of the peptides which include active sites have been conserved among ail isoperoxidases from tobacco (680).

Tomato peroxidase can be resolved into two non-identical sub­units in the presence of dithiothreitol, while horseradish peroxidase remains as a single polypeptide chain after such treatment (697). Tobacco isoperoxidases G 1 were also unaffected by a similar treatment (802).

It is thus difficult to know whether the numerous bands ofperoxidase activity obtained by electrophoresis correspond to distinct proteins or are conformers or degradative forms of one or two molecules. Much work needs to be done in this area. Resolution of sorne of the above problems will go a long way in establishing the structural authenticity of isoperoxidases.

Page 78: peroxidases ( peroksida )

ISOPEROXIDASES 67

REFERENCES

For numbered reJerences in the text, see bibliographical section

ADATTHODY, K.K.; RACUSEN, D. 1967. On the extraction of peroxidase isozymes from bean leaves. CAN. J. BOT. 45: 2237-2242.

ANDERSON, J.W. 1966. Extraction of enzymes and subcellular organelles from plant tissues. PHYTOCHEM. 7: 1973-1988.

AVELLA, T.; DINANT, M.; GASPAR, Th. 1966. Action des acides 0-, m-, et p-hydroxybenzoiques sur la destruction de l'acide 13­indolylacétique par la catalase de foie de boeuf. BULL. SOc. ROY. Sc. LIEGE 35: 307-314.

BREWBAKER, J.L.; UPADHYA, M.D.; MAEKINEN, Y.; MACDONALD, T. 1968. Isoenzyme polymorphism in flowering plants. III. Gel electrophoretic methods and applications. PHYSIOL. PLANT. 21: 930-940.

CASTILLO, F.J.; PENEL, c.; GASPAR, Th.; GREPPIN, H. 1981. Masquage et démasquage des isoperoxydases de Pelargonium. C.R. ACAD. Sc. PARIS 292: 259-262.

CRONENBERGER, L.; VILLE, R.; PACHECO, H. 1966. Purification partielle des auxine-oxydases des racines de Pisum sativum. BULL. SOc. CHIM. BIOL. 48: 833-836.

DARIMONT, E. 1977. Les peroxydases de la racine de lentille. Leur variation en rapport avec l'interaction auxine-cytokinine sur la croissance. Thèse de doctorat, Univ. Liège, 223 p.

DECEDUE, c.J.; BORCHERT, R. 1980. Potato peroxidase isozymes. PLANT PHYSIOL. 65 (suppl.): 29.

DINANT, M.; GASPAR, Th. 1967. Acide 13-indolylacétique-oxydase, peroxydase, catalase, phénoloxydase et effecteurs naturels chez Phaseolus vulgaris cultivé à l'obscurité et à la lumière. BULL. SOc. ROY. BOT. BELG. 100: 73-94.

GALSTON, A. W.; LAVEE, S.; SIEGEL, B.Z. 1968. The induction and repression of peroxidase isozymes by 3-indoleacetic acid. ln 'BIOCHEMISTRY AND PHYSIOLOGY OF PLANT GROWTH SUBSTANCES'. Wightman, F.; Setterfield, G. (Eds). The Runge Press, Ottawa, Canada, pp. 445-472.

Page 79: peroxidases ( peroksida )

68 PEROXIDASES 1970/1980

GASPAR, Th. 1965. Catabolisme auxinique et effecteurs auxines­oxydasiques. Etude comparée chez Lens culinaris et Salvia splendens. BULL. SOc. ROY. Sc. LIEGE 34: 391-537.

GASPAR, Th.; LACOPPE, J.; HOFINGER, M. 1969. Influence de la nature, du pH et de la force ionique du tampon d'extraction dans la mesure des activités peroxydasique et catalasique des racines de Lentille. BULL. SOc. ROY. BOT. BELG. 103: 207-211.

JONES, J.O.; HULME, A.c.; WOOLTORTON, L.S.c. 1965. The use of polyvinylpyrrolidone in the isolation of enzymes from apple fruits. PHYTOCHEM. 4: 659-676.

KEVERS, c.; COUMANS, M.; DE GREEF, V.; HOFINGER, M.; GASPAR, Th. 1981a. Habituation in sugarbeet callus: auxin content, auxin protectors, peroxidase pattern and inhibitors. PHYSIOL. PLANT. 51: 281-286.

KEVERS, c.; COU MANS, M.; DE GREEF, V.; JACOBS, M.; GASPAR, Th. 1981 b. Organogenesis in habituated sugarbeet calius: auxin content and protectors. Peroxidase pattern and inhibitors. Z. PFLANZENPHYSIOL. 101: 79-87.

LOOMIS, W.D.; BATTAILE, J. 1966. Plant phenolic compounds and the isolation of plant enzymes. PYHTOCHEM. 5: 423-438.

NOVACKY, A.; HAMPTON, R.E. 1968. The effect of substrate concentration on the visualization of isoperoxidases in dise electrophoresis. PHYTOCHEM. 7: 1143-1145.

PENEL, C. 1976. Activité peroxydasique et développement chez Spinacia oleracea. Thèse de doctorat No. 1667, Univ. Genève, 160 p.

RETHORE, J.L.; GAS, G.; FALLOT, J. 1974. Les substances de type 'protecteurs d'auxine' des explantats de parenchyme vasculaire de Topinambour: libération et évolution dans le milieu de culture. C.R. ACAD. Sc. PARIS 279: 153-156.

SAUNDERS, B.C.; HOLMES-SIEDLE, A.G.; STARK, P.B. 1964. Peroxidase. Butterworths, London, 27 J p.

SHEEN, S.J. 1969. The distribution of polyphenols, chlorogenic acid oxidase and peroxidase in different plant parts of tobacco, Nicotiana tabacum L. PHYTOCHEM. 8: 1839-1847.

SHEEN, S.J.; CALVERT, J. 1969. Studies on polyphenol content, activities and isozymes of PPO and peroxidase during air curing in three tobacco types. PLANT PHYSIOL. 44: 199-204.

::~::~~:

Page 80: peroxidases ( peroksida )

ISO PEROXIbASES 69

WALKER, J.R.L. 1980. Enzyme isolation from plants and the phenolic problem. WHAT'S NEW IN PLANT PHYSIOL. 11: 33-36.

WEBB, J.L. 1966. Enzymes and metabolic inhibitors. ln 'QUINONES'. Webb, J.L. (Ed.). Academie Press, New York, pp. 43 1-594.

WEBER, J.A. 1970. Sorne aspects of growth regulation in plants. Ph.D. Thesis, Univ. Utrecht, 80 p.

ZUCKER, M. 1972. Light and enzymes. ANN. REV. PLANT PHYSIOL. 23: 133-156.

Page 81: peroxidases ( peroksida )

· .... ,

Page 82: peroxidases ( peroksida )

CHAPTER 4

PEROXIDASES AT THE SUBCELLULAR LEVEL, THEIR BIOSYNTHESIS AND

ITS REGULATION

4.1. CELLULAR LOCALIZATION OF PEROXIDASES

4.1.1. Technical aspects

Peroxidase activity is easily localized by light and electron microscopy. The electron donor commonly used for this purpose is 3,3'-diamino-benzidine (DAB), which was introduced by Graham and Karnovski (1966). Other reagents have been used; these include p­phenylene diamine (1065), benzidine (Van Duijn, 1955), tetramethylbenzidine (866, 867), o-dianisidine (314), 3-amino-9-ethyl­carbazole (Graham et al., 1965), 2,5- or 2,7-fluorene-diamine (970) and homovanillic acid (989). Syringaldazine has also been used, especially to study the involvement of peroxidases in the process of lignification (l90a, 191, 525). DAB, which gives a precise and strong staining reaction appears to be the most suitable reagent for peroxidase staining of tissues and ceIls. lt has the advantage that, in the presence of hydrogen peroxide and peroxidases, it produces an osmiophilic polymer, which is insoluble after post-fixation by osmium tetraoxide. The DAB technique is very simple, but care must be taken to work under

Page 83: peroxidases ( peroksida )

72 PEROXIDASES 1970/1980

conditions (pH, temperature, H20

2 concentration, percent aldehyde for

fixation) in which only peroxidases, and not other hemoproteins such ascatalaseorcytochromescan react(376, 559,1118,1216,1289,1421).

The penetration of the staining medium is dependent on the thickness of the tissue section. Incubation with thin sections allows good penetration of the DAB reagents, but it leads to a considerable loss of the enzyme into the medium (514). There is therefore a 10ss of the activity. However, this loss can be reduced by a suitable prefixation of the tissue with glutaraldehyde. Other possible sources of artifacts should be mentioned. On one hand when organs or pieces of tissue are cut, cellular redistribution of peroxidases may occur before the fixation process is achieved, since mechanical injury can induce a release of peroxidases out of cells. On the other hand, sorne peroxidases are free in the cytoplasm (467) and in the walls and intercellular spaces (see table 1). They can diffuse and be absorbed in a non specific manner when cells are disrupted by cutting. Several isoperoxidases have a high isoelectric point and can interact with negatively charged structures, such as walls, membranes or ribosomes.

Despite these possible artifacts, which can lead to misleading conclusions, cytochemical observations remain the best method of studying cellular localization of peroxidases. Cell fractionation, the other available method, give results which must be assessed with extreme caution. The disruption of ceIls, indeed, mixes ail the cell components and many non-specific interactions between peroxidases and various cellular structures and molecules can occur. From this point of view, reports on the presence of high peroxidase activity on isolated ribosomes must be accepted with cautions (Matsushita and Ibuki, 1960; 279, 1028).

In the same way, the level of peroxidase activity ionically-bound to wall material in extracts, which is sometimes presented as having a physiological meaning, is probably in part a reflection of the capacity of cell walls to absorb solubilized peroxidases. There is however an alternative technique available if one wishes to quantify the peroxidase activity actually present in the wall and in the intercellular spaces. This is the vacuum infiltration of a liquid into the plant tissue, followed by the recovery of the fluid by centrifugation. This method was introduced by Abeles and Leather (1971) and was applied to peroxidases by Stafford and Bravinder-Bree (1262) (see also Castillo et al., 1981; 115, 153, 801, 870, 1077). This method, which does not affect the

Page 84: peroxidases ( peroksida )

73 LOCALIZATIaN AND BIOSYNTHESIS

protoplasts (protoplasts means here cells without wall in situ) has the additional advantage that the ionic strength of the infiltration medium can be chosen in such a way as to withdraw either free or ionically­bound peroxidases from the tissues. This was done by Miider (801) who found three distinct groups of isoperoxidases present in the wall : one which moves freely and can be extracted with water, a second one ionically-bound and a third one which is covalently-bound. This technique may also provide valuable information on the rate of release of peroxidases out ofthe protoplast in relation to any chosen physiological process (153).

As far as peroxidases of the isolated protoplast are concemed, it is possible to separate the enzymes enclosed in a membranous structure, provided that an appropriate extraction technique is used (mild grinding, high osmolarity of the extraction buffer). This has been done for vacuolar peroxidases (486).

4.1.2. Cellular localization

It is useful to keep in mind all the technical reservations mentioned above when considering results conceming the cellular localizations of peroxidases. Table 1 summarizes the various plant cell parts which have been reported to exhibit sorne peroxidase activity. This is by no way an exhaustive list orthe papers that have appeared on this subject.

Several questions arise when interpreting the numerous locations of peroxidases at the cellular level. Is it possible that such reactive enzymes are so widely distributed within plant cells ? Do artifacts play a part in this distribution? It is not easy to answer these questions.

The presence of peroxidase in the cell wall is not a matter of controversy. Cytochemical observations and vacuum infiltration of (active) tissues provide sufficient evidence that cells release peroxidases towards the extracellular spaces and that these enzymes remain active. There are also indications that wall peroxidases partially differ from protoplast peroxidases (153, 801). The existence of extracellular peroxidases is also demonstrated in cell suspension cultures.

Page 85: peroxidases ( peroksida )

74 PEROXIDASES 1970/1980

More difficult to interpret is the localization of peroxidases within the cell. There is little doubt that they are present in cistemae and vesic1es of the Golgi apparatus, in small and central vacuoles and in the endoplasmic reticulum. These localizations are apparentJy not artifacts, since in these cases, the reaction product of DAB oxidation is localized inside the closed membranes. It should be noted however, that cytochrome P450, which is associated with the endoplasmic reticulum, can exhibit peroxidase activity (1091, 1092). Vacuole peroxidases have been observed by cytochemical techniques and after cell fractionation. For example, Grob and Matile (486) reported that in horseradish root, over 70 percent of the peroxidase activity is contained in central vacuoles. Other reports on the presence of peroxidase on the plasmalemma, on ribosomes and on nuc1ear components should be reevaluated for the reason that all these cell structures carry many negative charges and could trap peroxidase which diffuse after tissue cutting.

Mitochondria and chloroplasts sometimes have been reported to contain appreciable amounts of peroxidase. These localizations were observed after separation of the cell components by density gradient centrifugation. Cytochemical studies do not confirm these Jocalizations which probably are due to contamination of chloroplast or mitochondria fractions with other cell components (Pleniscar et al.,1967).

The overall conc1usion which can be drawn from the available literature is that peroxidase activity is mainly associated with the endocellular membrane system and the cell wall. The consequence of this localization concerning both the biosynthesis of the enzyme and its possible physiological fractions will be discussed later. However, it is evident that every localization, revealed in the presence of exogenously supplied hydrogen peroxide, does not necessarily correspond to a site where peroxidases exert their function in vivo. Endogenous hydrogen peroxide most likely acts as a limiting factor which can control to sorne extent peroxidase activity.

The cellular localization of peroxidase has been intensively studied also in animal celIs, especially in sorne specialized mammalian cells. Peroxidases have been found in parotid and submaxillary glands (560, 957, 1296), in lacrimal glands (561: 562), in mammary glands (28), in uterine epithelium (227, 794). AlI these organs have in common the property of secreting fluid, in which peroxidases are thought to exert an antimicrobial role. In addition, peroxidases have been found

Page 86: peroxidases ( peroksida )

LOCALIZATION AND BlOSYNTHESIS 75

in leukocytes (381, 1291), eosinophils (634, 635, 873), heterophils (318) and macrophages (1001), mamrnary tumor cells (316, 317, 341), thyroid epithelial cells (272, 959), etc. In almost every case, a study of the intracellular localization of peroxidase with the aid ofelectron microscopy showed the presence of these enzymes in the endoplasmic reticulurn (often including the nuclear envelope), in elements of Golgi apparatus and in secretory granules. These cellular localizations imply that peroxidases are exportable proteins; however, in sorne cases (thyroid or Kuppfer cells of rat liver) they have been shown to be integral membrane proteins (375, 1080).

A comparison between plants and animaIs shows therefore a great sirnilarity in the subcellular localization of peroxidases. As it is in the case in animaIs, peroxidases do not appear in every plant cell type. We may say that the localization of peroxidases in plants varies with seasons (Czaninski and Catesson, 1969), with species, with the degree of differentiation and that the subcellular distribution is different in each tissue (Poux, 1969; 190a, 191).

For example, peroxidase staining is particularly strong in the root cap, epidermis, inner cortex and pith in Pisum (Poux, 1969; 391, 392); in phloern and maturing xylem (514); in the epidermis, hypodermis, endodermis and sorne parenchyrna cells of hypocotyls of e.g., Phaseolus (\939); and in sieve and parenchyma cells of cotton (191). Sorne cells appear devoid of peroxidase activity, e.g., the cortical band and xylem tissue of Pisum root (391, 392). In fully-expanded spinach leaves extracellular peroxidase seems to be mainly located in small vascular tissues, as it is the case in the young leaves of Vanda (Alvarez and King, 1969). In the same organ, e.g., a root, the subcellular localization of peroxidase differs from tissue to tissue and in the same tissue from cell to cell.

A source of error during the histo- and cytochemical study of peroxidase in plants, which is never discussed by the authors, is the presence of many inhibitors of peroxidase activity. These inhibitors, mainly of a phenolic nature, are often shown to be capable of masking the activity of peroxidase in plant extracts (436, 684). It can be assumed that they also interfere with the peroxidase reaction during the staining procedures and furthermore the phenolic content of each tissue is probably different.

Page 87: peroxidases ( peroksida )

76 PEROXIDASES 1970/1980

Table 1: Localization of peroxidases in higher plant cells.

Techniques of detection

Compartments

Cell wall

Plasmalemma

Cytoplasm

Golgi apparatus

Light or electron microscopy

Van Fleet, 1959; De Jong 1967; Poux, 1969; 161, 188, 191, 514, 515,993,1065, 1399,1420, 1480

Poux, 1969; 191, 467, 1420

467

Poux, 1969; 110, 161, 191, 265, 467, 514, 1480

Cell fractionation

115, 134, 188, 283, 391, 392, 440, 496, 739,801,804,1109, 1262

739, 1023

739, 1442

Secretory 467, 1480 vacuoles

Page 88: peroxidases ( peroksida )

LOCALIZATION AND BIOSYNTHESIS 77

Small vacuoles Poux, 1969; 253 191, 265, 467, 514, 993, 1052, 1053

Central vacuole and tonoplast

Rough endo­plasmic reticulum

Bound ribosomes

Free ribosomes

Chloroplasts

Chromosomes

Nucleoles

Poux, 1969; 110, 188, 265, 1420

Poux, 1969; 188, 191, 265, 467, 514, 544, 1420

467, 1480

191, 467

1065

1065

124, 486, 993, 994

1024

Matsushita and Ibuki, 1960; 279, 428, 739, 919, 1028

613, 919

Page 89: peroxidases ( peroksida )

78 PEROXIDASES 1970/1980

It is also weil known that the peroxidase activity of a whole plant or a plant organ may be resolved into several isoforms by electrophoresis (see Chapter 3). The question that arises is whether an isoperoxidase corresponds to a particular localization in the cell or is specifie to one kind of cell. This problem is not yet resolved. Mader and coworkers (804, 805, 806) showed that in tobacco tissue cultures a fast migrating anodic isoperoxidase moves freely in the cell wall and intercellular spaces and is not present in the naked protoplast, while the two other groups of isoperoxidases (slow migrating anodic group and slow migrating cathodic group) are mainly located in the protoplast, and are respectively covalently and ionically-bound to the wall.

Histoimmunology was used by Kahlem (465) to localize three isoperoxidases which were specifie for male flowers of Mercurialis annua. For that purpose, the specifie isoperoxidases were purified and injected into rabbits. The resulting serum was used to 10calize the 'male' isoenzyme and it was shown that this isoenzyme only occurred in the stamen and particularly in sporogenous tissue and the tapetum. This kind of approach would be very useful not only to precisely localize each isoperoxidase within the tissue and even within the cell, but also to study the biosynthesis of isoperoxidases as was done in Mercurialis. The results obtained by immunodetection wouId be more reliable than those obtained after cell fractionation.

Page 90: peroxidases ( peroksida )

LOCALIZATION AND BIOSYNTHESIS 79

4.2. BIOSYNTHESIS OF PEROXIDASES AND ITS

REGULATION

4.2.1. De novo synthesis or activation

Peroxidases were used as marker enzymes for the study of numerous physiological processes, as weil as for testing the effect of several chemical substances on plant cells. They also strongly respond to changes in the environmental conditions, to infectious agents (virus, bacteria, fungi), and to injuries. Ali these factors affect peroxidases either by changing their activity (perhaps more correctly their measured capacity) or by changing the number of isoforms which can be discriminated by electrophoresis. The variation of activity results either from an inactivation or activation of preexisting molecules, from a change in the rate of synthesis of the enzymes, or from the transfer of peroxidases from one cell compartment to another. Most studies do not provide any information on this point, but only report on changes of peroxidase activity measured in more or less crude extracts.

Before going through the various steps in the control of the level of peroxidase activity in plants, it must be stated that the simple measure of peroxidase activity in crude extracts often is a misleading reflection of the actual number of peroxidase molecules really present in the tissue before extraction. Plant ceIls, indeed, contain several substances (phenolics and others) which modify the ability of peroxidases to oxidize the electron donors generally used to detect their activity. These compounds, which probably are separated from peroxidases in whole ceIls as a result of different compartmentalization, are mixed with the enzymes when cells are broken and interact with the enzymes during the assay.

A striking example of this difficulty is provided by studies using Pelargonium (Castillo et al., 1981). Leaves or petioles of this plant, when ground in a buffer according to the procedures commonly used for the extraction of peroxidases, do not exhibit any peroxidase activity as shown previously (Lavee and Galston, 1968; 436). However, the conclusion that this organ fails to contain peroxidase is not correct,

Page 91: peroxidases ( peroksida )

80 PEROXIDASES 1970/1980

since the intercellular fluid collected by centrifugation after vacuum infiltration exhibits very strong peroxidase activity. In this case it was shown that the protoplast contained inhibiting and reducing substances which, once mixed with the extracellu1ar peroxidase after grinding of the organs, comp1etely mask this activity. This artefact can be overcome by use of insoluble polyvinylpyrrolidone, which traps the phenolic inhibitors (Jones et al., 1965).

It isevident from this examp1e that changes occurring in peroxidase activity, fol1owing a change in the environment of cells, could be due to the appearance or disappearance of inhibitors or activators. It could also be due to a modification of transcription of RNA or of translation of apoperoxidase. These steps can be studied by use of specific inhibitors (Kanazawa et al., 1965; Gayler and Glasziou, 1968; Gahagan et al., 1968; 954, 1108, 1190, 1315, 1381). Deuterium oxide used for density labelling (Siegel and Galston, 1966; 30) or radioactively labelled amino acids or sugars (1190, 1376) may a1so provide information about the rate of peroxidase biosynthesis. Excised plant tissues are particularly suitable for such studies. As a matter of fact, most tissues react to injury or excision by an enhancement of their peroxidase activity (Bastin, 1968).

4.2.2. Transcription

In sugar-cane stalk tissues (Gay1er and Glasziou, 1968) and excised lentil embryonic axis (674), both 6-methylpurine and actinomycin D reduce the increase of peroxidase activity which normally fol1ows excision. By using these inhibitors and low temperature, the authors were able to determine that the half-life for peroxidase rn-RNA decays was 1.5 hour for sugar-cane and 3 hours for lentil. On the contrary the stimulation of peroxidase activity in excised wheat embryos cultured for 48 hours was not affected by actinomycin D, although the inhibition of new RNA synthesis was effective (1315). This therefore indicates that there may be conserved messengers for peroxidases, which are capable of supporting peroxidase synthesis under conditions of strong inhibition of RNA synthesis. The comparison between these two examples shows that the life of messenger RNA for peroxidase may be extreme1y variable.

Page 92: peroxidases ( peroksida )

81 LOCALIZATION AND BIOSYNTHESIS

This fact makes the study of the control of peroxidase synthesis at the transcriptional level very difficult. The efTects of actinomycin D were assayed in several systems. It was found to inhibit the peroxidase stimulation induced by ethylene or injury in tobacco pith (115, 753), sweet potato (Kanazawa et al., 1965, Gahagan et al., 1968), and pea seedlings (1108). In cultured peanut cells, actinomycin D has an inhibiting efTect only during a brief time following the lag phase of growth (1381). But there are also several reports showing either no efTect of this inhibitor (115) or even a stimulating efTect. The paradoxical stimulation of peroxidase production was observed in oat leaves (954), in potato roots (115) and in pea epicotyls (1108). In pea epicotyl tissue, actinomycin D exerts its paradoxical efTect only when given after ethylene. Ridge and Osborne (1108) suggested that it may enhance the level of peroxidase by blocking the synthesis or the action ·of specific inhibitors which inactivate the enzyme or prevent its translation from a stable rn-RNA template. An alternative explanation would be that actinomycin D induces a non-specific response at a post­transcriptional level.

4.2.3. Translation

ln contrast to actinomycin D efTects, inhibitors of protein synthesis give unambiguous results when applied to plant tissue. However, in one case, it was reported that cycloheximide enhances peroxidase activity (1194). There are several examples showing that the stimulation of peroxidase activity may be abolished by cycloheximide, blasticidin S or other translation inhibitors. Ethylene (Gahagan et al., 1968; 1108), injury (674, 1190), germination (1315), deetiolation (1194) and infection (1371) are factors inducing a marked increase of peroxidase activity which can be inhibited or diminished by such inhibitors. It is thus likely that plant cells can control their peroxidase activity by changing the rate of synthesis of peroxidase molecules. Another mode of control may involve RNA as part of a repressor activity. Such a RNA fraction is present in intact tobacco pith or in excised pith treated with IAA (753). When applied to excised pith, it inhibits the appearance of the new isoperoxidases due to excision.

Page 93: peroxidases ( peroksida )

82 PEROXIDASES 1970/1980

In peanut cell suspension, cycloheximide was shown to block almost completely the synthesis of protein, but did not affect the rate of peroxidase release into the medium (1382), suggesting the presence of a large reserve pool of peroxidases either within the cell or in their walls. In these cells, cycloheximide is active only after the transfer of the cells into a fresh medium (1381).

Formation of rn-RNA and synthesis of the apoprotein are two important steps in the control of peroxidase activity, but an additional key factor in this control couId be the availability of heme within the cell (1380). This availability is dependent upon porphyrin metabolism and the synthesis of other porphyrin containing molecules, such as chlorophyll and cytochromes.

4.2.4. Post-translational steps and secretion

There are further steps in the control of peroxidase activity. These post-translational controis are likely to involve severai cations. Although no clear demonstration has been made, the existence of peroxidases in an inactive state was sometimes postulated. Recent data (Sticher et al., 1981) showed that spinach celis, cultured in the absence of calcium, contained peroxidases which could be activated by calcium at millimolar concentration. Calcium-activated peroxidases were also found in Hevea root (454). It is also known that one or two calcium ions are incorporated in the apoprotein moiety of horseradish peroxidases and are absolutely necessary to the enzyme activity (531). In addition, Fielding et al. (391) reported that cell wall peroxidases of pea roots are considerably activatedd when sodium or potassium were added to the assay medium.

Finally , the transport of peroxidases towards their actual site of action may also be considered as a control of peroxidase activity by cells. Cytochemical studies have shown that the final locations of peroxidases are likely to be either cell wall and intercellular free spaces or vacuoles. An appreciable amount of activity is often detected on ribosomes bound to the endoplasmic reticulum, suggesting that they are synthetized there. Peroxidase activity on bound ribosomes was often observed in plant and animal cells, thus indicating that the

Page 94: peroxidases ( peroksida )

LOCALIZATION AND BIOSYNTHESIS 83

coenzyme is readily incorporated to the proteinic part of the enzyme. These peroxidases probably are transported towards the vacuoles or the cell wall, following two distinct routes. In addition, peroxidases are glycoproteins. Using affinity chromatography with concanavalin A Sepharose, Nessel and Miider (942) found that ail the isoperoxidases extracted from tobacco cel1s contained carbohydrate groups. In contrast, Van Huystee (1376) also using affinity chromatography found that sorne perQxidases from peanut cel1s did not possess the specific sugars required for an affinity with concanavalin A. Whether these peroxidases contained other sugars than mannose or are precursors for those retained on con A Sepharose was not determined by the author. In the latter case, the absence of carbohydrate would mean that the incorporation of the sugar residue occurred at a post-translational level, for example in the Golgi apparatus. Lew and Shannon (757), working with sliced root tissue of horseradish incubated in the presence of 3H-Ieucine and 14C-mannose, came to the conclusion that the synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule.

In another study, Sevier and Shannon (l187a) have described a glycosyl transferase from horseradish root tissue which catalyzes the transfer of 2-acetamido-2-deoxy-D-glucose from 2-acetamido-2-deoxy­D-glucose to the isoenzyme C of horseradish peroxidase. This peroxidase was previously treated with a glycosidase and is used as acceptor to study the glycosylation of protein in plants. There is no information available from the literature on -the composition of the peroxidases which are bound to ribosomes. If these peroxidases are devoid of their carbohydrate part, they are likely to be enzymes just formed on the ribosomes. But if they are already glycosylated, the hypothesis of an artifactual binding to ribosome, fol1owing cell disruption, would be probable. The data obtained by Lew and Shannon (757) and by Van Huystee (1376) suggest that the biosynthesis of peroxidases is quite similar to the biosynthesis of glycoproteins in mammalian systems. In addition, the biosynthesis and the processing of peroxidase molecules within plant cells exhibit the main characteristics of the secretory protein in animais (Palade, 1975).

We know from the work of Maccecchini, Rudin and Schatz (783a) that the apoprotein of yeart cytochrome C peroxidase is made outside the mitochondria as a larger precursor, which is then transported into mitochondria and processed to its nature form in the absence of protein

Page 95: peroxidases ( peroksida )

84 PEROXIDASES 1970/1980

synthesis. Stephan and Van Huystee (1271) succeeded in obtaining in vitro synthesis of peroxidases with either free or membrane-bound ribosomes. The peptide obtained by the procedure had the same antigenic properties as the extra-cellular cationic peroxidase, but it had a slightly higher molecular weight. The authors concluded that the in vitro synthetized protein contained a signal peptide characteristic of secreted proteins. They also showed that the amount of peroxidases synthetized in vitro on membrane-bound polysomes was about twice as much as that on the free polysomes (Stephan and Van Huystee, 1981).

In cress root hairs, peroxidases seem to be synthetized in the endoplasmic reticulum and within dictyosome cistemae, packaged and transported in secretory vesicles and extruded into cell wall (1480). Many mammalian cells, which elaborate and secrete peroxidases, contain peroxidase activity in the same cell compartment (562, 957, 1114, 1296). Thus it may be assumed that sorne analogies exist between the intracellular route of peroxidases in animal and plant cells. This route 1eads to the exocytosis of peroxidases. In animaIs, several stimuli inducing this exocytosis are known, e.g., carbamylcholine in 1acrima1 glands (562), or calcium (1061).

In plants, too, severa1 factors causing peroxidase re1ease into the cel1 wall are known. These include osmotic shock (1480), ethy1ene (1109, 1110), and air pollution (Castillo, personal communication); whi1e gibberellins, for instance, reduce the re1ease of peroxidases (414). Peroxidase secretion in rat 1acrima1 glands was shown to be dependent on the presence of extracellular calcium, as is often the case for secretion processes (1061). Calcium was also recent1y shown to be invo1ved in the secretion of peroxidases by spinach cell suspensions (Sticher et al., 1981). In addition, it was reported that calcium has the property to bind sorne specific isoperoxidases to unidentified membranes in lenti1 roots (10 16) and in squash hypocoty1s (1024). This latter property cou1d be re1ated to peroxidase migration within the endomembrane system. Electron micrographs often show that peroxidase activity is closely associated to the membrane structure. The involvement ofcalcium in the control of the intracellular localization of peroxidase appears to be crucial, though much work is still necessary to understand it exactly. It therefore appears that calcium is likely to control peroxidase activity within the ceIl at several levels: viz, activation of preexisting enzyme molecules, fixation of sorne of these enzymes to selected membranes, and re1ease of the enzymes out of the cell by exocytosis.

Page 96: peroxidases ( peroksida )

85 LOCALIZATION AND BIOSYNTHESIS

Another line of evidence suggests that peroxidases are also present in vacuoles, often in great quantities (124, 486). It appears that the enzymes are associated with the tonoplast (467, 1420). Vacuole membranes are considered as end-products of the endomembrane system, arising either from the endoplasmic reticulum or from the Golgi apparatus (Morré and MoIlenhauer, 1976). It is thus tempting to speculate that peroxidases synthetized in the endoplasmic reticulum migrate towards the vacuole(s) bound to membrane elements (993). Another explanation of the massive presence of peroxidases within the vacuoles can be found in the autophagy process characteristic of plant vacuoles. By this phagocytosis process, vacuoles are able to engulf cytoplasmic constituents such as portions of the endoplasmic reticulum, ribosomes, Golgi vesic1es, etc. (Matile and Wiemken, 1976). Peroxidases could weIl be incorporated into vacuoles during this transfer of material from the cytoplasm.

REFERENCES

For numbered references in the text, see bibliographical section

ABELES, ER.; LEATHER, G.R. 1971. Abscission: control of ceIlulase secretion by ethylene. PLANTA 97: 87-91.

ALVAREZ, M.R.; KING, 0.0. 1969. Peroxidase localization activity, and isozyme patterns in the developing seedlings of Vanda (Orchidaceae). AMER. J. BOT. 56: 180-186.

BASTIN M. 1968. Effect of wounding on the synthesis of phenols, phenoloxidase, and peroxidase in the tuber tissue of Jerusalem artichoke. CAN. J. BIOCHEM. 46: 1339-1343.

CASTILLO, EJ.; PENEL, c.; GASPAR, Th.; GREPPIN, H. 1981. Masquage et démasquage des isoperoxydases de Pelargonium. c.R. ACAD. Sc. PARIS 292: 259-262.

Page 97: peroxidases ( peroksida )

86 PEROXIDASES 1970/1980

CZANINSKI, Y.; CATESSON, A.M. 1969. Localisation ultrastructurale d'activités peroxydasiques dans les tissus conducteurs végétaux au cours du cycle annuel. J. MICROSC. 8: 875-888.

DE JONG, D.W. 1967. An investigation on the role of plant peroxidases in cell wall development by the histochemical method. J. HISTOCHEM. CYTOCHEM. 15: 335-346.

GAHAGAN, H.E.; HOLM, R.E.; ABELES, F.B. 1968. Effect of ethylene on peroxidase activity. PHYSIOL. PLANT. 21: 1270-1279.

GAYLER, K.R.; GLASZIOU, K.T. 1968. Plant enzyme synthesis decay of messenger RNA for peroxidase in sugar-cane stem tissue. PHYTOCHEM. 7: 1247-1251.

GRAHAM, R.c.; KARNOWSKY, M.J. 1966. The early stages of absorption of horseradish peroxidase in the proximal tubules of mouse kidney. Ultrastructural cytochemistry by a new technique. J. HISTOCHEM. CYTOCHEM. 14: 291-302.

GRAHAM, R.c.; LUNDHOLM, V.; KARNOWSKY, M.J. 1965. Cytochemical demonstration of peroxidase activity with 3-amino­9-ethylcarbazole. J. HISTOCHEM. CYTOCHEM. 13: 150-152.

JONES, J.; HULME, AC.; WOOLTORTON, L.S.c. 1965. The use of polyvinyl - pyrrolidone in the isolation of enzymes from apple fruits. PHYTOCHEM. 4: 659-676.

KANAZAWA, Y.; SHICHI, H.; URITANI, 1. 1965. Biosynthesis of peroxidases in sliced or black rot-infected sweet potato roots. AGR. BIOL. CHEM. 29: 840-847.

LAVEE, S.; GALSTON, AW. 1968. Hormonal control of peroxidase activity in cultured Pelargonium pith. AMER. J. BOT. 55: 890-893.

MATILE, P.; WIEMKEN, A 1976. Interactions between cytoplasm and vacuole. In 'TRANSPORT IN PLANTS III, INTRACELLULAR INTERACTIONS AND TRANSPORT PROCESSES'. Stocking, c.R.; Heber, U. (Eds.). Springer Verlag, Berlin - Heidelberg - New York, pp. 255-287.

MATSUSHITA, S.; IBUKI, F. 1960. Peroxidase activity found in the ribonucleoparticles from pea seedlings and rabbit liver. BIOCHIM. BIOPHYS. ACTA 40: 540-542.

MORRE, D.J.; MOLLENHAUER, H.H. 1976. Interactions among cytoplasm, endomembranes, and cell surfaces. In 'TRANSPORT IN PLANTS III. INTRACELLULAR INTERACTIONS AND TRANSPORT PROCESSES'. Stocking, c.R.; Heber, U. (Eds). Springer Verlag, Berlin - Heidelberg - New York, pp. 288-344.

Page 98: peroxidases ( peroksida )

LOCALIZATION AND BIOSYNTHESIS 87

PALADE, G.E. 1975. Intracellular aspects of the process of protein secretion. SCIENCE 189: 347-358.

PLENISCAR, M.; BONNER, W.D.; STOREY, B.T. 1967. Peroxidase associated with higher plant mitochondria. PLANT PHYSIOL. 42: 366-370.

POUX, M. 1969. Localisation d'activités enzymatiques dans les cellules du méristème radiculaire de Cucumis sativus L. Activité peroxydasique. J. MICROSCOPIE 8: 855-866.

SIEGEL,B.Z.; GALSTON, A.W. 1966. Biosynthesis of deuterated isoperoxidases in rye plants grown in O

2°. PROC. NATL.

ACAD. SCI. USA 56: 1040-1042. STEPHAN, O.; VAN HUYSTEE, R.B. 1981. Sorne aspects of

peroxidase synthesis by cultured peanut cells. Z. PFLANZENPHYSIOL. 10 1: 313-321.

STICHER, L.; PENEL, c.; GREPPIN, H. 1981. Calcium-requirement for the secretion of peroxidases by plant cell suspensions. J. CELL. SCI. 48: 345-353.

VAN DUIJN, P. 1955. An improved histochemical benzidine blue peroxidase method and a note of the composition of the blue reaction product. REC. TRAV. CHIM. 74: 771-778.

VAN FLEET, O.S. 1959. Analysis of the histochemical localization of peroxidase related to the differentiation of plant tissues. CAN. J. BOT. 37: 449-458.

Page 99: peroxidases ( peroksida )
Page 100: peroxidases ( peroksida )

CHAPTER 5

PHYSIOLOGICAL PROCESSES MEDIATED BY PEROXIDASES

Peroxidases have been implicated in and associated directly or indirectly with various physiological processes, including abscission, aging and senescence, apical dominance, cold tolerance, dormancy, fruit development and ripening, germination and early development, irritation, reaction and resistance against parasitism, sex expression, tuberization, etc. (see Subject lndex).

There are two major problems in trying to assign a particular role for peroxidases in these different physiological events. First there is a lack of genetically defined peroxidases in studies on growth and development. Scandalios (1158) reports that defined peroxidase systems, from a genetic point of view, are found in barley, maize and oats, but we are not aware of the use of such information in developmental studies. Second, by changing the conditions of the in vitro incubation medium, it is possible to catalyze all the reactions mentioned above by almost all types of peroxidases. Furthermore, there is relatively little information conceming the cellular localization of the different isozymes, the immediate environmental conditions for the manifestation of their activity, or the specifie participation of each of them (if not of sorne groups) in the physiological process being investigated.

Besides the possible but not specifie involvement of peroxidases in many reactions, it would seem that, on the basis of available evidence, isoperoxidases play four major roles in growth and development, through their control and/or participation in :

Page 101: peroxidases ( peroksida )

90 PEROXIDASES 197011980

5.1. Auxin catabolism and consequently the endogenous free auxin level.

5.2. Lignin formation and cell wall biogenesis.

5.3. Defense mechanisms against pathogens.

5.4. Sorne respiratory processes.

The effects of light on peroxidases are examined in section 5.5.

5.1. AUXIN CATABOLISM

The involvement of peroxidase in general and of sorne more defined isoforrns in particular in the control of endogenous auxin level, and thus sorne physiological processes dependent on auxin, has come from different in vitro investigations, the validity of which were subsequently examined in vivo and/or in situ.

The most cornmon and direct evidence was the establishment of a correlation between total peroxidase activity of a non-fractionated extract, the capacity of the same to degrade IAA which is commonly called 'IAA-oxidase' activity, in few cases (816a) the rough analysis of the so-called endogenous auxin level (unfortunately measured through biotests only until very recently), and the development of the physiological phenomenon.

More indirect evidence has come from studies either on the effects of exogenously applied positive (Mn2+, monosubstituted phenolics) or negative (polyphenols) effectors of peroxidase as IAA-oxidase, or on the endogenous variation of sorne of these effectors in relation to the particular phase of the physiological phenomenon (Hare, 1964; Gaspar, 1965; Pilet and Gaspar, 1968). More refined correlations were established

Page 102: peroxidases ( peroksida )

91 PHYSIOLOGY

later after the fin ding by Mazza et al. (852) and Ricard and Job (lI 0 1) that the more basic (cathodic) were the isoperoxidases, the higher was their oxido-reduction potential against IAA and consequently their capacity to destroy IAA in vitro (at acidic pH, in the absence of added peroxides, thus essentially through their intermediary Compound III). In several auxin-dependent physiological and developmental studies there have been changes in fast moving cathodic isoperoxidases which have been indirectly or directly correlated with the endogenous auxin leveI. Below we give a few examples :

5.1.1. Cirovvth

In investigating maize dwarfism, Van Overkeek as far back as 1935 and 1938 showed that dwarf forms of this plant contained less auxin than normal ones and that their extracts destroyed the phytohormone at a higher rate. The higher peroxidase/IAA-oxidase activity ofdwarf types was confirmed later for different plants (Kamerbeek, 1956; Chrometzka, 1958; McCune and Galston, 1959; Pilet and Collet, 1960; Gorter, 1961; Evans and Alldridge, 1965; 987, 1248). It was shown for maize by Leyh et al. (1963) that this reduced activity of dwarf forms could be attributed to a higher amount of inhibitors of a phenolic nature (Bouillenne-Walrand et al., 1967).

Liang et al. (761) showed that a relationship existed between height genes and peroxidase. They measured specifie peroxidase activity from internode tissue of different height isogenic lines of sorghum. Tall plants had less peroxidase per gram tissue than their short counterparts; their FI offspring internodes were doser but had more peroxidase than the tal1 parent. Peroxidase in the Fo offspring was inversely related to their height and followed a sim ply inherited pattern similar to that for height. No such correlations were found between nitrate reductase or acid phosphatase activities and height in these isogenic tines. The authors conduded that peroxidase activity was not associated with height by chance and that it probably had a functional relationship. Similarly the association between plant height and peroxidase activity

Page 103: peroxidases ( peroksida )

92 PEROXIDASES 1970/1980

was found highly significant and negative in seven varieties of bread wheat belonging to diverse genotypes, and their FI crosses (1230). The lesser peroxidase activity in taller wheat varieties would result in the accumulation or conservation of auxin which ultimately enhances the growth.

Palmieri et al. (987) found that homogenates of tomato tissues oxidized IAA at a rate proportional to their peroxidase activity. Two monogenic recessive mutations were involved in the control of this peroxidase activity. An inverse correlation was observed with two high peroxidase mutants and leaflet size (length and weight) and their epinastic and geotrophic-like behaviour. Enhancement of an organ­specific fast-moving cathodic isoperoxidase was observed in these mutants.

Galston and Davies (1969) in discussing genetic, hormonal and environmental interactions in peroxidase/lAA oxidase activity presented evidence (mostly from in vitro cultured tobacco pith) to suggest that gibberellin, auxin, cytokinin and ethylene can interact to control the level of peroxidase in the tissue. The auxin-cytokinin interaction on growth has been shown to be correlated with their interaction on specific cathodic isoperoxidases (450) resulting in the endogenous auxin level control (Darimont et al., 1971). The spectacular growth effects of exogenously applied gibberellin have been shown to be preceded either by an increase in peroxidase/IAA oxidase polyphenolic inhibitors (Galston and Warburg, 1959; Leyh et al., 1963) or by a depressing effect on fast-moving cathodic isoperoxidases (1022, 1133). Gibberellic acid promotion of expansion of spinach cells was similarly correlated with a simultaneous suppression of peroxidase secretion in the culture medium (414). These findings explained the sudden increase in endogenous auxin after gibberellin treatements (Nitsch and Nitsch, 1959; Kuraishi and Muir, 1962; Gaspar and Bouillenne-Walrand, 1966). The gibberellin antagonistic effects of growth retardants like CCC can be interpreted through their inverse action on the same isoperoxidases (Lacoppe and Gaspar, 1968; Gaspar and Lacoppe, 1968; 428, 1133).

It must be mentioned that sorne data do not indicate any significant effect of GA on peroxidase activity or anycorrelation with the auxin­destroying capacity of the tissues (879, 963) but these can be explained on technical grounds, as resulting from the molarity of the buffer used or the 'cell fractions analyzed (188). It was also found that CCC did not affect specifical1y the isoperoxidase spectrum of wheat seedlings,

Page 104: peroxidases ( peroksida )

93PHYSIOLOGY

but that microsomal-bound peroxidases were more abundant in extracts of CCC-treated plants, and that CCC .interacted with the Ca-mediated binding of peroxidases to membrane structures (133).

The inhibitory growth effects of light seem to depend also on the variation of the activity of sorne peroxidases. In etiolated pea stems the cofactor is kaempferol, which is present in low concentration. Illumination of plants by red light increases kaempferol synthesis in stems, which acts as a monosubstituted phenolic cofactor to increase peroxidase/IAA oxidase activity and consequently leads to a decline in stem growth (Mumford et al., 1961).

In cell suspension cultures of Phaseolus (38, 39) and of Si/ene (747, 748) cultured on 2,4-0, drastic changes were observed in the peroxidase zymograms during the growth cycle, i.e., total peroxidase and IAA-oxidase activities decreased in parallel during exponential growth and increased when growth rate was low. Old cells contained isoperoxidases, found previously in the nutrient medium. The selective release of isoperoxidases by young cells did not occur in senescent cells (747, 748). Cytochemical studies also showed that the enzymes were mainly cytoplasmic in young cells and mainly associated with the wall in older cells (38).

Oevelopment of peroxidase/IAA oxidase isozymes was also differentially associated with 2,4-0 growth promotion or inhibition in Nicotiana (736), Daucus (180, 1445), Trigonella (60), Beta vulgaris (Kevers et al., 1981a and b) and Arabidopsis (181, 938) callus tissues. In these latter cases, 2,4-0 affected fast moving cathodic isoperoxidases which once more indicates that it might act by altering the level of endogenous natural auxins. Our feeling, based on the literature (1218) and personal experimental data, is that most of the synthetic auxins modify growth and other 'auxin'-dependent physiological processes by this same mechanism.

The literature regarding the auxin dependence of so-called habituated tissues has been reviewed in recent years (134, 690, 1305). The idea that there is insufficient endogenous auxin for growth of normal auxin­requiring tissue in vitro was generally accepted although, due to technical problems, very few valid auxin measurements (Syono and Furuya, 1972; Nischio et al., 1976) have been made. The controversial suggestion that the rate of enzymatic inactivation of indoleacetic acid (lAA) is higher in auxin-requiring tissues received sorne support from more refined analyses of peroxidases (lAA-oxidase) isoenzymes and of their

Page 105: peroxidases ( peroksida )

94 PEROXIOASES 1970/1980

inhibitors, the so-called auxin-protectors (Stonier, 1970). However, such a parallel analysis of peroxidase isozymes, auxin content and auxin protectors had never been performed at the same time on auxin-requiring and auxin-nonrequiring tissues of the same plant untiJ recently (Kevers et al., 1981 a). A GC-ECO titration of IAA in normal auxin (2,4-0)­requiring and auxin-independent (habituated) sugarbeet callus revealed an equal amount in both tissues. A comparison of the content and pattern (through starch gel electrophoresis) of soluble, membrane and wall peroxidases indicated that normal tissues contained a higher leve1' of isoperoxidases. Normal tissues were also found to contain higher levels of peroxidase inhibitors and auxin protectors (Kevers et al., 1981 a). The hypothesized peroxidase-mediated higher rate of auxin destruction in normal sugarbeet callus is supposed to be counterbalanced by the 2,4-0-controlled auxin protectors. The invoJvement of inhibitors of lAA-destruction in the process of induction for auxin-nonrequiring calluses was confirmed by Syono (1305) and 2,4-0 control of auxin protectors was further proved by Kevers (1981). Thus, an alternative way of action of the synthetic auxins is via a more indirect control of peroxidases through these auxin protectors, as has been shown to be the case for gibberellin.

Senescence generally occurs after the cessation of growth and inc1udes a series of processes leading to cell disorganization. Associated with cell membrane disintegration (Winkenbach and Matile, 1970; Matile and Winkenbach, 1971) and hydrolysis ofce]] wall polysaccharides (Wiemken-Gehring et al., 1974), there is an increase in respiration (see below). A plausible generalization of senescence (Mayak and Halevy, 1980) is that it corresponds to a higher oxidation state of the tissues, which may be in the form of accumulation of peroxides (Brennan and Frenkel, 1977) or in lipoxygenase activity, resulting in iipid hydroperoxides. This increase of peroxides and free radicals (Mishra et al., 1976) is apparently related to an increased activity of peroxidases in senescing petais at least (149; Carfatan and Oaussant, 1975; 1343). Indeed, treatment of flowers with free radical scavengers delayed senescence of carnation flowers (Baker et al., 1977). Gilbart and Sink (1971) assigned to auxin a central role in the control of senescence in poinsettia. The auxin level decreased in two poinsettia cultivars, but it decreased faster in the short-lived cultivar. Also, the activity of IAA­oxidase and the level of hydrogen peroxide increased with aging.

Page 106: peroxidases ( peroksida )

95PHYSIOLOGY

The above-mentioned increases in peroxidases, peroxides and free radicals presumably were also involved in ethylene production (see Section 2.3.4; Beauchamp and Fridovitch, 1970). On the other hand, application of ethylene also enhances peroxidase activity (see Subject Index) and catalyzes the synthesis of ethylene by plant tissues. This phenomenon is corn mon to both jlower senescence (Mayak and Halevy, 19S0) and ripening of climateric fruits (1 136).

The function of increased peroxidase activity in fruit ripening has also been examined (see Subject Index). Haard (496) found peroxidase in both the soluble and residue fractions in pear, but the increase in activity occurred in the particulate enzyme, and this was associated with two isozymes not found in the soluble fraction. In this connection, Ku et al. (70S) reported that during tomato ripening the threefold increase in soluble peroxidase was associated with loss of one and formation of three new isozymes. They suggested that the enzyme might be involved in ethylene synthesis during ripening, although this view is disputed (653). During ripening of mangoes the c1imacteric and ethylene production were attended by a large increase in activity of peroxidase and catalase, which was associated with the disappearance of a heat-Iabile, non-dialyzable inhibitor of these enzymes (Mattoo and Modi, 1969). An increase in these enzymes was also induced by treatment of mango tissue slices with ethylene.

Auxin has been shown to retard ripening of banana (VendreII, 1969) and grape (Hale et al., 1970), and in the latter fruit endogenous auxin declined at the time that ripening commenced. Since peroxidase has the capacity for IAA breakdown, it couId provide a basis for control of ripening, i.e., by destroying endogenous IAA and thereby rendering the tissue sensitive to ethylene. Frenkel (399) investigated isozymes of peroxidase and IAA oxidase in pear, tomato, and the non­c1imacteric blueberry and found an increase in from one to three isozymes of IAA oxidase in each of the fruits during ripening, but he found an increase in peroxidase isozymes only in pear and tomato. He suggested that the increase in IAA oxidase in both c1imacteric and non-climacteric fruits was consistent with the view that fruit ripening is accompanied by an increase in capacity for auxin degradation, which is necessary to make the fruit sensitive to ethylene.

This view agreed with the reports that grape ripening was initiated by the disappearance of auxin (Coombe, 1960), and pear ripening was inhibited by infiltration with auxin (Frenkel and Dyck, 1973). A more

1""" "" \."

Page 107: peroxidases ( peroksida )

96 PEROXIDASES 1970/1980

detailed study of peroxidase variation as a function of storage time for Golden Delicious apples (471) gave two peaks. The first peak corresponded to c1imacteric and was apparently associated with breakdown of hormones that retarded ripening. The second peak corresponded to the start of senescence and couId we11 be a defense mechanism against hydroperoxides. Peroxidase isoenzyme patterns were similar during the ripening and senescence stages (125).

If there is any causal relation between the rise in peroxidase activity and senescence, Birecka et al. (112) speculated that it might be mainly related to elimination of H

20

2 , whose production in ce11s increased

with senescence. This could be physiologica11y important since a decrease of catalase activity in senescing 1eaves has been often observed (e.g., Dhindsa et al., 1981). Thus, an increase in peroxidase activity wouId represent an induced protective action, perhaps delaying senescence.

When senescence indeed starts in 1eaves there is increase in the activity of peroxidase along with that of catalase (146, 221, 614). This elevation in peroxidase activity corresponded to an increase in anodic and cathodic peroxidases (167, 221, 659). Yellowing 1eaves with ethylene also showed increased peroxidase activity (294).

Peroxidase activity has also been linked with the abscission of leaves of cotton (894), bean (515, 1045, 1420), coleus (Sutcliffe et al., 1969), tobacco (543, 546, 550, 554), citrus (442) and fruit of cherry (1046, 1444). Both peroxidase activity and abscission are generally enhanced by ethylene (Addicott, 1970; Beyer and Morgan, 1970; 1). Part of this enhancement in enzyme activity could we11 be related to the decrease in auxin level which has long been known to occur prior to abscission in several systems (Addicott, 1970; Morgan and Durham, 1972; 442). Lignification through acidic peroxidases couId protect the exposed scar (Addicott, 1970). The close correlation between the increase in peroxidase activity and cell wall weakening may also suggest an association with changes in hydroxyproline-rich proteins, which in tum affect the extensibility characteristics of the walls, as mentioned by Lamport (725) and Ridge and Osborne (1109, 1110).

Page 108: peroxidases ( peroksida )

97 PHYSIOLOGY

5.1.2. Morpho- and ûrganogenetic Processes

The so-called thigmomorphogenetic process (Jaffe, 1973) is essentially a growth perturbation due to a mechanical stimulus. Rubbing young intemodes of Bryonia dioica, which significantly decreased their elongation, was followed by rapid changes in soluble and ionically­bound cell wall basic (cathodic) peroxidases, and with the appearance of an additional isozyme (144). A decrease in the IAA level (quantified by a GLC-ECD technique) in the intemodes was correlatively shown (Hofinger et al., 1979). Pretreatment of the Bryonia plants with lithium prevented the peroxidase changes (namely the appearance of the specific isoperoxidase characteristic of rubbed plants) and the inhibition of elongation due to rubbing (140). A similar relationship between a rapid increase of activity of basic peroxidases and a mechanically induced (by pricking) growth inhibition has been shown in Bidens pilosus plants (Desbiez et al., 1981).

The dependence of the rooting and flowering processes on auxin, if not their obligatory requirement for critical auxin levels, has been discussed for a long time, but without any precise concepts until recently. Absence of suitable· techniques for IAA identification and quantitation as weil as the absence of suitable biochemical markers played important roles in the lack of precision. An intensive comparative study of both processes using peroxidases of different plant materials has considerably c1arified the apparently divergent situations (Gaspar, 1981; 444, 445) as indicated schematically in Figure 14.

An induction phase in the rooting process (in which no histological events are observable) is characterized by a rise of the total peroxidase activity of the whole cutting. Root primordia initiation takes place following the peak ofactivity during a decrease of the basic isoperoxidases. Flowering is associated with inverse variations of total enzyme activity and basic isoperoxidases in inductive and initiative phases. Explants, which have reached the rooting or flowering inductive phase on the mother-plants can directly initiate root or flower primordia when cultured in vitro. Considering that basic isoperoxidases are responsible for the in vivo auxin catabolism, it has been hypothesized that rooting and flowering are controlled by inverse variations of the auxin level in their inductive as weil as their initiative phases (Fig. 14). Auxin analyses and available literature data have supported this view (Gaspar, 198\). The following examples illustrate the working of this scheme.

Page 109: peroxidases ( peroksida )

• • • •

98 PEROXlDASES 1970/1980

Spinach is a long day plant, which does not f10wer in short days. However, after growth under short days for 1 month, f10wering is rapidly induced in less than 24 hr, by transfer to long days or to continuous light. lt can also be induced to f10wer under short days by the application of GAl (Penel, 1976). Transfer to long days or treatment with GA) leads to rapid dec1ine in cathodic peroxidases and

. ROOTING FLOWERING

PRE - INDUCED EX PLANTS

® 1 1

o 1 acidic p. /'1 basic p.1 \. 1

1

NON -INDUCED EXPLANTs

acidic p. /' acidic p. )' acidic p. ~ 1 acidic p. ~ basic p. /' basic p. \. basic p. / _~ basic p. /

/ " l ",1 1 l '

1 / 11 1 1

1 1 ® " i @1 1 1 1 1 1

1

1 1 1" 1

1 1

11

1 '" --.J1__ / / 1

1

1 DAYs

INDUCTION INITIATION INDUCTION INITIATION

© ]::­.:;:

acidic p. /' 1 11 basic p. .J'

~/ DAYs

Qi <Il Cl "0

X o .... Qi Cl.

Ci ;§

c X :::J Cl

<Il :::J o C Qi 01 o "0 C

W 1 1 1

Fif(. 14. Schematic representation of vanatIons in peroxidase (p.) and auxin levels during the course of the inductive and initiative phases of rooting and nowering by preinduced and non-induced explants (afier Gaspar, 1981).

Page 110: peroxidases ( peroksida )

99 PHYSIOLOGY

an increase in anodic peroxidases. After 48 hours there is a progressive increase in cathodic peroxidases. Similarly during flower formation in vitro in tobacco epidermal explants, there is a continuous increase in fast moving cathodic isoperoxidases (1328). But this comparison could only be made after having defined histologically that the transition of the spinach meristem from the vegetative to the floral stage (479) was taking place, and after having biochemically characterized tobacco plants in their vegetative and the floral states, with respect to gradients along their stem and floral axes (1328). Induction of flowering and of other phytochrome-dependent processes could be obtained through photomodulation and photodetermination of the same types of peroxidases (1020, 1174, 1175).

During rooting of stem tips of Prunus (1063), of adventitious shoots in Asparagus (1375), and of epidermal explants of tobacco (448, 1328) there is an increase in intensity of fast moving cathodic peroxidases up to a maximum. This is fol1owed by a decrease in intensity, ail prior to the morphological appearance of the roots. Knowing the histology of these processes, Gaspar et al. (446) proposed that root initiation involved at least two phases, viz: an induction phase in which no histological events are observable, followed by an initiative phase in which root primordium formation begins. These two phases are marked with increased and then reduced peroxidasic activity and a reverse relationship in auxin content, i.e., a decrease in endogenous auxin fol1owed by an increase. This hypothesis can explain why phenolic compounds such as ferulic and chlorogenic will inhibit rooting if applied during the induction phase, and stimulate it during the initiation phase as shown by Smith and Thorpe (1977). Compounds such as these have been shown to interact with IAA oxidase and reduce the rate of IAA oxidation (see Gaspar et al., 1964; Pilet and Gaspar, 1968). Recently Lee (740) has shown that the phenolic inhibitors interfere with the first stage of IAA oxidation by preventing the IAA­

. induced changes in the soret band of peroxidase. Apparently the peroxidase is prevented from reacting with IAA to form the highly reactive enzyme intermediates which lead to IAA degradation.

Variations in peroxidase and auxin levels during the course of de novo vegetative bud formation appear to be different from the above (Gaspar, 1981). De novo vegetative bud formation always occurs after a prior increase of peroxidase activity in the expIant (Kevers et al., 1981b; 448,569,745,750,800,806,927,938, 1131, 1327, 1328).

Page 111: peroxidases ( peroksida )

100 PEROXIDASES 1970/1980

Acidic as weIl as basic isoenzymes are involved. The curve drawn from the results obtained with bud-forming epidermal layers of tobacco (448, 1328) has been found to typically give the same lag and plateau phases in the peroxidase activity evolution during bud formation as has been observed in other materials such as chicory leaf explants (745, 750), different tobacco systems including callus (800, 806, 1321, 1327), Arabidopsis (938) and sugarbeet (Kevers et al., 1981b). The apparently obligatory tempory maintenance of the plateau before bud

,-" .. initi~tion appears specifically related to this organogenetic process.

IAA levels have been compared in different subcultures of organogenetic and non-organogenetic habituated sugarbeet callus lines (Kevers et al., 1981 b) during the exponential phase of growth. Results indicated an average amount (+ or - 200 ng/g fresh weight) of the organogenetic callus six times less than that (+ or - 1200 nglg fresh weight) of the non-organogenetic one. Also an inverse relationship between these IAA levels and the corresponding soluble peroxidase activity (3.98 and 0.73 repectively) was obtained. This presumably leads' to an auxin-cytokinin ratio suitable for the induction of shoot formation (Skoog and Miller, 1975).

Similar indirect correlations between the peroxidase content, the endogenous auxin level and embryogenesis in habituated shamouti orange callus have been made. Embryogenic potential in ovular callus is associated with a notably higher peroxidase activity and with the appearance of an additional specific cathodic band (690). The same dark-grown embryogenic callus was shown to decompose IAA at a faster rate than non-embryogenic caHus (360). The embryogenic lines could also deactivate IAA by conjugating it with aspartate faster than non-embryogenic lines (1252).

Instead of considering the peroxidase mediation of physiological processes through auxin catabolism by the simple auxin disappearance two other explanations have been proposed and debated without final conclusion at the moment (Skytt Andersen et al., 1972; Roberts, 1974; 372, 373). One concept is that the oxidation of IAA catalyzed by peroxidase in plants yields products that stimulate growth (Tuli and Moyed, 1969; Basu and Tuli, 1972; Frenkel et al., 1975; 870). Another one considers the peroxidase auxin-oxidase complex as a system generating inhibitory substances among which methyleneoxindole would play the major role (Tuli and Moyed, 1967; Hofinger et al., 1980; 432, 438, 583).

Page 112: peroxidases ( peroksida )

PHYSIOLOGY 101

5.2. LIGNIN FORMATION

5.2.1. Growth

Fry's work (414, 415) has suggested that peroxidase restricted cell extension and expansion by making the cell wall rigid in two ways :

a) covalently by catalyzing the conversion of feruloyl side-chains into diferuloyl cross-links and

b) non-covalently by catalyzing the conversion of soluble phenolics into hydrophobic quinones (or polymers).

GA3

is hypothesized to prevent this process by inhibiting peroxidase secretion (414).

Lignification is considered to be executed more specifically by the involvement of acidic peroxidases (Nakamura and Nozu, 1967; 1445, 1447). It is quite interesting to note that this phenomenon seems to take place immediately after breakdown of auxins, mediated by the basic peroxidases. As an example, enhancement of anodic peroxidases in rubbed young intemodes of Bryonia (144) occurred progressively after variations of the cathodic ones. Old and already lignified intemodes, which do not grow anymore, are characterized by high activity of these same anodic peroxidases and they do not react to the mechanical stimulus.

Similarly, the cessation of elongation in Pisum sativum stems (424) and growth reduction in camation plants after infection (Pugin et al., 1979) had been attributed to a series of factors including peroxidase mediated auxin-destruction, peroxidase-induced lignification and extension-induced wall stiffening. These findings are probably related to the parallel ethylene-mediated increase of wall hydroxyproline level and activity of covalently-bound acid peroxidases (1109). Furthermore, it has been shown that soluble (Shannon et al., 1966; 904) and at least one of the three acidic covalently cell wall-bound peroxidases (283) contained hydroxyproline.

These results are consistent with the often done observation that the activity of ail types of peroxidases increases basipetally along with growth cessating and lignifying intemodes (Macnicol, 1966; Mills and Crowden, 1968; 144,425, 1328, 1375).

Page 113: peroxidases ( peroksida )

102 PEROXIDASES 1970/1980

Very interesting in this respect are the results of studies of Marigo .(1979), who showed that tomato stem growth inhibition after root feeding with lignin-precursors resulted from an increase in the lignin­cellulose ratio subsequent to a rise in the activity in the cell wall­bound peroxidases.

5.2.2. Differentiation - Vascularization

Usually, at the passage of the cells from a state of division to elongation and, particularly, to differentiation, the total peroxidase activity rises considerably. An investigation of four mutant genotypes of Pisum sativum has shown an inverse relationship between peroxidase activity and lignification of the pod membrane (138). From their developmental studies, the authors suggested that peroxidase predisposed cells to the lignification process per se : thus, cells in localized regions wherein lignification subsequently occurred, i.e. those cells which had become noticeably elongated, had a more intense peroxidase-staining reaction than did the neighbouring non-differentiating cells.

The increase in peroxidase activity in cells from the pea epicotyledon, which have ended their growth, would be due to an enhanced activity of sorne of the present isozymes rather than to the appearance of new ones (424). However, Sahulka (1141) found a peroxidase band in cells from the zone of differentiation in a root of broad beans which is not to be found in the zones of division and elongation. Upon the passage of the cells from a state of division and elongation and differentiation in germinating maize seeds,the increase of peroxidase activity is due both to the appearance of new enzymes (mainly cathodic) and the activation of som~e of the preexisting (namely anodic) isoenzymes (311).

That differe t isoperoxidases are associated with different types of cell differentiatio , mostly through lignification, has been confirmed by established corlrelations between a marked increase in enzyme activity and the lignification of the seed integuments of Encyclia (Alvarez, 1968), vascularization (264, 488, 525, 564, 1453), and fiber formation (499). Suberin contains a significant fraction of lignaceous materials.

Page 114: peroxidases ( peroksida )

103 PHYSIOLOGY

A high correlation between peroxidase activity and suberization was observed. Peroxidase content of suberizing cel1s (after wounding in potato) was more than 10 times higher than that of the immediately adjacent dividing cells (127, 129).

The appearance ofnew peroxidase isozymes in peanut cell suspension cultures was related to the cellular differentiation (1404). Varietal and seasonal differences in lignification of pear sclereids are also dependent on the association of peroxidase with cell walls (1074).

It has also been suggested that the continuous increase in activity and number of fast moving anodic peroxidases in the course of root, bud and flower formation was associated with a continued lignification process for xylem cells differentiation in these newly formed organs (445, 1328).

Contrary to lignification in aging tissues which seemed to be preceded if not correlated with a decrease in the endogenous auxin level, lignification in differentiating tissues couId be induced by increased endogenous levels of IAA in these growing tissues. Differentiation indeed was shown to be associated with the suppression of specifie isoperoxidases working as IAA-oxidases (181,736,938,1113,1445).

5.3. DEFENSE MECHANISMS AGAINST PATHOGENS

Plants are able to provide active defense against pathogenic organisms. Either, they are resistant, i.e., they prevent or restrict the infection, or they are susceptible,i.e., infection develops, inducing host damage. Peroxidases have been implicated in these two processes (Farkas and Kiraly, 1958; Kosuge, (969). Stahmann and Demorest (1264, 1265) reported that in plants inoculated with selected viruses, bacteria or fungi, there was a rapid increase in peroxidase and often the appearance of new peroxidase isozymes. Sorne isozymes disappeared

Page 115: peroxidases ( peroksida )

104 PEROXIDASES 1970/1980

and new isozymes not seen in healthy plants appeared after pathogen infection. Changes in isoperoxidase pattern following inoculation has often been reported (483, 484, 1371). They may only affect one kind of peroxidase (for example ionically-bound peroxidase). Reports showing no changes in isoperoxidases are also available (1094).

Use of susceptible and resistant strains of cultivars generally have shown that the latter immediately reacted to inoculation of an infectious agent by an increase of peroxidase activity, while the former did not exhibit this increase (1401) or reacted with delay to inoculation (1094). Generally, resistant plants had a greater peroxidase activity than susceptible plants before inoculation (1365). Beside natural resistance to infection, resistance may be induced by a first infection or by a chemical or physical agent. This acquired resistance was often correlated with an increase of peroxidase activity. It has been reported to be induced in tobacco Ieaves by prior injection of heat-killed cells of Pseudomonas tabaci. Recently, Venere (1401) found no effect on peroxidases when heat-killed Xanthomonas were injected to cotton cotyledons, while living bacteria induced a strong increase.

Among the chemicals inducing peroxidase increase and resistance development, ethylene is one of the most effective. Increased peroxidase activity and resistance to black rot was found in sweet potato roots incubated above infected roots in closed containers (Clare et al., 1966). Apples, a source of ethylene, may replace infected roots in inducing resistance. Ethephon, an ethylene precursor, also increased both the resistance of susceptible tomato plants to Fusarium and their peroxidase activity (1094). Ethylene, which could induce the release of peroxidases by plant cells is known to be an element in the defense mechanism (Paradies and Eistner, 1980). In tobacco leaves infected with tobacco mosaic virus, a gradient of enhanced peroxidase activity from the lesion edge to the tissue between the lesions was found (1430). In addition to this localized reaction, several authors have observed the development of a systemic induced resistance. This means that lesion formation in lower Ieaves was followed by the appearance of resistance in upper Ieaves, although the virus remained confined to the necrotic area. Peroxidase activity increased in parallel with the development of resistance of non-infected leaves (1121,1122, 1394, 1395). There is therefore a large body of reports showing the positive correlation between high peroxidase activity and resistance to pathogens (see also Subject Index).

Page 116: peroxidases ( peroksida )

105PHYSIOLOGY

Several functions may be attributed to peroxidases in relation to the mechanisms of defense against infection. Lignification of diseased tissue may be a mechanism of resistance (Vance et al., 1980). As peroxidases are involved in lignin biosynthesis (see Section 2.3.3), the increased peroxidase activity following pathogen inoculation may intensify the formation of lignin. This hypothesis was confirmed by Vance and coworkers (13 70, 13 71) who showed that cycloheximide, which inhibited the resistance of canarygrass to Helminthosporium averae, also blocked lignin biosynthesis and activity of enzymes involved in lignin formation, including peroxidases. New formation of lignin could prevent the penetration of the pathogen.

An alternative role of peroxidases in the resistance to viruses was proposed by Simons and Ross (1122). They proposed that these enzymes kill the infected cells, thus suppressing the multiplication of the virus. However, it seems reasonable to think. that peroxidases are mainly used by plants to attack pathogens. Two different mechanisms have been proposed. The first one involved the production of oxidized phenols arising by the action of wall peroxidases and phenoloxidase (Kojima, 1931; 1366). Venere (1401) recently demonstrated that peroxidase isolated from blight-resistant cotyledons formed a product, which was bactericidal to Xanthomonas malvacearum, when incubated in the presence of catechin and hydrogen peroxide. The production of these two compounds was enhanced during infection. Peroxidases also killed bacteria or fungi by another mechanism which was extensively studied in animal systems. The myeloperoxidase or lactoperoxidase­hydrogen peroxide-halide system is known to have a strong antimicrobial effect (Jago and Morrison, 1962; Klebanoff, 1967; 634, 100 1). The white blood cells are able upon activation to produce all the elements of this system, including hydrogenperoxide. It is tempting to draw a parallel between plants and animaIs regarding the antimicrobial function of peroxidases. Lehrer (1969) demonstrated that in the presence of hydrogen peroxide and potassium iodide, human myeloperoxidase and horseradish peroxidase were rapidly lethal for several species of fungi. Southern bean mosaic virus was also irreversibly inactivated by exposure to horseradish peroxidase, potassium iodide and hydrogen peroxide (1366a). In addition, there is indication that during host-parasite interactions, hydrogen peroxide production was enhanced (98 la). This production of hydrogen peroxide is dependent on wall peroxidase (see Section 2.3.3). The incorporation of iodide in organic compounds in plants has also been established (André, 1973). Thus, the possibility

Page 117: peroxidases ( peroksida )

106 PEROXIDASES 1970/1980

exists that plants use the iodide-hydrogen peroxidase system to kill parasites. Several phenols enhance the bactericidal effect of this system (1366).

Despite ail the positive correlations existing between peroxidases and plant resistance to pathogens, many authors have concluded that peroxidases do not play an active role in the mechanism of defense against infection. This conclusion is often based on the observation that enhanced peroxidase does not always coincide with resistance. For example, when inoculated with Puccinia graminis tritici, leaves of resistant wheat kept at 20°C exhibited an increase of peroxidase activity. After transfer of this resistant plant with increased peroxidase activity to 26°C, reversion to a susceptible infection type occurred, but peroxidase activity did not decrease during the reversion process (1180). Treatment of susceptible lines of wheat with ethylene induced an increase of peroxidase activity to levels above the activity exhibited by resistant leaves, but treated leaves remained susceptible (271 a).

In tobacco, injection of leaves with sorne polyanions induced resistance to mosaic virus and an increase of peroxidase activity, but the two phenomena apparently were not related (1267). Increased peroxidase activity was also observed in tobacco leaves infiltrated with heat-killed bacteria, but this treatment only induced disease resistance in leaves which were not kept in darkness. Similarly, increased peroxidase activity was observed after treatment which did not induce resistance. Nadolny and Sequeira (921) concluded from these data that the peroxidase increase apparently parallels the development of disease resistance and that peroxidases were not directly involved in protection.

Several points however are never discussed in papers concerning l,,;'

the relation between peroxidases and the mechanisms of plant defense :

1) plants may react to pathogens by a release of peroxidases from cells into intercellular spaces, without change in the total measurable activity of the tissue;

2) the enzyme is one element of the peroxidase system and is only active when hydrogen peroxide and phenols (catechin for example) or halide is available.

These two facts could explain why resistance and increased peroxidase activity are not always correlated. However, it is clear that plant peroxidases certainly have bactericidal and fungicidal properties.

Page 118: peroxidases ( peroksida )

PHYSIOLOGY 107

5.4. RESPIRATION

In addition to the components of the tricarboxylic acid cycle, the cytochrome and oxidative phosphorylation system, mitochondria probably contain certain other oxidative enzymes (Nicholls, 1965; Aylward and Haisman, 1969). Mitochondria from both animal (Neuberg et al., 1962) and plant (Hackett and Ragland, 1962; Ivanova et al., 1966) sources do indeed possess peroxidase activity which can be resolved into a variable number of isoenzymes (279, 434). Rubin and Ivanova (1963) showed that peroxidase can provide an alternate route for oxidation of reduced nicotinamide adenine dinucleotide and it was suggested (362) that one or more such mitochondrial peroxidases may constitute a secondary pathway for electron transport without coupling at the third site of oxidative phosphorylation. Further investigations (1103) have revealed the presence of significant levels of peroxidase and hydrogen donor to peroxidase in gradient-purified mitochondria from mung bean hypocotyls. These could easily utilize any hydrogen peroxide produced by the alternate oxidase pathway. Similar experiments performed upon submitochondrial particles demonstrated a rate of H101 production which could easily account for the net electron flux through the alternate pathway. It is postulated (1103) that the alternate pathway reduces oxygen partially to hydrogen peroxide, and that the peroxidase (and catalase) activities of the mitochondria prevent its accumulation.

A strong correlation has been shown to exist between peroxidase activity and respiration rate during germination of rice. This finding has led to peroxidase being considered as part of the respiratory mechanism of the seedlings (999). It has also been observed in many plants that peroxidase activity and respiration rate invariably increase in parallel following infection (Rubin and Ivanova, 1958; 1390).

Several investigations have demonstrated that peroxidase activity increased, with changes in its pattern, with the climacteric rise of fruits (see 500). This has implicated peroxidase in the control of respiration. Particulate peroxidase levels increase 3-fold with the initiation of the respiration climacteric (496). However, these variations might be due to differential phenol inhibition (500).

Page 119: peroxidases ( peroksida )

108 PEROXIDASES 1970/1980

5.5. LIGHT MEDIATED PROCESSES

5.5.1. Peroxidases as pigments

Peroxidases may be considered as pigments since they absorb visible light. The question which naturally arises concerns the possibility that light modifies the catalytic functions of peroxidases or even acts on the physiology ofplants, in part, through its absorption by peroxidases. No definite conclusion one way or the other can be drawn from the literature. There have been many reports on the photochemistry of hemoproteins; e.g., flash photolysis has been used to measure the photodissociation of carbon monoxide complexes of hemoprotein (Hasinoff, 1974). In addition, complexes of peroxidases with cyanide were also found to be photosensitive (Keilin and Hartree, 1955). More recent reports of Stillmann and coworkers (1275, 1276) have shown that low energy polychromatic light of wavelengths between 320 and 450 nm can catalyze the conversion of HRP Compound 1 to Compound II and Compound II to ferriperoxidase. These reactions occurred at room temperature.

Earlier Sano (1147) had shown that upon aerobic oxidation of IAA, HRP was converted to a verdotype substance having absorption maxima at 405, 530 and 670 nm. This substance, designated P670, when kept in darkness, was gradually converted into another substance having absorption maxima at 403, 530 and 630 nm (P630). P630 was reversibly returned to P670 upon light irradiation. Evidence indicated that P630 and P670 had the same chromophore, a formylbiliverdine. P630 was shown to be a complex containing carbon monoxide, dissociable by light to yield P670. The author found that only specific isoperoxidases were transformed into P670 and that P670-like compounds were present in living tissues. The possible physiological significance of these compounds remains to be elucidated.

Page 120: peroxidases ( peroksida )

109 PHYSIOLOGY

5.5.2. Peroxidases and phytochrome

A large number of enzyme activities are dramatically changed during the de-etiolation of dark-grown seedlings (1175). This effect of light is mediated by the chromoprotein, phytochrome. Phytochrome exists under two forms with different absorption spectra. Etiolated dark­grown seedlings only contained P, the form having its maximum

- r absorption at 660 nm. Vpon irradiation, up to 80 per cent of the phytochrome molecules were converted to Prr , the form having its maximum absorption at 730 nm. P the so-called active form ofrr, phytochrome, is responsible for the changes observed in enzymatic activity. Red light, which increases Prr percentage has physiological effects opposite to far-red light, which decreases Pre Operationally, an enzyme regulated by phytochrome should react in an opposite way to red and to far-red light (1175).

The regulation of peroxidase by phytochrome was described by several authors (Mohr, 1972; 1175, 1237). Light often induces an increase of peroxidase activity in etiolated seedlings. This was reported in mustard cotyledons (1176), maize leaves (1194), bean hypocoty1 hook (292) and root and cotyledons of radish (592). The development of extractable peroxidase activity in the mustard seedling was controlled by phytochrome in an organ specific manner, i.e., enhancement in the cotyledon and taproot, inhibition in the hypocotyl (1 I76). The same specificity was observed in radish seedlings (592). Schopfer (l174a, 1175) made a distinction between modulation and determination as modes of regulation in phytochrome-mediated photomorphogenesis. In mustard cotyledon the response of peroxidases to light involved two steps. In the first one, the response was induced by Prr while in the second one the increase of peroxidase activity occurred. Schopfer suggested that in the first light requiring step, inactive peroxidases were synthetized and that in the second step these inactive enzymes became activated by a process not involving PI;-. In contrast, the peroxidase activity in etiolated maize leaves was photomodulated (1194). This means that peroxidase activity increased as long as P,Ir was present. In a series of papers Sharma and coworkers have reported that (i) the regulation of peroxidase activity by phytochrome did not involve the participation of kinetin, gibberellin, acetylcholine or c-AMP (1195), (ii) that there was an age dependence of the phytochrome regulation of peroxidase which mainly affected the 'soluble peroxidase' (1196), (iii) that photosynthesis was not involved in this regulation (1197).

Page 121: peroxidases ( peroksida )

110 PEROXIDASES 1970/1980

Lu~ v .

1­:r: CéJ -J

LL o 1­o LL

LL Lu

1­o Lu ct Cl <

@

:r: .c-t> CéJ OJI-~-i>:::J :::-i>

lL "0-<>

o 1­o LL Lu LL LL Lu

1­U Lu ce Cl

- --t>

~--~ tU---!>

@)

f.t\0 ° ° ° 00­~ ~ N N ~

(IOJjUO) 0/0) ,(l''''po asop,.oJad u, sa6uo4:::>

°

co

-0

1: Dl

~:.::

"U

~

o

~ '" Q)

::J C

E 0",

$2~ ~

o ~

~

Q)

c co~

o "U

~

Q)

-0; c

E

~

'" !:.

°

Fig 15. Effect of 2 min far red light on the actlvlty of a basic peroxidase activity extracted from vertical leaves of spinach afi:er irradiation. The effect of light is similar in directly illuminated (a) or in darkened (b) leaves (after Karege, 1981; Karege el al. 1982).

Page 122: peroxidases ( peroksida )

PHYSIOLOGY 111

As far as light-grown green plants are concerned little is known about the possible relation existing between phytochrome and peroxidases.

-Actually, the physiology of phytochrome in non-etiolated plants is not yet fully investigated. A peroxidase with, a basic isoelectric point, extracted at high pH from spinach was shown to rapidly react to short irradiations with red or far-red light (1019,1020). This peroxidase activity underwent a fluctuation after an irradiation of 1 or 2 min (Fig. 15a) and the shape of the fluctuations was dependent on the light quality. An interesting fact concerning this effect was that the photoconversion of phytochrome in sorne leaves of the plant immediately modified the peroxidase activity in other leaves (Fig. 15b; 1021, 1026). This implied the fast transmission of sorne signal from leaves to leaves which was triggered by phytochrome photoconversion. This transmission was inhibited by several substances including lithium chloride, EGTA and the Ca2+ ionophore A23187 (Karege et al., 1982). Figure 16 shows a mode! which accounted for the experimental data (1026) : the transmission of the signal generated by phytochrome would result from changes in K+ distribution; K+ changes would be correlated with modification of cellular Ca2+ which itself controis peroxidase activity distribution and/or synthesis within the cells. Red and far-red light was also reported to affect peroxidase pelletability in extracts from spinach leaves. This is possibly due to a different association of peroxidases to the plasmalemma (1023). An effect of phytochrome conversion in vitro was also demonstrated in membrane suspensions of Cucurbita pepo (1025). ln that case, red and far-red light pulses changed the peroxidase activity associated to membranes in an opposite way.

The quality of light under which plants are grown seems to have a great influence on peroxidase activity. In tomato leaves infected with Septoria lycopersici peroxidase activity was greater under green and red light and lower under orange and blue light (92, 93). ln spinach leaves, peroxidase activity was greater under blue light than under red light (Penel, 1976). In this latter case, no qualitative differences in the isoperoxidase patterns were observed between blue- and red-light grown spinach. The difference in total activity was due to cationic peroxidases which were more active under blue light. Disks from leaves grown under blue light also destroyed IAA more effectively than disks from leaves grown under red light. This observation is in agreement with the fact that spinach leaves are smaller under blue light.

Page 123: peroxidases ( peroksida )

112 PEROXIDASES 1970/1980

PLA N Tirrodioted leof non- irrodioted leof

! ---- 1. 1 1 ~ ~ 9~ peboes-stem r=~ !1

.C 0 \ ~ ,', .... ------------------ , ':0"''' ,,' K+S1 GNA L ", ~'R

r~Oh~tOëh,~·-~--->-,~:---:.:r;/ftK+~o 'Q,o..o..

I··~·~ ~_ ll- . ' ­(c02+ --------symJfast"""~-- - --_ ... ­

C02 +

light

R/FR

Fig. 16. Tentative model to explain how light given to a leaf can induce changes in peroxidase activity in that leaf as weil as in another leaf, kept in the dark (after Penel et al. 1026).

Finally, germicidal ultraviolet light enhances peroxidase actlVlty in detached bean leaves, inducing the appearance of two isoperoxidases. The effect of uv is partially reversed by near-uv (SOl).

5.5.3. Photoperiodic control and flowering

The relative length of the day and night is a major element in the determination of plant growth and development. Therefore, it can be expected that peroxidases would be affected by photoperiod. Unfortunately, there are only a few published studies on this aspect of the regulation of peroxidases by light. Warner and Upadhya (1968) showed that the shoot tips of Clementine tangerine and of trifoliate

Page 124: peroxidases ( peroksida )

113PHYSIOLOGY

orange had higher peroxidase activity when grown under long days as compared with short day-grown seedlings. In tobacco leaves, a group of isoperoxidases which migrate slowly toward the anode was found to become less active with increased day lengths (295). These two reports appear to be contradictory. However, Parish (1969) has shown that in wheat, light decreased the specific activity of peroxidase in leaves and increased it in coleoptiles. One could reasonably expect that light wouId have different effects on different organs, as it has opposite effects on the growth rate.

A study with Cichorium leaf tissues showed that tissues cultured in darkness have a greater peroxidase activity than those cultured under light. Transfer of tissues from darkness to light induced a decreased activity and vice-versa. Phenolics in light- and dark-grown leaves were distributed in an inverse manner. This study leads to the conclusion that peroxidase activity could be controlled by phenolic compounds which primarily respond to light (746, 749). That phenolics vary qualitatively and quantitatively on exposure to light is a well-established fact (e.g., Engelsma, 1969). As an example, the oxidation of IAA by peroxidases from Pharbitis cotyledons is strongly affected by the presence of phenolic inhibitors. These inhibitors change according to the light conditions and could be responsible for the differences in enzyme activity observed (Konishi and Galston, 1964).

Peroxidase activity was extensively studied in relation to photoperiod and floral induction in spinach, a long-day plant. As far as total peroxidase activity is concemed, it appeared that young and old leaves react differently to photoperiod. In young leaves, peroxidase activity was stronger at the beginning of the short day than at the end, whereas in old leaves the activity was stronger at the end (Penel, 1976).

In addition, the peroxidase activity followed a characteristic time­course during the life of the plant, reaching a minimum at the time when spinach becomes induced to flower (658) (see also Section 5.1.2). The floral induction was also characterized by a change in the balance between acidic and basic isoperoxidases (1022). Particular attention was paid to the basic isoperoxidases which responded rapidly to phytochrome photoconversion, as mentioned earlier. The shape of the fluctuation of this peroxidase activity, following a 2-minute irradiation with red or far-red light, was different in vegetative or in induced spinach leaves (660, 10 19, 1020). This difference could be used as a quick test to discriminate induced from non-induced leaves, as the

Page 125: peroxidases ( peroksida )

114 PEROXIDASES 1970/1980

differences appeared weB before the onset of floral differentiation in the shoot apex. The transition from the shape characteristic of non­induced spinach to the induced one occurred soon after the end of the critical photoperiod, namely after 14 hours of light (660, 661). Several physical or chemical factors which promoted or delayed floral induction could be studied by using this peroxidase response as an indicator (Karege, 1981).

In summary, it is therefore possible to explain many physiological processes in the plant by involving specifie classes of peroxidases in functions in which they have clearly been shown to be capable of in vitro, and in many cases in vivo as weil. This role of peroxidases could represent course control ofgrowth and development, in which peroxidases respond to and interact with other factors such as phytohormones and metabolites as a consequence of any perturbation in the environment.

REFERENCES

For numbered references in the text, see bibliographical section

ADDICOTT, T.T. 1970. Plant hormones in the control ofabscission. BIOL. REV. 45: 485-524.

ALVAREZ, M.R. 1968. Temporal and spatial changes in peroxidase activity during fruit development in Encyclia tampensis (Orchidaceae). AMER. J. BOT. 55: 619-625.

ANDRE, S. 1973. Destinée des iodures fixés dans les racines des jeunes plantes (Blé et Pois). C.R. ACAD. SOc. BIOL. 167: 196-199.

AYLWARD, F.; HAJSMAN, D.R. 1969. Oxidation systems in fruit and vegetables. Their relation to the quality of preserved products. AD. FD. RES. 17: 1-76.

Page 126: peroxidases ( peroksida )

115PHYSIOLOGY

BAKER, J.E.; WANG, c.Y.; LIEBERMAN, M.; HARDENBURG, R. 1977. Delay of senescence in carnations by a rhizobitoxine analog and sodium benzoate. HORTSCIENCE 12: 38-39.

BASU, P.S.; TULI, V. 1972. Auxin activity of 3-methyleneoxindole in wheat. PLANT PHYSIOL. 50: 499-502.

BEAUCHAMP, c.; FRIDOVITCH, I. 1970. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J. BIOL. CHEM. 245: 2641-2646.

BEYER, E.M. Jr.; MORGAN, P.W. 1970. Effect of ethylene on the uptake, distribution, and metabolism of indoleacetic-I-C 4 and ­2_C 4 and naphthalene acetic acid -1-C_ 14

• PLANT PHYSIOL. 46: 157-162.

BOUILLENNE-WALRAND, M.; LEYH, c.; BASTIN, M.; GASPAR, Th. 1967. Extraction, dosage, analyse chromatographique et caractérisation des effecteurs auxines-oxydasiques des feuilles de Zea mays (variété naine) traité par l'acide gibbérellique. BULL. SOc. ROY. BOT. BELG. 100: 153-162.

BRENNAN, T.; FRENKEL, C. 1977. Involvement of hydrogen peroxide in the regulation of senescence in pear. PLANT PHYSIOL. 59: 411-416.

CARFANTAN, N.; DAUSSANT, J. 1975. Preliminary study of tulip protein during senescence. ACTA HORTiC. 41: 31-43.

CHROMETZKA, P. 1958. Untersuchungen über den Wuchsstoff­oxydase-Haustalt der Oenotheren mutanten helix und nanel/a. PLANTA 51: 321-328.

CLARE, B.; WEBER, D.J.; STAHMANN, M.A. 1966. Peroxidase and resistance to Ceratocystis in sweet potato increased by volatile material. SCIENCE 153: 62-63.

COOMBE, B.G. 1960. Relationship of growth and development to changes in sugars, auxins and gibberellins in fruit of seeded and seedless varieties of Vitis vinijera. PLANT PHYSIOL. 35: 241-250.

DARIMONT, E.; GASPAR, Th.; HOFINGER, M. 197!. Auxin­kinetin interaction on the lentil root growth in relation to indoleacrylic acid metabolism. Z. PFLANZENPHYSIOL. 64: 232-240.

DESBIEZ, M.O.; BOYER, N.; GASPAR, Th. 198!. Hypocotyl growth and peroxidases of Bidens pilosus. Effect of cotyledonary prickings and lithium pretreatment. PLANT PHYSIOL. 68: 41-43.

Page 127: peroxidases ( peroksida )

116 PEROXIDASES 1970/1980

DHINDSA, RS.; PLUMB-DHINDSA, P.; THORPE, T.A. 1981. Leaf senescence : correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. EXP. BOT. 32: 93-101.

ENGELSMA, G. 1969. The influence of light of different spectral regions on the synthesis of phenolic compounds in gherkin seedlings, in relation to photomorphogenesis. VI. Phenol synthesis and photoperiodism. ACTA BOT. NEERL. 18: 347-352.

EVANS, J.J.; ALLDRIDGE, N.A. 1965. The distribution of peroxidases in extreme dwarf and normal tomato (Lycopersicon esculentum Mill.). PHYTOCHEM. 4: 499-503.

FARKAS, G.L.; KIRALY, Z. 1958. Enzymological aspects of plant diseases. 1. Oxidativeenzymes. PHYTOPATHOL. Z.31:251-272.

FRENKEL, c.; DYCK, R 1973. Auxin inhibition of ripening in Bartlett pears. PLANT PHYSIOL. 51: 6-9.

FRENKEL, c.; HADDON, V.R; SMALLHEER, J.M. 1975. Promotion of softening and ethylene synthesis in Bartlett pears by 3-methyleneoxindole. PLANT PHYSIOL. 56: 647-649.

GALSTON, A.W.; DAVIES, P.J. 1969. Hormonal regulation in higher plants. SCIENCE 163: 1288-1297.

GALSTON, A.W.; WARBURG, H. 1959. An analysis of auxin­gibbereIlin interaction in pea stem tissue. PLANT PHYSIOL. 34: 16-22.

GASPAR, Th. 1965. Les auxines-oxydases: chimie et physiologie. L'ANNEE BIOL. 4: 437-440.

GASPAR, Th. 1981. Rooting and flowering, two antagonistic phenomena from a hormonal point of view. In 'ASPECTS AND PROSPECTS OF PLANT GROWTH REGULATORS'. Monograph 6. Jeffcoat, B. (Ed.). British Plant Growth Regulator Group, Wantage, pp. 39-49.

GASPAR, Th.; BASTIN, M.; LEYH, C. 1964. Composés phénoliques, acides p-indolylacétique et activité auxines-oxydasique. BULL. CL. Sc. ACAD. ROY. BELG. 50: 799-815.

GASPAR, Th.; BOUILLENNE-WALRAND, M. 1966. L'activité auxines-oxydasique régulatrice de la croissance après traitement à l'acide gibbérellique. In 'LES PHYTOHORMONES ET L'ORGANOGENESE'. Les Congrès et Colloques de l'Université de Liège 38: 411-420.

Page 128: peroxidases ( peroksida )

117 PHYSIOLOGY

GASPAR, Th.; LACOPPE, J. 1968. The effect of CCC and Amo­1618 on growth, catalase, peroxidase and indoleacetic acid oxidase activity of young barley seedlings. PHYSIOL. PLANT. 21: 1104-1109.

GILBART, D.A.; SINK, K.C. 1971. Regulation of endogenous indoleacetic acid and keeping quality of poinsettia. J. AMER. SOc. HORnc. SCI. 96: 3-7.

GORTER, Ch.J. 1961. Dwarfism of peas and the action of gibberellic acid. PHYSIOL. PLANT. 14: 332-343.

HACKETT, D.P.; RAGLAND, F.E. 1962. Oxidation and menadiol by fraction isolated from non-photosynthetic plant tissues. PLANT PHYSIOL. 37: 656-662.

HALE, C.R.; COOMBE, B.G.; HAWKER, J.S. 1970. Effects of ethylene and 2-chloroethylphosphonic acid on the ripening of grapes. PLANT PHYSIOL. 45: 620-623.

HARE, R.C. 1964. Indoleacetic acid oxidase. BOT. REV. 30: 129-165. HASINOFF, B.B. 1974. Kinetic activation volumes of the binding

of oxygen and carbon monoxide to hemoglobin and myoglobin studied on high-pressure laser flash photolysis apparatus. BIOCHEM. 13: 3111-3117.

HOFINGER, M.; CHAPELLE, B.; BOYER, N.; GASPAR, Th. 1979. GC-MS identification and titration of IAA in mechanically perturbed Bryonia dioica. PLANT PHYSIOL. (suppl.) 63: 52.

HOFINGER, M.; GASPAR, T.; MENARD, D. 1980. Effets de l'acide indolylacrylique, de la kinétine, de l'acide abscissique et du méthylèneoxindole sur la croissance et la production d'éthylène par des racines de Lentille. C.R. ACAD. Sc. PARIS 290: 139-142.

IVANOVA, T.M.; DAVYDOVA, M.A.; RUBIN, B.A. 1966. Mitochondrial peroxidase and its probable role in oxidative processes. BIOKHIM. 31: 1167-1173.

. JAFFE, M.J. 1973. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation, with special reference to Bryonia dioica. PLANTA 114: 143 -157.

JAGO, G.R.; MORRISON, M. 1962. Antistreptococcal activity of lactoperoxidase III. PROC. SOc. EXP. BIOL. MED. III: 585-588.

KAMERBEEK, G.A. 1956. Peroxidase content of dwarf types and giant types of plants. ACTA BOT. NEERL. 5: 257-263. .

KAREGE, F. 1981. Activité peroxydasique : indicateur de floraison et d'interrelations organiques chez Spinacia oleracea. Ph.D. Thesis No. 1998, University of Geneva, Switzerland.

Page 129: peroxidases ( peroksida )

118 PEROXIDASES 1970/1980

KAREGE, F.; PENEL, c.; GREPPIN, H. 1982. Rapid correlation between the leaves of spinach and the photocontrol of a peroxidase activity. PLANT PHYSIOL. In press.

KEILIN, O.; HARTREE, E.F. 1955. Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation. BIOCHEM. J. 61: 153-171.

KEVERS, C. 1981. 2,4-0 control of auxin protectors in sugarbeet callus. ARCH. INT. PHYSIOL. BIOCHIM. 89: B65-B66.

KEVERS, c.; COUMANS, M.; DE GREEF, W.; HOFINGER, M.; GASPAR, Th. 1981 a. Habituation in sugarbeet callus : auxin content, auxin protectors, peroxidase pattern and inhibitors. PHYSIOL. PLANT. 51: 281-286.

KEVERS, c.; COUMANS, M.; DE GREEF, W.; JACOBS, M.; GASPAR, Th. 1981 b. Organogenesis in habituated sugarbeet callus : auxin content and protectors, peroxidase pattern and inhibitors. Z. PFLANZENPHYSIOL. 101: 79-87.

KLEBANOFF, S.J. 1967. Iodination of bacteria : a bactericidal mechanism. J. EXP. MED. 126: 1063-1077.

KOJIMA, S. 1931. Studies on peroxidase. II. The effect of peroxidase on bactericidal action of phenols. J. BIOCHEM. (Tokyo) 14: 95-109.

KONISHI, M.; GALSTON, A.W. 1964. Light-induced changes in phenolic inhibitors of indoleacetic acid oxidase in cotyledons of Pharbitis nif. PHYTOCHEM. 3: 559-568.

KOSUGE, T. 1969. The role of phenolics in host response to infection. ANN. REV. PHYTOPATHOL. 7: 195-222.

KURAISHI, S.; MUIR, R.M. 1962. Increase in diffusable auxin after treatment with gibberellin. SCIENCE 137: 760-761.

LACOPPE, J.; GASPAR, Th. 1968. Action du CCC et de l'Amo­1618 sur la germination, la croissance et les activités AIA­oxydasique, peroxydasique, catalasique in vitro et in vivo de la racine de Lentille. PLANTA 80: 27-33.

LEHRER, R.I. 1969. Antifungal effects of peroxidase systems. J. BACTERIOL. 99: 361-365.

LEYH, c.; GASPAR, Th.; BOUILLENNE-WALRAND, M. 1963. Nanisme, acide gibbérellique et effecteurs auxines-oxydasiques chez Zea mays. BULL. SOc. ROY. Sc. LIEGE 32: 430-448.

MACNICOL, P.K. 1966. Peroxidases of the Alaska pea (Pisum sativum L.). ARCH. BIOCHEM. BIOPHYS. 117: 347-356.

Page 130: peroxidases ( peroksida )

PHYSIOLOGY 119

MCCUNE, D.C.; GALSTON, AW. 1959. Inverse effects ofgibberellin on peroxidase activity and growth in dwarf strains of peas and corn. PLANT PHYSIOL. 34: 416-418.

MARIGO, G. 1979. Polyphénols et croissance végétale. Essai d'évaluation du rôle joué in vivo par les composés phénoliques chez Lycopersicum esculentum. Ph.D. Thesis No. 859. University of Toulouse, France, pp. 1-161.

MATlLE, P.; WINKENBACH, F. 1971. Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory (lpomoea purpurea). J. EXP. BOT. 22: 759-771.

MATTOO, AK.; MODI, V.v. 1969. Ethylene and ripening of mangoes. PLANT PHYSIOL. 44: 308-310.

MAYAK, S.; HALEVY, AH. 1980. Flower senescence. In 'SENESCENCE IN PLANTS'. Thimann, K.V. (Ed.). CRC Press, pp. 131-156.

MILLS, AK.; CROWDEN, RK. 1968. Distribution of soluble proteins and enzymes during early development of Pisum sativum. AUST. J. BIOL. SCI. 21: 1131-1141.

MISHRA, S.D.; GAUR, B.K.; BEDEKER, W.M.; SINGH, B.B. 1976. Isolation, identification, and significance of free radicals in senescing leaves. ACTA BOT. IND. 4: 131-138.

MOHR, H. 1972. Lectures on photomorphogenesis. Springer Verlag, Berlin - Heidelberg - New York, 237 p.

MORGAN, P.W.; DURHAM, J.D. 1972. Abscission: potentiating action of auxin transport inhibitors. PLANTPHYSIOL. 50:

313-318. MUMFORD, F.E.; SMITH, D.H.; CASTLE, J.E. 1961. An inhibitor

of indoleacetic acid oxidase from pea tips. PLANT PHYSIOL. 36: 752-756.

NAKAMURA, W.; NOZU, Y. 1967. Studies on the biosynthesis of ligilin. II. Purification and properties of peroxidases from bamboo shoot. J. BIOCHEM. 62: 308-314.

NEUBERT, D.; WOJTCZAK, AB.; LEHNINGER, AL 1962. Purification and enzymatic identity of mitochondrial contraction­factors 1 and II. PROC. NAT. ACAD. SCI. (USA) 48: 1651-1658.

NICHOLLS, P. 1965. Oxidation and peroxidation. J. GEN. PHYSIOL. 49: 131-147.

NISCHIO, M.; SHon, S.; ISHII, T.; FURUYA, T.; SYONO, K. ,1976. Mass fragmentgraphic determination of indole-3-acetic acid in caHus tissues of Panax ginseng and Nicotiana tabacum. CHEM. PHARM. BULL. 24: 2038-2042.

Page 131: peroxidases ( peroksida )

120 PEROXlDASES 1970/1980

NITSCH, J.P.; NITSCH, C. 1959. Modification du métabolisme des auxines par l'acide gibbérellique. BULL. SOc. FR. PHYS. VEG. 5: 20-23.

PARADIES, 1.; ELSTNER, E.F. 1980. Wirt-Parasit-Beziehungen: Untersuchungen zur Induktion der Athylenbildung in Hüheren Planzen und zur Rolle des Athylens bei der Auspragung von Krankheitssymptomen und der Einleitung von Abwehrreaktionen. BER. DEUTSCH. BOT. GES. 93: 635-657.

PARISH, R.W. 1969. The efTects of light on peroxidase synthesis and indole acetic acid oxidase inhibitors in coleoptiles and first­leaves of wheat. Z. PFLANZENPHYSIOL. 60: 90-97.

PENEL, C. 1976. Activité peroxydasique et développement chez Spinacia oleracea. Ph.D. Thesis No. 1667, University of Geneva, Switzerland, pp. 1-160.

PILET, P.E.; COLLET, G. 1960. Etude du nanisme. 1. Action de l'acide gibbérellique sur la croissance et la destruction in vitro des auxines. BULL. SOc. BOT. SUISSE 70: 180-194.

PILET, P.E.; GASPAR, Th. 1968. Le catabolisme auxinique. Masson et Cie, Paris, pp. 1-148.

PUGIN, A.; GALLOIS, T.; PERESSE, M.; DUBOUCHET, J. 1979. Présence des deux glycopeptides du Phialophora cinerescens dans la tige de l'oeillet expérimentalement infecté. PHYTOPATH. Z. 96: 172-184.

ROBERTS, L.W. 1974. Does 3-methyleneoxindole possess auxin activity? J. EXP. BOT. 25: 761-763.

RUBIN, B.A.; IVANOVA, T.M. 1958. Oxidative transformations of amino acids during the action of cabbage tissues of the fungus Botrytis cinerea. BIOKHIM. 23: 540-546.

RUBIN, B.A.; IVANOVA, T.M. 1963. On the oxidase function of plant peroxidase. LIFE SCL 4: 281-289.

SHANNON, L.M.; KAY, E.; LEW, J.Y. 1966. Peroxidase isozymes from horseradish roots. 1. Isolation and physical properties. J. BIOL. CHEM. 241: 2166-2172.

SKOOG, F.; MILLER, C.O. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. SYMP. SOc. EXPTL. BIOL. II: 1I8-l31.

SKYTT ANDERSEN, A.; MOLLER, LB.; HANSEN, J. 1972. 3­Methyleneoxindole and plant growth regulation. PHYSIOL. PLANT. 27: 105-108.

Page 132: peroxidases ( peroksida )

PHYSIOLOGY 121

SMITH, D.R.; THORPE, T.A 1977. Root initiation in cuttings of Pinus radiata seedlings : efTects of aromatic amino acids and simple phenylpropanoids. BOT. GAZ. 138: 434-437.

STONIER, T. 1970. The role of auxin protectors in autonomous growth. In 'LES CULTURES DE TISSUS DE PLANTES'. Colloque int. CNRS, Strasbourg, pp. 423-435.

SUTCLIFFE, J.F.; ARCH, P.O.; LEGETT, P.A.; PHILLIPS, 8.J.; SEXTON, R. 1969. Enzymic changes occurring during the deveIopment of the abscission zone of Coleus blumei. Abstracts. XIth Internat. Bot. Congress Seattle, U.S.A, 213.

SYONO, K.; FURUYA, T. 1972. EfTects of cytokinins on the auxin requirement and auxin content of tobacco calluses. PLANT CELL PHYSIOL. 13: 843-856.

TULI, V.; MOYED, H.S. 1967. Inhibitory oxidation products of indole-3-acetic acid :. 3 hydroxymethyloxindole and 3­methyleneoxindole as plant metabolites. PLANT PHYSIOL. 42: 425-430.

TULI, V.; MOYED, H.S. 1969. The role of 3-methyleneoxindole in auxin action. J. BIOL. CHEM. 244: 4916-4920.

VANCE, c.P.; KIRK, T.K.; SHERWOOD, R.T. 1980. Lignification as a mechanism of disease resistance. ANN. REY. PHYTOPATHOL. 18: 259-288.

VAN OVERBEEK, J. 1935. The growth hormone and the dwarf type of growth in corn. PROC. NAT. ACAD. Sc. (USA) 21: 292-299.

VENDRELL, M. 1969. Reversion of senescence : efTects of 2,4­dichlorophenoxyacetic acid and indoleacetic acid on respiration, ethylene production, and ripening ofbanana fruit slices. AUST. J. BIOL. SCI. 22: 601-610.

WARNER, R.M.; UPADHYA, M.D. 1968. EfTect of photoperiod on isozyme composition of Citrus and Poncirus. PHYSIOL. PLANT. 21: 941-948.

WIEMKEN-GEHRING, Y.; WIEMKEN, A; MATILE, P. 1974. Mobilization von ZellwandstofTen in der welkenden Bluten von lpomoea tricolor (Cav.). PLANTA 115: 297-307.

WINKENBACH, F.; MATILE, P. 1970. Evidence for de novo synthesis of an invertase inhibitor protein in senescing petaIs of lpomoea. Z. PFLANZENPHYSIOL. 63: 292-295.

Page 133: peroxidases ( peroksida )
Page 134: peroxidases ( peroksida )

CHAPTER 6 L"· .

PRACTICAL APPLICATIONS OF PEROXIDASES

Since the paper of Peirce and Brewbaker (1010), reviewing the applications of the analysis of isoforrns of difTerent enzyme systems, proposais for the practical use of peroxidase as indicator of plant status have increased.

Peroxidase electrophoresis is an efficient tool for large - scale genetic investigations (1145) such as : identifying ramets, populations or species hybrids, deterrnining the efTect of inbreeding and pollen migration on the genetic structure of population and seed orchards; or aiding breeding programs through indirect selection or through development of breeding procedures.

Peroxidase electrophoresis has been proposed as an aid to identification and phylogenetic studies of oat varieties or cultivars (22, 1226, 1469, 1470), Datura species (241), peanut cultivars (211), flax genotypes and genotrophs (Tyson, 1969; 384, 385, 1353-1357), Nicotiana species (Trinh et al., 1981; 574,1081,1201), Petunia and Poinsettia cultivars (935, 1428), barley and wheat varieties (685-687, 1055), tulip cultivars and their parrot mutants (1145), tomato species and mutants (847, 1107), Aegi/ops species (1304), Oryza species (984), and several plants at difTerent phylogenetic positions (53). Peroxidase isoenzymes also served to characterize avocado cultivars, to document parentages, and to detect outcrossing (1333-1335).

Although there is at present no conclusive proof that the isozyme bands are direct gene products, it is evident that each genotype has a recognizable isozyme pattern. The interspecific hybrids generally show an additive pattern of parental peroxidases, which explains the

Page 135: peroxidases ( peroksida )

124 PEROXIDASES 1970/1980

weak activity or the absence of certain bands which are present in one parent only (Trinh et al., 1981 ; 120 l, 1470). This apparently demonstrates the mendelian inheritance of peroxidase isozymes, as originally suggested by Hoess et al. (574) and confirmed by Snyder and Hamaker (1245).

Peroxidase can be used as a biochemical marker of sex expression. Peroxidase activity is greater in gynoecious than in monoecious cucumber plants while no differences were found in isoenzyme patterns (1095). Specifie anodic peroxidases on the other hand constitute early markers of staminal differentiation in Mercurialis annua (644-646). In both types of plants however, the differences are connected with different hormones levels, and hormonal treatments inducing changes in sex expression also modify the enzyme status.

Data concerning specifie activities and isoperoxidase multiplicities in relation to the ploidy status are relatively few (II, 338, 1043, 1158, 1251). In several varieties of beets and sugarbeets which differed in ploidy level, significant differences were shown in the activity and in the number of isoenzymes (Lobotskaya et al., 1968; Platon and Ciurea, 1969; 338). In sugarbeet, polyploidy induces a higher number of isoenzymes for peroxidase but a lower number for esterase, acid phosphatase and glutamic dehydrogenase (1251). Trinh et al. (1981) working with the Nicotiana genus clearly shows an increasing gradient in number and in intensity of the peroxidase bands from the hypohaploids to the diploids. The previously mentioned qualitative differences (1081) should be reevaluated since the absence of one band may simply be due to the low concentration of the isoenzyme in the extract. It is important to note (Trinh et al., 1981) that the ploidy-related differences are only detectable when the same chronological and physiological stages are taken into account. The most striking example of this is in the case of the hypohaploids which develop aIl the bands present in the haploids and diploids when increasing in age and remaining vegetative.

Results of peroxidase analyses in tomato plants (II) suggest that the gene expression of the double gene dosage is enhanced in sorne cases and depressed in others, resulting in a more unfavourable balance of the metabolic processes. Furthermore using tomato mutants, Soressi et al. (1248, 1249) concluded that the zymograms and total peroxidase activities were not significantly correlated with a particular plant or leaf trait. It may be inferred that mutations may influence directly or indirectly the level of peroxidase activity without affecting the genes which code for the peroxidase isozymes themselves.

Page 136: peroxidases ( peroksida )

PRACTICAL APPLICATIONS 125

In the Datura tetraploid, an isogenic and chromosomally 'balance type', Smith and Conklin (1981) found no change from the diploid in peroxidase activity. A genetic interpretation consistent with the resuIts would be that the enhanced activity due to an increase in dosage of the structural gene(s) is balanced by an increased production of repressor(s) of gene activity, due to an increased dosage of regulatory genes. This, together with the results of Trinh et al. (1981), shows how difficult the interpretation of isozyme profiles can be, if factors such as inheritance, ploidy leveland physiological state are not taken into account.

We have mentioned earlier the role of peroxidase in fruit development. Consequently, it has been considered as a possible parameter of ripening and senescence (471).

A number of investigators have correlated the production of viny or straw-Iike flavors to peroxidase activity. Arising from the studies of Gardner et al. (1969), modification of peroxidase activity could thus be a criterion of (loss of) quality in foods inadequately processed, including corn products.

From the previously discussed relationship between peroxidase (mainly cathodic forro), capacity of growth, and auxin availability for growth, it has been suggested that peroxidase could have a possible predictive value for sugarbeet. Peroxidase activity has been a suitable parameter for establishing the degree of superiority among seedlings of new sugarbeet hybrids, since a correlation was established between the activity of the enzyme, the mean fresh weight and the sugar yield (338, 435, 1251). A similar relationship of peroxidase activity with grain weight has been established for different varieties of bread wheat (1230).

Peroxidase has also been cited as a screening parameter for difJerent physiological stresses. An elevated peroxidase Ievel is induced by cold (Gerloff et al., 1967; Highkin, 1967; De Jong et al., 1968), drought (Stutte and Todd, 1967; Viera-de-Silva, 1968), hypoxia (Siegel et al., 1966) and salt stress (Strogonov, 1964; Rakova et al., 1969; 1273).

Peroxidase activity can also be taken as an indicator of diffèrent ion status (55, 98), deficiency (307, 1140) or toxicity (913) and as a biochemical marker for different types of pollution (263, 395, 733, 811, 839, 1329). Plant peroxidases have often been used as a marker for studying the response of plants to severaI air pollutant~. Fluoride (Lee et al., 1966; 670, 672, 759, 1048), ozone (Dass and Weaver, 1968; 262, 263, 285, 359), S02 and N02 (579, 580), lead (811), zinc (946) or gaseous HCI (359) were reported to have an effect on the

Page 137: peroxidases ( peroksida )

126 PEROXIDASES 1970/1980

level of peroxidase activity of several plant species. Peroxidases are generally considered to be the most sensitive indicator of pollutants in the absence of visible injury. The most commonly observed response of peroxidases to poll,ution is an increase of their activity. In a few cases, sorne effect on the isoperoxidase profile was reported (262, 263, 285, 811). Peroxidases have proven useful in determining areas where plants were affected by F-containing exhausts of an aluminium smelter (670). It was possible to detect hidden injury in several tree species before the appearance of any visible symptom. Peroxidase activity also allows one to measure the effect of pollution on plants in the vicinity of a highway (395). It was also clearly established that in streets with an intense motor traille, Sedum album leaves exhibited maximum peroxidase activity when traille was maximum (l87a). In that case, the time of the higher peroxidase activity was weIl correlated with the time of higher concentration of air pollutants (CO, NO, S02)'

Increased peroxidase activity resulting from an exposure to pollutants does not appear to be a general mIe. As an example, great differences in peroxidase activity have been found in pine needles of 58 families growing at differing distances from zinc-works (946). These different reactions, which reduce the diagnostic value of peroxidase activity, could be dependent on genetic characters. In addition, Endress et al. (359) observed that peroxidase activity levels may be elevated by subjecting plants to air pollutant stress. However, the activity was also sensitive to the internaI physiological conditions of the plants. The author came to the conclusion that due to its extreme sensitivity peroxidase activity was not a reliable indicator of pollutant stress.

The reason why plant peroxidases are more active under pollution is not known. Several comparisons may be made between the reaction of peroxidases to pollution and to infection. For example, upon ozone exposure, the peroxidase activity of an ozone-tolerant cultivar of soybean is less affected than the activity of an ozone sensitive cultivar (263). This may be compared to the differences observed between resistant and susceptible plants (see Section 53). In the same way, peroxidase reaction to air pollution often exhibits cornmon features with that observed after infection (285, 482). Finally, plants already exposed to a pollutant appear to be less responsive to a new exposure as compared to plants coming from a non-polluted environment (580). This resembles the acquired resistance following an infection.

Page 138: peroxidases ( peroksida )

PRACTICAL APPLICATIONS 127

In animaIs too peroxidase activity can be taken as an indicator of pollution. As an example, effects of sorne industrial pollutants and factory effluents on fish kidney peroxidase activity were recorded in Ophicephalus punctatus and Clarias batrachus (911).

Extreme anodic and cathodic peroxidases have been involved both in inductive and initiative processes of root formation (see Section 5.1.2). Thus it has been proposed (449) to use their respective activities to select, from among different Asparagus plants, those individuals or segments which are most likely to succeed in rooting on a defined medium. The effectiveness of a prerooting treatment, as well as the seasonal variation in rooting ability, can be monitored using peroxidases as indicators. Thus these enzymes can be exploited as a sereening test for difJerentiating the efficiency ofchemicals in the regulation of different physiological processes.

These are a few examples of the potential practical· exploitation of peroxidase and its isozyme forms. On the basis of their participation in various physiological processes, many others can be imagined. One such possibility is the selection between disease resistant and susceptible types (see Section 5.3). However, to date the potential diagnostic application of peroxidases remains unfulfilled.

In addition to their applications in physiological and genetical studies, peroxidases are widely used as tracers in neurology and for the immunodetection of a great number of molecules. These two subjects account for a great part of the papers dealing with peroxidases but are not covered by the present book.

Page 139: peroxidases ( peroksida )

128 PEROXIDASES 1970/1980

REFERENCES

For numbered references in the text, see bibliographical section

DASS, H.C.; WEAVER, G.M. 1968. Modification of ozone damage to Phaseolus vulgaris by antioxidants, thiols and sulfbydryl reagents. CAN. J. PLANT SCI. 48: 569-574.

DE JONG, D.; OLSON, A.; HAWKER, K.; JANSEN, E. 1968. Effect of cultivation temperature on peroxidase isozymes of plant cells grown in suspension. PLANT PHYSIOL. 43: 841-844.

GARDNER, H.W.; INGLETT, G.E.; ANDERSON, RA. 1969. Inactivation of peroxidase as a function of corn processing. CEREAL CHEM. 46: 626-634.

GERLOFF, E.; STAHMANN, M.; SMITH, D. 1967. Soluble proteins in Alfalfa roots as related to cold hardiness. PLANT PHYSIOL. 42: 895-899.

HIGHKIN, H.R 1967. Effect of temperature on formation of peroxidase isozymes. PLANT PHYSIOL. SUPPL. 42: S 16.

LEE, c.J.; MILLER, G.W.; WELKIE, G.W. 1966. The effects of hydrogen fluoride and wounding on respiratory enzymes in soybean leaves. AIR WATER POLLUT. INT. J. 10: 169-181.

LOBOTSKAy A, L.; BYEKKO, Y.A.; PALCHENKO, L.A.; BORMOTOV, V.Y. 1968. Action of peroxidase and respiration intensity in sugar beet plants with different ploidy levels (in Russian). DOKL. AKAD. NAUK. B. SSR 12: 563-565.

PLATON, M.; CIUREA, G. 1969. Etude physiologique de quelques formes polyploïdes roumaines de betterave sucrière. REV. ROUM. BIOL. 14: 309-313.

RAKOVA, N.; KLYSHEV, L.; STROGONOV, B. 1969. The effect of sodium sulfate and sodium chloride on the protein composition of pea roots. FIZIOL. RAST. 16: 22-28.

SIEGEL, S.; GIUMARRO, c.; DALY, O. 1966. Micro-aerobic capabilities in land plants: observations on survival and growth of plants submerged in fresh and saline waters. NATURE 209: 1330-1334.

Page 140: peroxidases ( peroksida )

129 PRACTICAL APPLICATIONS

SMITH, H.H.; CONKLIN, M.E. 1981. Effects of gene dosage on peroxidase isozymes in Datura stramonium trisomics. 3rd Int. Conf. Isozymes. Markert, c.L. (Ed.). Academic Press, New York, in press.

STROGONOV, B. 1964. Physiological Basis of Salt Tolerance in Plants. ACADEMIC SCIENCE U.S.S.R. (Davey, New York).

STUTTE, c.A.; TODD, G. 1967. Effects of water stress on soluble leaf proteins in Triticum aestivum L. PHYTON 24: 67-75.

TRINH, T.H.; GASPAR, Th.; TRAN THANH VAN, K.; MARCOTTE, J.L. 1981. Genotype, ploidy and physio10gical state in relation to isoperoxidases in Nicotiana. PHYSIOL. PLANT. 53: 153-157.

TYSON, H. 1969. Peroxidase activity in Linum usitatissimum. L. ANN. BOT. 33: 45-54.

VIERA-DE-SILVA, J. 1968. Le potentiel osmotique du milieu de culture et l'activité soluble et latente de la phosphatase acide dans le Gossypium thurberi. C.R. ACAD. Sc. PARIS 67: 729-732.

Page 141: peroxidases ( peroksida )
Page 142: peroxidases ( peroksida )

CHAPTER 7

CONCLUDING REMARKS AND PROSPECTS

Peroxidases obviously are involved in many fundamental aspects of animal and plant life. The present book is an attempt to relieve their outstanding properties. They have been a little more c!arified during these last years along with the refinement of the techniques used for the study of their physico-chemical characteristics and their physiological functions. Let us hope that more and more 'peroxidasers' will help to the understanding of what was still until recently called a true morass.

The peroxidases as a group need to be further defined in terms of their genetics, physico-chemical properties, and physiological significance. As already c!aimed by Scandalios (1150) for isozymes in general, a precise definition of the basis for peroxidase multiplicity is a necessary prerequisite to the understanding of the significance of spatial and temporal isoperoxidase fluctuations encountered in plant development. It is now obvious, and everybody must be aware, that

. the appearance or disappearance of isoperoxidases during development or in the course of a physiological process does not a priori reflect gene action in the sense of transcription. It does reflect the expression of genetic information, however, and the regulation of such difTerential gene activity can be at a number of control points, as discussed in the preceding chapters.

In the immediate future, the most important questions relating to the existence of multiple 'molecular' forms of peroxidase concern their role in cellular metabolism and difTerentiation. Information as to their biochemical and physiological functions came through the knowledge

!::~;:::.::

i~~t~~~~~

Page 143: peroxidases ( peroksida )

132 PEROXIDASES 1970/1980

of the factors determining the basis of their subcellular distribution. together with a thorough investigation of their physico-chemical properties. Although catalytic functions may be similar, kinetic differences may allow flexibility in biological role.

In many instances, peroxidases have proven useful as indicators or markers of the reactions of plants to external stimuli such as light, prickings, rubbings, infections or pollutions. Plants, as immobilized and autotroph organisms, are tightly dependent upon the environmental conditiOns. They must often adjust themselves very quickly to external changes through elastic or plastic modulations of their functioning. This reactivity cannot be achieved through sole long-term responses involving protein synthesis, but requires immediate and quick regulation. The former is linked to metabolite and hormone circulation, whilê the latter is linked to ion and electrochemical transport. Colloidal and microtrabecular systems, as well as membranes, play an important role in these short-term regulations, which often involve peroxidases. Intercellular or interorganismic communications, which are required in these processes, were in sorne cases visualized by rapid qualitative or quantitative changes in peroxidase activity (142, 143, 1021). ~This

reactivity of peroxidases is an additional reason for a better understanding of their regulation.

Page 144: peroxidases ( peroksida )
Page 145: peroxidases ( peroksida )
Page 146: peroxidases ( peroksida )

·1

OM.~ ~HVd

Page 147: peroxidases ( peroksida )
Page 148: peroxidases ( peroksida )
Page 149: peroxidases ( peroksida )
Page 150: peroxidases ( peroksida )

REFERENCES 139 0001. ABELES, EB.

New York 1973. ETHYLENE IN PLANT BIOLOGY.

- London, 302 p. Academie Press,

0002. ABELES, F.B.; LEATHER, G.R.; FORRENCE, L.E.; CRAKER, L.E. Abscission: regulation of senescence, protein synthesis, and secretion byethylene. HORTSCI. 6: 371-376.

1971. enzyme

0003. ABRAMOWITZ, J.; CHAVIN, W. 1978. ln vitro effect of hormonal stimuli upon tyrosinase and peroxidase activities in murine melanomas. BIOCHEM. BIOPHYS. RES. COMM. 85: 1067-1073.

0004. ACKERMAN, GA; CLARK, M.A. 1971. Ultrastructural localization of peroxidase activity in normal human bone marrow cells. Z. ZELLFORSCH. MIKROSK. ANAT. 117: 463.

0005. ADAMS Jr., W.R.; GALSTON, A.W. 1974. Differentiai effects of ethylene on pith peroxidase of intact tobacco plants and excised tissue. PLANT PHYSIOL. 53: 931-933.

0006. ADAMS, PA; BALDWIN, DA; COLLIER, G.S.; PRATT, J.M. 1979. Studies on horseradish peroxidase in dimethyl sulphoxide water mixtures. The activation of hydrogen peroxide and the binding of fluoride. BIOCHEM. J. 179: 273-280.

0007. AHERN, T.J.; ALLAN, G.G.; MEDCALF, D.G. of marine origin, partial purification and BIOPHYS. ACTA 616: 329-339.

1980. New bromoperoxidases characterization. BIOCHIM.

0007a. AHMED, S. 1980. Effect of different oxygen pressures and of age on changes in catalase and peroxidase activities of Rhizopus oryzae under high pressures of oxygen. PAKISTAN J. BOT. 12: 69-76.

0008. AHUJA, B.S.; SARMA, TA; KIRAN, U.; SUDERSHAN. 1980. Activities of superoxide dismutase and peroxidase enzymes during early phase of germination in mung bean (Phaseolus aureus). INDIAN J. BIOCHEM. BIOPHYS. 17: 77-79.

0009. AHUJA, M.R.; GUPTA, V.K. 1974. Control oftumour-associated peroxidases in a genetic tumour system in Nicotiana. EXPERIENTIA 30: 1007-1008.

0010. AL-AZZAWI, M.J.; HALL, J.L. 1977. Effects of adenosine triphosphatase and peroxidase activities ANN. BOT. 41: 431-435.

aldehyde in maize

fixation on root tips.

:.

0011. ALBUZIO, A.; SPETTOLI, P.; CACCO, G. 1978. Changes in gene expression from diploid to autotetraploid status of Lycopersicon esculentum. PHYSIOL. PLANT. 44: 77-80.

0012. ALEXANDER, N.M. 1974. Oxidative c1eavage of tryptophanyl peptide bonds during chemical and peroxidase-catalyzed iodinations. ENG. J. BIOL. CHEM. 249: 1946-1952.

Page 151: peroxidases ( peroksida )

140 PEROXIDASES 1970/1980

0013. ALEXANDRESCU, V.; HAGIMA, 1.; POPOV, D.; JULAVEANU, A. 1975. Multiple molecular forms of catalase, peroxidase and acid phosphatase in Lycopersicum sp. with genetical and induced resistance againt tobacco mosaic virus (TMY). REV. ROUM. BIOCHIM. 12: 209-212.

0014. ALEXANDRESCU, V.; HAGIMA, 1.; SAULESCU, N.N. 1979. Peroxidase genetic variants in seeds ofsorne Triticum aestivum cultivars. REV. ROUM. BIOCHIM. 16: 167-174.

0015. ALEXANDRESCU, V.; NICOLAE, S. 1979. Genetic variants of peroxidase . in sorne species related to common wheat (Triticum aestivum, L.).

REV. ROUM. BIOCHIM. 16: 247-254.

0016. ALFSEN, A.; CHIANCONE, E.; ANTONINI, E.; WAKS, M.; WYMAN, J. 1970. Studies on the reaction of haptoglobin with hemoglobin chains. III. Observations on the kinetics of the reaction of the haptoglobin hemoglobin complexes with carbon monoxide. BIOCHIM. BIOPHYS. ACTA 207: 395.

0017. ALGHISI, P.; LENNA, D.; MAGRO, P. 1971. Ricerche sull'ossidasi dell'acido indolacetico in piante sane e ammalate. Il. Purificazione e confronto delle attirita AIA ossidasica e perossidasica in piante sane di mais suscettibili e resistenti all'Ustilago zeae. RIV. PATHOL. VEG. 3: 189-202.

0018. ALI, A.; FLETCHER, R.A. dominance in soybeans.

1971. Hormonal interaction in controlling apical CAN. J. BOT. 49: 1727-1731.

0019. ALI, M.R.; CARUSO, J.L. 1976. Morphogenetic aspects of a leatless mutant in tomato. J. EXPT. BOT. 27: 942-946.

0020. AUBERT, G.; RANJEVA, R.; BOUDET, A.M. 1977. Organisation subcellulaire des voies de synthèse des composés phénoliques. PHYSIOL. VEG. 15: 275-301.

0021. ALMGARD, G. 1974. Electrophoresis as an aid testing. SEED. SCI. TECHNOL. 2: 260-261.

to identification in seed

0022. ALMGARD, G.; CLAPHAM, D. 1975. Isozyme variation distinguishing 18 Avena cultivars grown in Sweden. SWEDISH J. AGRIe. RES. 5: 61-67.

0023. ALMGARD, G.; CLAPHAM, D. 1977. Swedish wheat cultivars distinguished by content ofgliadins and isozymes. SWEDISH J. AGRle. RES. 7: 137-142.

0024. ALMGARD, G.; LANDEGREN, U. the identification ofbarley cultivars.

1974. Isoenzymatic variation used for Z. PFLANZENZÜCHTG. 72: 63-73.

0025. ALMGARD, G.; NORMAN, T. 1970. Biochemical. technique as an aid to distinguish sorne cultivars of barley and oats. AGRle. HORT. GENET. 28: 117-123.

0026. ANDERSON, L.e.; SHAPIRO, B.L. 1979. The elfect of alloxan diabetes and insulin in vivo on peroxidase activity in the rat submandibular gland. ARCH. ORAL BIOL. 24: 343-346.

Page 152: peroxidases ( peroksida )

141REFERENCES

0027. ANDERSON, W.A.; BURNETT, C. 1979. Reproductive tract peroxidase as end products of estrogen-specific gene expression. J. HISTOCHEM. CYTOCHEM. 27: 1363-1364.

0028. ANDERSON, W.A.; TRANTALIS, J.; KANG, Y.H. 1975. Ultrastructural localization of endogenous mammary gland peroxidase during lactogenesis in the rat. Results after tannic acid-fonnaldehyde-glutaraldehyde fixation. J. HISTOCHEM. CYTOCHEM. 23: 295-302.

0029. ANDREEVA, VA; VORONOVA, VA; UGAROVA, N.N. 1979. Activity, . isoenzyme spectrum, thennal stability and molecular weight of peroxidase

isolated from healthy and virus-infected tobacco plants. BIOKHIM. 44: 309-313.

0030. ANST1NE, W.; JACOBSEN, J. V.; SCANDALIOS, J.G.; VARNER, J.E. 1970. D, 0 as a density label of peroxidase in genninating barley embryos. ptANT PHYSIOL. 45: 148-152.

0031. ANTAKLY, T.W.; TANAKA, S.; OH KAWA, K.I.; BERNHARD, W. 1979. Cytochemica1 localization of peroxidase and peroxidase- 1abelled antibodies in ultrathin frozen sections. CELL. MOL. BIOL. 24: 205-212.

0031a. ARA1S0, T.; DUNFORD, H.B. 1980. Horseradish peroxidase. XLI. Complex fonnation with nitrate and its effect upon compound 1 fonnation. BIOCHEM. BIOPHYS. RES. COMM. 94: 1177-1182.

0032. ARAISO, T.; DUNFORD, H.B.; CHANG, C.K. 1979. Horseradish peroxidase. XXXVII. Compound fonnation from reconstituted enzyme lacking free carboxyl groups as heme side chains. BIOCHEM. BIOPHYS. RES. COMM. 90: 520-524.

0033. ARAISO, T.; YAMAZAKI, 1. 1978. Kinetic analysis of the acid-alkaline conversion of horseradish peroxidases. BIOCHEM. 17: 942-946.

0034. ARAKAWA, H.; MAEDA, M.; TSUJI, A. 1979. Chemiluminescence enzyme immunoassay of cortisol usinE peroxidase as label. ANAL. BIOCHEM. 97: 248-254.

0035. ARMSTRONG, D.; RINEHART, R.; DIXON, L.; REIGH, D.L. 1978. Changes of peroxidase with age in Drosophila. AGE 1: 8-12. ­

0036. ARNISON, P.G.; BOLL, W.G. 1974. Isoenzymes in cell cultures of bush . bean (Phaseolus vulgaris cv..Contender): isoenzymatic changes during the callus cycle and differences between stock cultures. CAN. J. BOT. 52: 2621-2629.

0037. ARNISON, P.G.; BOLL, W.G. 1975. Isoenzymes in cell cultures of bush bean (Phaseolus vulgaris cv. Contender): isoenzymatic differences between stock suspension cultures derived from a single seedling. CAN. J. BOT. 53: 261-271.

Page 153: peroxidases ( peroksida )

142 PEROXIDASES 1970/1980

0038. ARNISON, P.G.; BOLL, W.G. 1976. The effect of 2,4-D and kinetin on the morphology, growth and cytochemistry of peroxidase of cotyledon cell suspension cultures of bush bean (Phas('olus vulKaris cv. Contender). CAN. J. BOT. 54: 1847-1856.

0039. ARNISON, P.G.; BOLL, W.G. 1976. The effect of 2,4-D and kinetin on peroxidase acivity and isoenzyme pattern in cotyledon suspension cultures of bush bean (Phaseolus vulgaris cv. Contender). CAN. J. BOT. 54: 1857-1867.

0040. ARNISON, P.G.; BOLL, W.G. 1978. The effect of 2,4-D and kinetin on the activity and isoenzyme· pattern of various enzyme in cotyledon cell suspension cultures of bush bean (Phaseolus vulgaris cv. Contender). CAN. J. BOT. 56: 2185-2195.

0041. ASADA, K.; TAKAHASHI, M. J971. Purification and properties ofcytochrome c and two peroxidases from spinach Ieaves. PLANT CELL PHYS/OL. 12: 361-375.

0042. ATSUMI, S. ; HAYASHI, T. 1978. The relationship between auxin concentration, auxin protection and auxin destruction in crown gall cells cultured in vitro. PLANT CELL PHYSIOL. 19: 1391-1397.

0043. AULIKKl, M.S.; MIKlLA, J.J. J975. Activities of two peroxidases in resting and germinating seeds of scots pine, Pinus sylves/ris. PHYSIOL. PLANT. 33: 261-265.

0044. AUNE, T.M.; THOMAS, E.L. 1978. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. BIOCHEM. 17: 1005-1009.

0045. AVER'YANOV, A.A.; MERZLYAR, M.N.; RUBIN, B.A. 1978. Chemiluminescence in the oxidation of gossypoJ by peroxidase. BIOKHIM. 43: 1255-1259.

0046. AVRAMEAS, S.; GUIBERT, B. 1972. Enzyme-immunoassay for measurement of antigens using peroxidase conjugates. BIOCHIMIE 837-842.

the 54:

0047. AWASTHI, Y.G.; BEUTLER, E.; SRIVASTAVA, K. 1975. Purification and properties of human erythrocyte gJutathione peroxidase. J. BIOL. CHEM. 250: 5144-5149.

0048. AZEN, E.A. 1978. Salivary peroxidase activity and thiocyanate concentration in human subjects with genetic variants of salivary peroxidase. ARCH. ORAL BIOL. 23: 801-806.

0049. BADEN, D.G.; CORBETT, M.D. 1979. Peroxidases produced by the marine sponge fa/rocha/a birotulata. COMP. BIOCHEM. PHYSIOL. 64: 279-284.

0050. BADEN, D.G.; CORBETT, M.D. 1980. Bromoperoxidase from Penicillus capitatus, Penicillus lamourouxii and Rhipocephalus phoenix. BIOCHEM. J. 187: 205-211.

Page 154: peroxidases ( peroksida )

143 REFERENCES

0051. BAJAJ, Y.P.S.; BAJAJ, S.; BOPP, M. difTerentiation in plant tissue cultures.

1972. Peroxidases in relation AMER. J. BOT. 59: 668-672.

to

0052. BAJAJ, Y.P.S.; BOPP, M.; BAJAJ, S. 1973. Patterns of peroxidases and difTerentiation in Sinapis a/ba. PHYTOMORPHOLOGY 23: 43-52.

0052a. BAKARDJIEVA, N.T. 1974. Changes in the peroxidase activity under the influence of ATP, NAD, manganese iron and calcium ions. BULG. ACAD. SCI. PLANT PHYSIOL. 3: 383-398.

0053. BAKARDJIEVA, N.T. 1976. Comparative study of the isoenzyme composition of peroxidase in plants at different phylogenetic position. C.R. ACAD. BULG. SCI. 29: 1191-1194.

0054. BAKARDJIEVA, N.T. 1977. In vitro study of the effect of sorne ions on individual isoenzymes of pea and barley peroxidases. C.R. ACAD. BULG. SCI. 30: 759-762.

0054a. BAKARDJIEVA, N.T. 1977. In vivo and in vitro study of the effect of Ca, Cu, Mn and Fe ions on the isoenzymes of the ascorbate oxidase in green and etiolated pea plants. C.R. ACAD. BULG. Sc. 30: 1637-[640.

0054b. BAKARDJIEVA, N.T. 1979. Ascorbateoxidase function peroxidase. C.R. ACAD. BULG. Sc. 32: 675-678.

of horseradish

0054c. BAKARDJIEVA, N.T. 1980. Effect of the direct interaction of the peroxidase with sorne metal ions on the manifestation of the peroxidase and ascorbatoxidase functions. PROC. VII NAT. CONF.PLANT PHYSIOL. SOFIA, pp. 333-337.

0055. BAKARDJIEVA, N.T.; DEMIREVSKA-KEPOVA, K. 1975. The manifestation of ion control on the isoenzyme components of peroxidase in etiolated pea plants. REV. ROUM. BIOCHIM. 12: 67-73.

0056. BAKARDJIEVA, N.T.; DEMIREVSKA-KEPOVA, K. 1976. Immunochemical characteristic of peroxidase from green and etiolated pea plants, enriched by calcium and copper ions. PLANT PHYSIOL., SOFIA, 4: 28-37.

0057. BAKARDJIEVA, N.T.; DEMIROVSKA-KEPOVA, K.; EMANOUILOV, E. 1974. Immunologic characteristics of peroxidase of pea sprouts and roots. C.R. ACAD. BULG. SCI. 27: 1711-1714.

0058. BAKARDJIEVA, N.T.; GEORGIEV, G.H. 1977. Immunochemical characteristics of peroxidase from difTerent plant species. PLANT SCI. LETT. 10: 213-218.

0058a. BAKARDJIEVA, N.T.; RAKADJIEVA, D.1. 1977. Ion regulation of IAA­oxidase activity in plants with a difTerent phylogenetic position. C.R. ACAD. BULG. Sc. 30: 1181-1184.

0059. BAKARDJIEVA, N.T.; RAM, c.; TEWARI, M.M. 1977. In vitro study of the effect of sorne ions on individual isoenzymes of' pea and barley peroxidase. C.R. ACAD. BULG. Sc. 30: 759.

Page 155: peroxidases ( peroksida )

144 PEROXIDASES 1970/1980

0060. BALASIMHA, D.; RAM, c.; TEWARI, M.N. 1976. Effect of 2,4­dichlorophenoxyacetic acid on growth and sorne aspects of metabolism in Trigonella Joenum graecum L. seedlings. BlOCHEM. PHYSIOL. PFLANZEN 169: 515-518.

0061. BALASIMHA, D.; RAM, c.; TEWARI, M.N. 1977. Cytokinin-coumarin interaction in relation to growth sulphydryl, chlorophylls, and peroxidase activity in Phaseolus radialus L. seedlings. BIOCHEM. PHYSIOL. PFLANZEN 171: 49-54.

0062. BALASIMHA, D.; RAM, c.; TEWARI, M.N. 1977. In vivo oxidation of sulphydryls by peroxidase in Phaseolus aureus seedlings. INDIAN J. EXP. BIOL. 15: 682-683.

0063. BALASIMHA, D.; RAM, c.; TEWARI, M.N. 1978. Effect of morphactin on sorne enzymes and peroxidase isoenzymes in fenugreek seedlings. PLANT BIOCHEM. J. 5: 77-82.

0064. BALASIMHA, D.; TEWARI, M.N. 1978. Oxidation of glutathione by peroxidase isoenzymes in fenugreek. BIOL. PLANT. 20: 387-391.

0065. BALASIMHA, D.; TEWARI, M.N. 1978. Kinetics of fenugreek peroxidase isoenzymes. PHYTOCHEM. 17: 1219-1220.

0066. BALASIMHA, D.; TEWARI, M.N. 1979. Auxin-cytokinin interaction on growth and auxin metabolism in fenugreek (TrigonellaJoenum graecum L.). INDIAN J. PLANT PHYSIOL. 22: 207-218.

0067. BANARJI, A.; DUTTA, S. 1979. Peroxidase activity in the rat breast tissue as a marker ofestrogen action. ENDOCRINOL. EXPERIMENT. 13: 217-224.

0068. BARBARA, D.J.; WOOD, K.R. 1972. Virus multiplication, peroxidase and polyphenol oxidase activity in leaves of two cucumbers (Cucumis salivus L.) cultivars inoculated with cucumber mosaic virus. PHYSIOL. PLANT PATHOL. 2: 167-173.

0069. BARBOTIN, J.N.; THOMAS, D. 1974. Electron microscopie and kinetic studies dealing with an artificial enzyme membrane. Application to a cytochemical model with the horseradish peroxidase-3,3'-diaminobenzidine system. J. HISTOCHEM. CYTOCHEM. 22: 1048-1059.

0070. BARDSLEY, W.G.; LEFF, P.; KAVANAGH, J.; WRIGHT, R.D. 1980. Deviation from Michaelis Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholin - esterase, acid phosphatase. adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fuma rase, galactose dehydrogenase, ~-galactosidase, lactase dehydrogenase, peroxidase and xanthine oxidase. BIOCHEM. J. 187: 739-765.

0071. BARNA, J. 1973. Investigations on correlations between peroxidase activity and virus infection by Chenopodium murale and Vilis l'in(fi'ra. RIV. PATHOL. VEG. 9: 140-144.

Page 156: peroxidases ( peroksida )

REFERENCES 145

0072. BARNETT, N.M. 1974. Release of peroxidase from soybean hypocotyl cell walls by Sclerotium ro/fsii culture filtrates. CAN. J. BOT. 52: 265-271.

0073. BARTLING, Q.J.; CHATTOPADHYAY, S.; BARKER, C.W.; BROWN, H.D. 1975. Preparation and properties of matrix-supported horseradish peroxidase. CAN. J. BIOCHEM. 53: 863-874.

0074. BARZ, W. 1977. Degradation of polyphenols in plants suspension cultures. PHYSIOL. VEG. 15: 261-277.

and plant cell

0075. BASSIRI, A; CARLSON, P.S. 1978. Isozyme patterns and dilferences in plant parts and their callus cultures in common bean. CROP SCI. 18: 955-958.

0075a. BASSIRI, A.; CARLSON, P.S. 1979. Isozyme patterns in tobacco plant parts and their derived calli. CROP SCI. 19: 909-914.

0076. BASTIN, M. 1970. Synthèse et dégradation de la peroxydase dans des tranches de tubercules de Topinambour (Helianthus tuberosus L.) cultivés en présence de cyc10heximide ou en anaérobiose. C.R. ACAD. Sc. PARIS 271: 1284-1287.

0077. BASTIN, M.; DIJKMANS, H. induction of enzymes in BIOCHEM. 48: 316-321.

1970. Oxidation processes in relation to the Jerusalem artichoke tuber slices. CAN. J.

0078. BASTIN, M.; UNLÜER, O. 1972. Elfect of actinomycin D on the formation of enzymes in Jerusalem artichoke tuber slices. PLANTA 102: 357-361.

0079. BASTIN, M.; UNLÜER, O. 1972. Jerusalem artichoke tuber slices.

Studyon the inactivation of enzymes in CAN. J. BOT. 50: 727-731.

0080. BATES, D.C.; CHANT, S.R. 1970. Alterations in peroxidase activity and peroxidase isozymes in virus-infected plants. ANN. APPL. BIOL. 65: 105-110.

0081. BATRA, G.K.; KUHN, C.W. 1975. Polyphenoloxidase and peroxidase activities associated with acquired resistance and its inhibition by 2-thiouracil in virus infected soybean. PHYSIOL. PLANT PATHOL. 5: 239-248.

0082. BAULT, A. 1973. Evolution des protéines solubles acides de la radicule du pois pendant les premiers jours de sa croissance. C.R. ACAD. Sc. PARIS 276: 741-744.

0083. BA YSE, G.S.; MICHAELS, A.W.; MORRISON, M. 1972. The peroxidase­catalyzed oxidation of tyrosine. BIOCHIM. BIOPHYS. ACTA 284: 3442.

0084. BA YSE, G.S.; MORRISON, M. 1971. The role of peroxidase in catalyzing oxidation of polyphenols. BIOCHIM. BIOPHYS. ACTA 244: 77-84.

0085. BA YSE, G.S.; MORRISON, M. 1971. Peroxidase catalyzed reactions of iodide at low pH. ARCH. BIOCHEM. BIOPHYS. 145: 143-148.

Page 157: peroxidases ( peroksida )

146 PEROXIDASES 1970/1980

0086. BECHARA, E.J.; OLIVEIRA, O.M.; DURAN, N.; CASA DEI de BAPTISTA, R.; CI LENTO, G. 1979. Peroxidase catalyzed generation of triplet acetone. PHOTOCHEM. PHYTOBIOL. 30: 101-109:

0087. BEDNAR, T.W.; LINSMAIER-BEDNAR, E.M.; KING, CM. 1974. Investigations on the mechanisms of substituted fluorene-induced hormone autonomy. ln 'PLANT GROWTH SUBSTANCES 1973'. Hirokawa Pub!. Co., Tokyo, pp. 1136-1140.

0088. BEDNAR, T.W.; LINSMAIER-BEDNAR, E.M.; KING, CM. 1976. 'Peroxidase-H, 0, catalyzed incorporation of auxin derivatives into sRNA. BIOCHEM. tUÙPHYS. RES. COMM. 72: 761-767.

0089. BELDING, M.E.; KLEBANOFF, S.J.; RAY, CG. 1970. Peroxidase-mediated virucidal systems. SCIENCE 167: 195-196.

0090. BEMILLER, J.N.; COLILLA, W. 1972. Mechanism of corn indoJe-3-acetic acid oxidase in vitro. PHYTOCHEM. Il: 3393-3402.

0091. BENADA, J.; KLUSAK, H. 1974. The oxidation of indoJe-3-acetic acid by supematants of homogenates of barley leaves infected with powdery mildew (Erysiphe graminis D.C) and by extracts from the surface of barley roots. BIOL. PLANT. 16: 204-209.

0092. BENEDICT, W.G. 1971. Elfect of intensity and qua lity of Jight on peroxidase activity associated with Septoria leaf spot on tomato. CAN. J. BOT. 49: 1721-1726.

0093. BENEDICT, W.G. 1972. Influence of light on peroxidase activity associated with resistance of tomato cultivars to Septoria Iycopersici. CAN. J. BOT. 50: 1931-1936.

0094. BENES, K.; SEIDLOVA, F. 1978. A suitable method for localization of IAA oxidase. BIOL. PLANT. 20: 64-66.

0095. BENITO, C; PEREZ DE LA VEGA, M. 1979. The chromosomal location of peroxidase isozymes of the wheat keme!. THEOR. APPL. GENET. 55: 73-76.

0096. BEREZIN, LV.; UGAROVA, N.N.; FEL'DMAN, D.P. 1977. Catalytic properties and thermal stability of horseradish peroxidase covalently bonded to sepharose through the carbonhydrate residues of the enzyme. BIOKHIM. 42: 722-727.

0097. BERLIN, J.; BARZ, W. 1975. Oxidative decarboxylation ofp-hydroxybenzoic acids by peroxidases under in vivo and in vitro conditions. Z. NATURFORSCH. 30 c: 650-658.

0098. BESFORD, R.T.; DEEN, J.L.W. 1977. Peroxidase actlvlty as an indicator of the iron status of conifers. SCI. HORT. 7: 161-169.

0099. BHARGAVA, K.S.; JOSHI, R.D.; SRIVASTAVA, G.P. 1970. Catalase and peroxidase activity in sugarcane infected with sugarcane mosaic virus. EXPERIENTIA 26: 216-217.

Page 158: peroxidases ( peroksida )

REFERENCES 147

0099a. BHARTI, S.; SINGH, Y.D.; LALORAYA, M.M. 1979. Changes in paramagnetÎc manganese (Mrt+) and related enzyme activities in isolated cucumber cotyledons during growth. II. Effect of 6-furfuryl aminopurine. J. EXP. BOT. 30: 575-581.

0100. BHATTACHARYA, N.e.; BHATTACHARYA, S.; NANDA, K.K. 1978. Isoenzyme polymorphism of peroxidase, IAA-oxidase, catalase and amylase in rooting etiolated stem segments of SaUx tetrasperma. BlOCHEM. PHYSIOL. PFLANZ. 172: 439-452.

0101. BHATTACHARYA, N.e.; KAUR, N.P.; NANDA, K.K. 1975. Transients in isoperoxidases during rooting of etiolated stem segments of Popu/us nigra. BIOCHEM. PHYSIOL. PFLANZ. 167: 156-164.

0102. BATTACHARYA, S.; DASGUPTA, P.; MUKHERJEE, S. 1973. A comparative study of the head and tail kidney peroxidase in a fish (C/arias batrachus). COMP. BlOCHEM. PHYSIOL. 44: 693-700.

0103. BHATTACHARYA, S.; MUKHERJEE, S.; SEN, S. 1979. Role ofsynthetic mammalian thyrotropin releasing hormone on fish thyroid peroxidase activity. INDIAN J. EXP. BIOL. 17: 1041-1043.

0104. BIDLACK, W.R. 1978. Microsomal peroxidase: Interrelationship with the hepatic drug metabolizing system. PROe. WEST. PHARMACOL. SOC. 21: 329-335.

0105. BIELSKJ, B.H.J. 1972. Study of peroxidase mechanisms by pulse radiolysis. 1. Spectra of horseradish peroxidase transients. BIOCHIM. BIOPHYS. ACTA 289: 57-67.

0106. BIELSKJ, B.H.J.; COMSTOCK, DA; HABER, A.; CHAN, P.e. 1974. Study of peroxidase mechanisms by pulse radiolysis. II. Reaction of horseradish peroxidase compound 1 with 02' BIOCHIM. BIOPHYS. ACTA 350: 113-120.

0107. BIELSKJ, B.H.J.; GEBICKJ, J.M. 1974. Study of peroxidase mechanisms by pulse radiolysis. III. The rate of reaction of 02 and HO, radicals with horseradish peroxidase compound 1. BIOCHIM. BIOPHYS. ACTA 364: 233-235.

0108. BIRECKA, H.; BRIBER, KA; CATALFAMO, J.J. 1973. Comparative studies on tobacco pith and sweet potato root isoperoxidases in relation to injury, indoleacetic acid and ethylene effects. PLANT PHYSIOL. 52: 43-49.

0109. BIRECKA, H.; CATALFAMO, J.L. 1975. Cell wall and protoplast isoperoxidases in tobacco plants in relation to mechanical injury and infection with tobacco mosaic virus. PLANT PHYSIOL. 55: 611-619.

0110. BIRECKA, H.; CATALFAMO J.L.; URBAN, P. 1976. Cell isoperoxidases in sweet potato plants in relation to mechanical injury and ethylene. PLANT PHYSIOL. 57: 74-79.

Page 159: peroxidases ( peroksida )

148 PEROXIDASES 1970/1980

0111. BIRECKA, H.; CATALFAMO, J.L.; GARRAWAY, M.O. 1975. Cell wall and protoplast isoperoxidase of corn leaves in relation to cut injury and infection with Helminthosporium maydis. PLANT PHYSIOL. 55: 607-610.

0112. BIRECKA, H.; CHASKES, M.J.; GOLDSTEIN, senescence. J. EXP. BOT. 30: 565-573.

J. 1979. Peroxidase and

0113. BIRECKA, H.; GALSTON, A.W. 1970. Peroxidase ontogeny in a dwarf pea stem as affected by gibberellin and decapitation. J. EXP. BOT. 21: 735-746.

0114. BIRECKA, H.; GARRAWAY, M.O. 1978. Corn leaf isoperoxidase reaction to mechanical injury and infection with Helminthosporium maydis. Effects of cyc1oheximide. PLANT PHYSIOL. 61: 561-566.

0115. BIRECKA, H.; MILLER, A. 1974. Cell wall and protoplast isoperoxidases in relation to injury, indoleacetic acid, and ethylene effects. PLANT PHYSIOL. 533: 569-574.

0116. BIRECKA, H.; SHIH, L.M.; GALSTON, A.W. 1972. Isoperoxidase patterns in tobacco pith and their alteration following tissue excision. J. EXP. BOT. 23: 655-666.

0117. BJORKSTEIN, F. 1970. The horseradish peroxidase-catalyzed oxidation of iodide: outline of the mechanism. ENZYMOL. 212: 396-407.

0118. BJORKSTEIN, F. 1970. The horseradish peroxidase-catalyzed oxidation of iodide. Products fonned and iodination of tyrosine by the products. ENZYMOL. 212: 407-417.

0119. BLAICH, R. 1972. Beziehungen lsoenzymen von Basidiomyceten.

zwischen laccase­ und peroxidaseartigen EXPERIENTIA 25: 896-897.

0120. BLIGNY, D.; GARCIA-RODRIGUEZ, M.J.; HIRSCH, A.M. 1976. Activité peroxydasique soluble et isoperoxydases au cours de phénomènes de cambiogénèse et de rhizogénèse de fragments de rhizomes de Topinambour, variété 'Blanc Sutton', en culture in vitro. C.R. ACAD. Sc. PARIS 283: 1485-1488.

0121. BLOOM, G.D.; CARLSOO, B.; KUMLlEN, A. 1970. of peroxidase activity in the submandibular HISTOCHEMIE 22: 294-301.

Cytochemicallocalization gland of the hamster.

0122. BLUME, D.E.; McCLURE, J.W. 1980. Developmental effects of Sandoz 6706 on activities of enzymes of phenolic and general metabolism in barley shoots grown in the dark or under low or high intensity light. PLANT PHYSIOL. 65: 238-244.

0123. BODGAN, S.; BROUET, A.; HARTMANN, C. 1971. Influence de différents herbicides sur les activités catalasiques et peroxydasiques du Concombre (Cucumis sativus L.). C.R. ACAD. Sc. PARIS 273: 1945-1948.

0124. BOLLER, Th.; KENDE, H. 1979. Hydrolytic enzymes in the central vacuole of plant cells. PLANT PHYSIOL. 63: 1123-1132.

Page 160: peroxidases ( peroksida )

REFERENCES 149

0124a. BONFANTE-FASOLO, P.; SCANNERINI, S. 1980. localization of peroxidase activity in endomycorrhizal roots. 33: 126.

Ultrastructural CARYOLOGIA

0125. BONISOLLI, F.; GORIN, N. 1977. Isoenzymes patterns of peroxidase in golden delicious apples during the ripening and senescence stages. Z. LEBENSMITTEL - UNTERSUCH. FORS. 164: 177-179.

0126. BOORSMA, D.M.; STREEFKERK, J.G. for preparing peroxidase conjugates?

1979. Periodate or glutaraldehyde J. IMMUNOL. METH. 30: 245-256.

;.,

o126a. BOPP, M. 1979. Probleme der Interaktion BER. DEUTSCH. BOT. GES. 92: 323-339.

zwischen Phytohormonen.

0127. BORCHERT, R. 1974. lsoperoxidases differentiation pattern in potato tuber.

as markers of the wound-induced· DEVELOP. BIOL. 36: 391-399.

0129. BORCHERT, R. 1978. Time course and spatial distribution of phenylalanine ammonia-Iyase and peroxidase activity in wounded potato tuber tissue. PLANT PHYSIOL. 62: 789-793.

0130. BORCHERT, R.; DECEDUE, c.J. 1978. Simultaneous separation of acidic and basic isoperoxidases in wounded potato tissue by acrylamide gel electrophoresis. PLANT PHYSIOL. 62: 794-797.

0131. BOS, A.; WEVER, R.; ROOS, D. 1978. Characterization and quantification of the peroxidase in human monocytes. BIOCHIM. BIOPHYS. ACTA 525: 37-44.

0132. BOSMAN, F.T.; CRAMER-KNIJNENBURG, G.; VAN BERGEN HENEGOUW, J. 1980. A simplified method for the rapid preparation ofperoxidase-anti-peroxidase (PAP) complexes. HISTOCHEM. 67: 243-248.

0133. BOTTGER, M.; BOUCHET, M.; GASPAR, R. 1978. Effect du chlorure de (2-chloroethyl) trimethylammonium (CCC) sur la croissance et la distribution des peroxydases du Blé. C.R. ACAD. Sc. PARIS 286: 1873-1875.

0134. BOUCHET, M.; GASPAR, Th.; THORPE, TA 1978. Soluble and cell-wall peroxidases and auxin destruction in normal and habituated tobacco calius. IN VITRO 14: 819-823.

0135. BOUCHET, M.; JOASSIN, L.; SCHWIND, F.; GASPAR, Th. 1977. Effet à court et à long terme d'une variation de température et d'un traitement chimique sur les peroxydases de la Betterave sucrière. MED. FAC. LANDBOUW. RIJKSUNIV. GENT. 42: 1671-1679.

0135a. BOUCHET, M.; PENEL, c.; GREPPIN, H.; GASPAR, T. 1980. Répartition des isoperoxydases dans la racine de Lentille. Effet de l'auxine et de la kinétine. C.R. SOC. PHYS. H1ST. NAT. GENEVE 15: 180-185.

0136. BOUCHET, M.; SCHWACHHOFER, K.; GASPAR, T. 1972. Action de l'orthonil sur la croissance, l'activité peroxydasique et le spectre des isoperoxydases de la Lentille. C.R. ACAD. Sc. PARIS 275: 47-50.

Page 161: peroxidases ( peroksida )

150 PEROXIDASES 1970/1980

0137. BOUILLENNE, C; GASPAR, T. 1970. Auxin catabolism and inhibitors in normal and crown gall tissues of Impatiens halsamina. CAN. J. BOT. 48: 1159-1163.

0138. BOVERIS, A.; MARTINO, E.; STOPPANt, A.O.M. 1977. Evaluation of the horseradish peroxidase-scopoletin method for the measurement of hydrogen peroxide formation in biological systems. ANAL. BIOCHEM. 80: 145-158.

0139. BOWLING, A.C; CROWDEN, R.K. 1973. Peroxidase activity and lignification in the pod membrane ofPisum sativum L. AUST. J. BIOL. SCI. 26: 679-684.

0140. BOYER, N.; CLAIRE, A.; LAVARENNE, A.; BAILLAUD, L. 1975. Diversité des mécanismes en jeu dans la physiologie du développement des plantes grimpantes. CR. 100ème CONGRES SOC SA V. JI: 301-316.

0141. BOYER, N.; CHAPELLE, 8.; GASPAR, T. 1979. Lithium inhibition of the thigmomorphogenic response in Bryonia dioica. PLANT PHYSIOL. 63: 1215-1216.

0142. BOYER, N.; GASPAR, T. 1980. La thigmomorphogénèse chez la Bryone: éléments en vue d'une explication. XIème RENCONTRE DE MERIBEL, pp. 284-287.

0143. BOYER, N.; GASPAR, T. 1980. Redistribution cellulaire des peroxydases de la Bryone à la suite d'une irritation tactile et d'un traitement par le lithium. CR. ACAD. SC PARIS 291: 577-580.

0144. BOYER, N.; GASPAR, T.; LAMOND, M. 1979. Modifications des isoperoxydases et de l'allongement des entre-noeuds de Bryone à la suite d'irritations mécaniques. Z. PFLANZENPHYSIOL. 93: 459-470.

0145. BOZDECH, M.J.; BAINTON, D.F.; MUSTACCHI, P. 1980. Partial peroxidase deficiency in neutrophils and eosinophils associated with neurologic disease. Histochemical, cytochemical and biochemical studies. AMER. J. CLIN. PATHOL. 73: 409-415.

0146. BRABER, J.M. 1980. Catalase and peroxidase in primary bean leaves during development and senescence. Z. PFLANZENPHYSIOL. 97: 135-144.

0146a. BRAD, 1.; MARCU, Z.; PIRVU, T. 1972. Contributions to the study of isoperoxidases in the seeds of interspecific FI hybrids of the wheat. REVUE ROUM. BIOCHIM. 9: 5-16.

0147. BRATTON, B.O.; BAVER, N.; RUSSO, J.F.; HENRY, E.W. 1979. The cytochemical localization of peroxidase in root tip tissue of Alaskapea (Pisum sativum). MICRON 10: 161-162.

0148. BRATTON, B.O.; HENRY, E.W. 1977. Electrical stimulation and its effects on indoleacetic acid and peroxidase levels in tomato plants (Lycopersicon esculentum). J. EXP. BOT. 28: 338-344.

Page 162: peroxidases ( peroksida )

REFERENCES 151

0149. BREDEMEIJER, G.M.M. 1973. Peroxidase activities and peroxidase isoenzyme patterns during growth and senescence of the unpollinated style and corolla of tobacco plants. ACTA BOT. NEERL. 22: 40-48.

0150. BREDEMEIJER, G.M.M. 1974. Peroxidase activity and peroxidase isoenzyme composition in self-pollinated, cross pollinated and unpoJlinated styles of Nicotiana alata. ACTA BOT. NEERL. 23: 149-157.

0151. BREDEMEIJER, G.M.M. 1975. The efTect ofperoxidase on pollen germination and pollen tube growth in vitro. INCOMPAT. NEWSLETTER 5: 61.

015{ BREDEMEIJER, G.M.M. 1976. Effect of bud-pollination and delayed self­pollination on the induction of a possible rejection peroxidase in styles of Nicotiana alata. ACTA BOT. NEERL. 25: 107-116.

0153. BREDEMEIJER, G.M.M. 1977. Peroxidase leakage and pollen tube growth inhibition in aged Nicotiana alata styles. ACTA BOT. NEERL. 26: 231-237.

0154. BREDEMEIJER, G.M.M. 1978. Variations in the pollination - induced increase in activity of stylar peroxidase isoenzymes in various plants of an inbred progeny of Nicotiana alata. INCOMPAT. NEWSLETTER 9: 33-42.

0155. BREDEMEIJER, G.M.M. 1979. The distribution of peroxidase isoenzymes, chlorogenic acid oxidase and glucose-6-phosphate dehydrogenase in transmitting tissue and cortex of Nicotiana alata styles. ACTA BOT. NEERL. 28: 197-203.

0156. BREDEMEIJER, G.M.M.; BLAAS, J. 1975. A possible role of a stylar peroxidase gradient in the rejection of incompatible growing pollen tubes. ACTA BOT. NEERL. 24: 37-48.

0157. BREDEMEIJER, G.M.M.; BLAAS, J. 1980. Do S alle1e - specifie peroxidase isoenzymes exist in self-incompatible Nicotiana alata? THEOR. APPL. GENET. 57: 119-124.

0158. BRENNAN, T.; RYCHTER, A.; FRENKEL, C. 1979. Activity of enzymes involved in the turnover of hydrogen peroxide during fruit senescence. BOT. GAZ. 140: 384-388.

0159. BRETON-GORIUS, J. 1980. The value of cytochemical peroxidase reactions at the ultrastructural level in hematology. HISTOCHEM. J. 12: 127-138. !":

0160. BRETTON, R.; TERNYNCK, T.; AVRAMEAS, S. 1972. peroxidase and ferritin labelling of cell surface antigens. RES. 71: 145-155.

Comparison of EXP. CELL

0160a. BREWBAKER, J.L.; HASEGAWA, Y. 1975. Polymorphisms of the major peroxidases of maize. In 'ISOZYMES. III. DEVELOPMENTAL BIOLOGY'. Markert, c.L. (Ed.). Academie Press, New York, pp. 659-673.

0161. BRINKMANN, F.G.; SMINIA, T. 1977. Histochemical location of catalase in peroxisomes and of peroxidase in cell and Golgi bodies of cells in differentiating potato tuber tissue. Z. PFLANZENPHYSIOL. 84: 407-412.

Page 163: peroxidases ( peroksida )

152 PEROXIDASES 1970/1980

0162. BRITTAIN, M.G.; MARKS, M.E.; PRETLOW, T.G. 1976. The purification of horseradish peroxidase by affinity chromatography on Sepharose-bound concanavalin A. ANAL. BIOCHEM. 72: 346-352.

0163. BRODERSEN, R.; CASHORE, W.J.; WENNBERG, R.P.; AHLFORS, C.E.; RASMUSSEN, L.F.; SHUSTERMAN, D. 1979. Kinetics of bilirubin oxidation with peroxidase, as applied to studies ofbilirubin-albumin binding. CLIN. LAB. INVEST. 39: 143-150.

0164. BROSS, R.J.; SCHMIDT, G.M.; BLUME, K.G.; SANTOS, S.; NOVITSKI, M.; ENDERS, N.T. 1979. The peroxidase - antiperoxidase (PAP) method as a sensitive technique for demonstration of human cell surface antigens. TRANSPLANT. PROC. II: 1964-1965.

0165. BROWN, A.H.D. 1971. Isozyme variation under selection in Zea mays. NATURE 232: 570-571. 1

0166. BROWN, R.H.; COLLINS, N.; MERRETT, M.J. 1975. Peroxidase activity in Euglena gracilis. PLANT PHYSIOL. 55: 1123-1124.

0167. BRULFERT, 1.; TRIPPI, V.S. 1970. Phénomènes de sénescence chez l'Anagallis arvensis. Effet de l'âge des plantes et influence de la photopériode sur la composition isozymique des peroxydases. c.R. ACAD. Sc. PARIS 270: 2284-2287.

0168. BRUNNER, H. 1978. Einfluss verschiedener Wuchsstoffe und Stoffwechselgifte aufwurzelregenerierendes Gewebe von Phaseolus vulgaris L. Veriinderungen des Wuchstoffgehaltes sowie der Peroxydase- und der IES-Oxydase-Aktivitiit. Z. PLANZENPHYSIOL. 88: 13-23.

0169. BRYANT, S.D.; LANE, F.E. 1979. Indole-3-acetic acid oxidase from peas. 1. Occurrence and distribution of peroxidative and nonperoxidative forms. PLANT PHYSIOL. 63: 696-699.

0170. BRYGIER, J.; SELS, A.A. 1976. Interactions of cytochrome c peroxidase and ofits apoprotein with Sepharose-bound cytochrome c. ARCH. INTERN. PHYSIOL. BIOCHIM. 84: 4-5.

017l. BRZOZOWSKA-HANOWER, J.; HANOWER, P.; LlORET, C. 1978. Etude du mécanisme de la coagulation du latex d' Hevea brasiliensis (Kunth) Mull. Arg. II. Systèmes enzymatiques impliqués dans le processus: 1. Phénol oxydase. PHYSIOL. VEG. 16: 231-254.

0172. BUDILOVA, E.V.; RUBIN, BA; IVANOVA, MA; SEMENOVA, MA 1971. Isoenzymes of peroxidase in leaves of Nuphar lu/eum. DOKLADY AKAD. NAUK. 200: 980-982.

ol72a. BUFLER, G.; BANGERTH, F. 1980. UV-induced ethylene production, peroxidase and phenylalanineammoniumlyase activity, and necrosis in leaves of tomatoes (Lycopersicon esculen/llIn MilL). ANGEW. BOT. 54: 365-376.

0173. BUGBEE, W.N. 1975. Peroxidase, polyphenol-oxidase and endopolygalacturonate transeliminase activity in different tissues of sugar beet infected with Plroma he/ae. CAN. J. BOT. 53: 1347-1351.

Page 164: peroxidases ( peroksida )

REFERENCES 153

0174. BUIS, R.; PHIPPS, J. 1972. Etude oxydasiques de la feuille de tabac. PHYSIOL. VEG. 10: 51-73.

physiologique de quelques activités II. Esquisse d'un schéma factoriel.

0\75. BURNETT, c.; ANDERSON, W.A.; RUCHEL, R. 1978. Characterization of the estrogen induced peroxidase by microelectrophoresis. J. HISTOCHEM. CYTOCHEM. 26: 382-390.

0176. BURUIANA, L.M.; PETCULESCU, M. 1978. The polymorphism ofperoxidase of animal origin. REV. ROUM. BIOCHIM. 15: 181-187.

0177. BUTTON, J.; VARDI, A.; SPIEGEL-ROY, P. 1976. isoenzymes as an aid in citrus breeding and taxonomy. GENET. 47: 119-123.

Root peroxidase THEOR. APPL.

0\78. CABANNE, ER.; SCALLA, R.; MARTIN, C. 1971. Oxidase activities during the hypersensitive reaction of Nicotiana xanthi to tobacco mosaic virus. J. GEN. VIROL. 11: 119-122.

0179. CABRILLAT, H.; FONTAINIERE, B. 1980. Paraphenylene diamine­pyrocatechol; an alternative substrate to diaminobenzidine for the demonstration of endogenous peroxidase of mammalian leucocytes. HISTOCHEM. J. 12: 488-491.

0180. CACHITA-COSMA, D.; GASPAR, T.; NEGRUTIU, 1.; JACOBS, M. 1976. Comparative effects of 2,4-D and procaine on morphology and peroxidase activity of carrot tissue grown in vitro. MED. FAC. LANDBOUW. RIJKSUNIV. GENT. 41: 1043-1048.

0181. CACHITA-COSMA, D.; JACOBS, M.; NEGRUTIU, T.; GASPAR, T. 1976. Comparative effects of procaine and 2,4-D on growth and peroxidases of Arabidopsis caHus. MED. FAC. LANDBOUW. RIJKUNIV. GENT. 41: 1521-1526.

0182. CAIRNS, E.; VAN HUYSTEE, R.B.; CAIRNS, W.L. 1980. horse radish peroxidase isoenzymes. Intraspecies and immunological relatedness. PHYSIOL. PLANT. 49: 78-82.

Peanut and interspecies

0183. CAMMER, W.; BIELER, L.Z.; NORTON, W.T. 1978. Proteolytic and peroxidatic reactions of a commerical horse radish peroxidase with myelin basic protein. BIOCHEM. J. 169: 567-575.

0184. CANNON, M.S.; MOLLENHAUER, H.H.; CANNON, A.M.; EURELL, T.E.; LEWIS, D.H. 1980. Ultrastructural localization of peroxidase activity in neutrophil leukocytes of teta/urus punetatus. CAN. J. ZOOL. 58: 1139-1143.

0185. CARLSON, B.; KUMLIEN, A.; BLOOM, G.D. histochemical study of peroxidase activity in the gland. HrSTOCHEM. J. 3: 185-192.

1971. Comparative submandibular salivary

Page 165: peroxidases ( peroksida )

154 PEROXIDASES 1970/1980

.,

0186. CARPENA, O.; LEON, A.; HELLlN, E.; ALCAREZ, C. 1972. Intracellular localization of iron and manganese in Citru.\' leaves and their relation to protein content and peroxidase activity. SPAN. AHI SIMP. lNT. AGRO­CHIM. 9: 221-228.

0187. CARTER, D.P.; STAEHELlN, A. 1979. Evaluation of IgC molecules, Fab' fragments and IgG-horseradish peroxidase conjugates as surface labels for freeze-etched membranes. J. MICROSC. 117: 363-374.

0187a. CASTILLO, F.; GREPPIN, H. 1980. Comparaison entre différents 'marqueurs' de l'environnement genevois: utilisation de la peroxydase. C.R. SOc. PHYS. HIST. NAT. GENEVE 15: 57-70.

0188. CATALFAMO, J.L.; FEINBERG, J.H.; SMITH, G.W.; BIRECKA, H. 1978. Effect of gibberellic acid and ethylene on peroxidase in pea intemodes. J. EXP. BOT. 29: 347-358.

0189. CATEDRAL, F.; DALY, J.M. 1976. Partial characterization of peroxidase isoenzymes from rust-affected wheat Jeaves. PHYTOCHEM. 15: 627-631.

0190. CATESSON, A.M. 1973. Observations cytochimiques sur de quelques Angiospermes. J. MICROSC. 10: 95-104.

les tubes criblés

190a. CATESSON, A.M. 1980. Les tissus végétaux: ultrastructure, biogénèse. In 'LES POLYMERES VEGETAUX'. Monties, B. (Ed.). Gauthier-Villars, Paris, pp. 1-29.

0191. CATESSON, A.M. BOT. GES. 93:

1980. Localization ofphloem oxidases. 141-152.

BER. DEUTSCH.

0192. CATESSON, A.M.; CZANINSKI, Y.; MONTIES, B. 1978. Caractères histochimiques des peroxydases pariétales dans les cellules en cours de lignification. c.R. ACAD. Sc. PARIS 286: 1787-1790.

0193. CATESSON, A.M.; CZANINSKI, Y.; PERESSE, M.; MOREAU, M. 1972. Modifications des parois vasculaires de J'Oeillet infecté par le Phialophora cinerescens (Wr.) van Beyna. C.R. ACAD. Sc. PARIS 275: 827-829.

0194. CHAN, K.Y.; BUNT, A.H.; HASCHKE, R.H. 1980. Endocytosis and compartmentation of peroxidases and eationized ferritin in neuroblastoma. J. NEUROCYTOL. 9: 381-404.

0195. CHANCE, B. reactions.

1970. The behaviour of catalase and peroxidase ANN. N.Y. ACAD. SCI. 168: 354-356.

in eoupJed

0196. CHANDRA, G.R.; GREGORY, L.E.; WORLEY, J.F. 1971. initiation of adventitious roots on mung bean hypoeotyl. PHYSIOL 12: 317-324.

Studies on the PLANT CELL

0197. CHANDRA, G.R.; WORLEY, J.F.; GREGORY, L.E.; CLARK, H.D. 1973. Effeet of 6-benzyladenine on the initiation of adventitious roots on mung bean hypoeotyl. PLANT CELL PHYSIOL. 14: 1209-1212.

Page 166: peroxidases ( peroksida )

REFERENCES 155

0197a. CHANG, J.Y.; SCHROEDER, WA 1973. Reaction of 3-amino-l,2,4-triazole with lactoperoxidase. ARCH. BIOCHEM. BIOPHYS. 156: 475-479.

0198. CHANT, S.R.; BATES, D.C 1970. The etTect of tobacco mosaic virus and potato virus X on peroxidase activity and peroxidase isozymes in Nicotiana Rllllinosa. PHYTOCHEM. 9: 2323-2326.

0199. CHAPPET, A 1970. Relation entre l'activité peroxydasique et la croissance du coleoptile de Blé. ANN. SC UNIV. BESANCON BOT. 3ème SERIE 7: 39.

0200. CHAPPET, A; DESCHAMPS-MUDRY, M.; JOB, D. 1979. Oxydation peroxydative de ['acide indolyl-acétique par une peroxydase de Raifort. Influence du pH. CAN. J. BOT. 57: 1078-1082.

0201. CHAPPET, A; DUBOUCHET, 1. 1970. Gradients peroxydasiques cbléoptiles de Blé. CR. ACAD. SC PARIS 270: 3224-3227.

des

0202. CHAPPET, A; DUBOUCHET, J. 1972. Activité isoperoxydasique et variations d'élongations. CR. ACAD. SC PARIS 274: 889-892.

0203. CHAPPET, A.; DUBOUCHET, J. 1975. Variations isoperoxydases du coléoptile de Blé pendant l'auxesis. 13: 153-162.

de l'activité des PHYSIOL. VEG.

0204. CHATTERJEE, D.R.; BANERJEE, R.K.; DATTA, AG. 1980. Studies on peroxidase-catalysed formation of thyroid hormone on a protein isolated from submaxillary gland. BIOCHIM. BIOPHYS. ACTA 621: 29-39.

0205. CHATTOPADHYAY, S.; BERA, A.K. 1979. Peroxidase activity in rice leaves infected with Helminthosporium oryzae in relation to lesion maturation. PHYTOPARASITICA 7: 11-15.

0206. CHATTOPADHYAY, N.e.; NANDI, B. 1976. Peroxidase and polyphenol oxidase activity in malformed mango inflorescence caused by Fusarium moniliforme var. subglutinans. BIOL. PLANT. 18: 321-326.

0207. CHAUHAN, J.S.; NANDA, J.S. in dwarf and grassy mutants BIOL. 16: 782-784.

1978. of rice

Activity and isozymes of peroxidase Oryza sativa L. INDIAN J. EXP.

0208. CHEIGNON, M.; SCHAEVERBEKE, J. 1970. en isoperoxydases et l'élongation cellulaire. 615-618.

Relations entre la composition CR. ACD. SC PARIS 270:

0209. CHEN, S.L.; TOWILL, L.R.; LOEWENBERG, 1.R. 1970. Isoenzyme patterns in developping Xanlhium leaves. PHYSIOL. PLANT. 23: 434-443.

0210. CHERRY, J.P.; ORY, R.L. 1973. Electrophoretic characterization of six selected enzymes of peanut cultivars. PHYTOCHEM. 12: 283-289.

0211. CHERRY, J.P.; ORY, R.L. 1973. Characterization of isoperoxidase activity in Arachis hypogaea cultivars. PHYTOCHEM. 12: 1581-1583.

Page 167: peroxidases ( peroksida )

156 PEROXIDASES 1970/1980

0212. CHETAL, S.; NAINAWATEE, H.S. 1976. Sorne enzyme changes associated with water-stress in germinating padding and barley seeds. PLANT BIOCHEM. J. 3: 105-110.

0213. CHIBBAR, RN.; GURUMURTI, K.; NANDA, KK 1974. Non-enzymic proteinaceous inhibition of IAA oxidase in stern cuttings of Ipomoea fistulosa. BIOCHEM. PHYSIOL. PFLANZ. 165: 325-330.

0214. CHIBBAR, RN.; GURUMURTI, K.; NANDA, KK 1979. Changes in IAA oxidase activity in rooting hypocotyl cuttings of Phaseolus mungo L. EXPERIENTIA 35: 202-203.

0215. CHIBBAR, R. N.; GURUMURTI, K.; NANDA, K K 1980. Effect of maleic hydrazide on peroxidase isoenzymes in relation to rooting hypocotyl cuttings of Phaseolus mungo. BIOL. PLANT. 22: 1-6.

0216. CHIGRIN, V.V.; SHUTOVA, E.A.; SAUTICH, M.A. 1973. Changes of peroxidase activity in fruit of stolbur tomatoes. SOVIET PL. PHYSIOL. 20: 62-67.

0217. CHILDS, RE.; BARDSLEY, W.G. 1975. The steady-state kinetics ofperoxidase with 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulphonic acid) as chromogen. BIOCHEM. J. 145: 93-103.

0218. CHIN, e.Z.; FRENKEL, e. 1976. Influence of ethylene and oxygen on respiration and peroxidase formation in potato tubers. NATURE 264: 60.

0219. CHIRKOVA, T.V.; SOKOLOVSKA, Y.A.; KHAZOVA, LV. 1973. Activity and isoenzyme composition of root peroxidase as a function of conditions of temporary anaerobiosis. SOVIET PL. PHYSIOL. 20: 1052-1056.

0220. CHMIELNICKA, J.; OHLSSON, P.J.; PAUL, KG.; STIGBRAND, T. 1971. Substrate specificity of plant peroxidases. FEBS LETTERS 17: 181-184.

0221. CHOUDHARY, S.S.; KARAOOE, B.A.; CHAVAN, P.D. 1979. Changes in hydroperoxidases during senescence in Raphanus sativus L. Jeaves. GEOBIOS 6: 278-280.

0222. CHOUREY, P.S.; SMITH, H.H.; COMBATTI, N.e. 1973. Effects of X irradiation and indoleacetic acid on specific peroxidase isoenzymes in pith tissue of a Nicotiana amphiploid. AMER. J. BOT. 60: 853-857.

0223. CHOY, Y.M.; WONG, Y.S.; LAU, KM.; YUNG, KH. 1979. Thermal activation of peroxidase from tobacco leaf mesophyll cell walls. INT. J. PEPTIDE PROTEIN RES. 14: 1-4.

0224. CHRISTIE, K N.; STOWARD, P.J. 1978. Endogenous peroxidase in mast cells localized with a semipermeable membrane technique. HISTOCHEM. J. 10: 425-434.

0225. CHRISTIE, K.N.; STOWARD. P.J. 1979. Specificity of cytochemical procedures for localizing peroxidase activity in the sarcoplasmic reticulum. HISTOCHEM. 64: 315-318.

Page 168: peroxidases ( peroksida )

157 REFERENCES

0225a. CHU, M.; DUNFORD, RB.; JOB, D. 1977. Horseradish peroxidase. XXV. An electron spin resonance study of the low temperature photochemical reaction ofcompound I. BIOCHEM. BIOPHYS. RES. COMM. 74: 159-163.

0226. CHUNG, J.; WOOD, J.L. 1970. Oxidation of thiocyanate to cyanide and sulfate by the lactoperoxidase-hydrogen peroxide system. ARCH. BIOCHEM. BIOPHYS. 141: 73-78.

0227. CHURG, A.; ANDERSON, W.A. 1974. Induction of endometrial peroxidase synthesis and secretion by estrogen and estrogen antagonist. J. CELL BIOL. 62: 449-459.

0228. CILENTO, G.; DURAN, N.; ZINNER, K.; VIDIGAL, CCC; OLIVEIRA, O.M.; HAUN, M.; FAUONI, A.; AUGUSTO, O.; CASADEI DE BAPTISTA, R.; BECHARA, E.J.H. 1978. Chemi-energized species in peroxidase systems. PHOTOCHEM. PHOTOBIOL. 28: 445-452.

0229. CIOPRAGA, J.; NICULESCU, S.; MARINESCU, M. 1978. Spectrophotometric method for the determination of peroxidase activity. REV. ROUM. BIOCHIM. 4: 259-263.

0230. CLAIBORNE, A.; FRIOOVICH, I. 1979. Purification of the o-dianisine peroxidase from Escherichia coli. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J. BIOL. CHEM. 254: 4245-4253.

0231. CLAIBORNE, A.; FRIDOVICH, I. 1979. Chemical and enzymatic intermediates in the peroxidation of o-dianisidine by horseradish peroxidase. 1. Spectral properties of the products of dianisidine oxidation. BIOCHEM. 18: 2324-2329.

0232. CLAIBORNE, A.; FRIDOVICH, I. 1979. Chemical and enzymatic intermediates in the peroxidation of o-dianisidine by horseradish peroxidase. 2. Evidence for a substrate radical-enzyme complex and its reaction with nucleophiles. BIOCHEM. 18: 2329-2335.

0233. CLARKE, J.; SHANNON, M. 1976. The isolation and characterization of the glycopeptides from horseradish peroxidase isoenzymes. BlOCHlM. BIOPHYS. ACTA 427: 428-442.

0234. CLEGG, M.T.; ALLARD, R.W. 1973. The genetics of electrophoretic variants in ~ ~ena. Il. The esterase F, , E,: ~, E;, ~ and anodal peroxidase AP~ lOCI m A. fatua. J. HERED. 64. 3-6.

0235. CLEMENTI, F. 1970. Effect of horseradish peroxidase on mice lung capillaries permeability. J. HISTOCHEM. CYTOCHEM. 18: 887.

0236. CLYNE, D.H.; NORRIS, S.H.; MODESTO, R.R.; PESCE, A.J.; POLLACK, V.E. 1973. Antibody enzyme conjugates : the preparation ofintermolecular conjugates of horseradish peroxidase and antibody. J. HISTOCHEM. CYTOCHEM. 21: 233-240.

Page 169: peroxidases ( peroksida )

158 PEROXIDASES 1970/1980

0237. COHEN, 1.0.; BANDURSKI, R.S. 1978. The bound auxins protection of indole-3-acetic acid from peroxidase-catalyzed oxidation. PLANTA 139: 203-208.

0238. COHEN, Y.; SACKSTON, W.E. 1974. Disappearance of IAA in the presence of tissues of sunflowers infected by P/a.l'mopara hO/.I'tedii. CAN. 1. BOT. 52: 861-866.

0239. COLLIER, H.B. 1974. Chlorpromazine as a substitute for ortho-dianisidine and ortho-tolidine in the determination of chlorine, hemoglobin, and peroxidase activity. CLIN. BIOCHEM. 7: 331-338.

0240. COLLINGS, 1.R.; SAVAGE, N. 1979. dependence in human breast cancer.

Peroxidase as a marker for oestrogen BRIT. 1. CANCER 40: 500-504.

0241. CONKLIN, M.E.; SMITH, H.H. of molecular variation in ten BOT. 58: 688-696.

1971. Peroxidase isozymes: herbaceous species of Datura.

a measure AMER. 1.

0242. CONSTABEL, F.; NASSIF-MAKKl, H. 1971. Betalainbildung Calluskulturen. BER. DTSCH. BOT. GES. 84: 629-636.

in Beta­

0243. COOKE, e.T.; CAMERON, P.U.; 10NES, D.G. 1975. Stimulation-induced uptake of horseradish peroxidase by rat cortical synapses. NEUROSe. LETT. 1: 15-18.

0244. COOMBES, A.l.; LEPP, N.W.; PHIPPS, D.A. 1976. The effect of copper on IAA-oxidase activity in root tissue of barley (Hordeum vu/gare cv. Zephyr). Z. PFLANZENPHYSIOL. 80: 236-242.

0245. COPES, D.L. 1979. A genetic analysis of aminopeptidase and isoenzymes in Douglas-tir parent trees and seedling progeny. FOR. RES. 9: 189-192.

peroxidase CAN. 1.

0246. CORBETT, M.D.; CHIPKO, B.R.; BATCHELOR, A.O. 1980. The action ofchloride peroxidase on 4-chloroaniline. N-oxidation and ring halogenation. BlOCHEM. 1. 187: 893-903.

0247. CORIN, R.E.; COX, e.D. 1980. Characterization of leptospiral catalase and peroxidase. CAN. 1. MICROBIOL. 26: 121-129.

0248. COTRAN, R.S.; LITT, M. 1970. Ultrastructural localization of horseradish peroxidase and endogenous peroxidase activity in guinea pig peritoneal macrophages. 1. IMMUNOL. 105: 1536-1546.

C:.:

0249. COTTON, M.L.; DUNFORD, H.B. 1973. Studies on horseradish peroxidase. XI. On the nature of compounds 1 and II as determined from the kinetics of the oxidation of ferrocyanide. CAN. 1. BIOCHEM. 51: 582-587.

0250. COTTON, M.L.; DUNFORD, H.B.; RAYCHEBA, 1. horseradish peroxidase. XIII. The effect of cyanide cycle. CAN. 1. BIOCHEM. 51: 627-631.

1973. Studies on on the steady state

Page 170: peroxidases ( peroksida )

REFERENCES 159

0251. COULOMB, P. 1971. Phytolysosomes dans le méristème radiculaire de la Courge (CuClirhila fleflll L. Cucurbitacée). Activité phosphatasique acide et activité péroxydase. C.R. ACAD. Sc. PARIS 272: 48-51.

0252. COULSON, A.F.W.; ERWAN, J.E.; YONETANI, T. 1971. cytochrome c peroxidase. J. BIOL. CHEM. 246: 917-924.

Studies on

0253. COUPE, M.; PUJARNISCLE, S.; D'AUZAC, J. 1972. Compartimentation de diverses oxydoréductases (peroxydase, o-diphenol oxydase et malate déshydrogénase) dans le latex d'Hevea brasiliensis (Kunth), Müll. Arg. PHYSIOL. VEG. 10: 459-480.

0254. COVOR, A.; BRAD, 1.; MARCU, Z.; HURDUC, N. 1970. Characteristics of romanian maize populations concerning their spectrum of isoperoxidase enzymes (hydrogen peroxide-benzidine oxidoreductor). REV. ROUM. BIOCHIM. 7: 17-21.

0255. CRAKER, L.E.; CHADWICH, A.V.; LEATHER, G.R. 1970. Abscission, movement and conjugation of auxin. PLANT PHYSIOL. 46: 790-793.

0256. CRITCHLOW, J.E.; DUNFORD, H.B. 1972. Studies on horseradish peroxidase. IX. Kinetics of the oxidation of p-cresol by compound II. J. BIOL. CHEM. 247: 3703-3713.

0257. CRITCHLOW, J.E.; DUNFORD, H.B. 1972. Studies on horseradish peroxidase. X. The mechanism of oxidation of p-cresol, ferrocyanide and iodide by compound II. J. BIOL. CHEM. 247: 3714-3725.

0257a. CRITCHLOW, J.E.; DUNFORD, H.B. 1973. Kinetic studies on peroxidases. ln 'OXIDASES AND RELATED REDOX SYSTEMS'. King, T.E.; Mason, H.S; Morrison, M. (Eds). Proc. 2nd Int. Symp., University Park Press, Baltimore, pp. 355-374.

0258. CRONENBERGER, L.; ABON, C 1970. Isoélectrofocalisation de l'indole acétique oxydase des racines de Pisum sativum. CR. ACAD. SC PARIS 271: 1431-1433.

0259. CUNNINGHAM, B.A.; LIANG, G.H.; MOORE, R.M.; HEYNE, E.G. 1975. Peroxidase activity in near-isogenic height lines of Triticale. J. HERED. 66: 151-154. !,:

0260. CURTIS, CR. 1971. Disc electrophoretic comparisons of proteins and peroxidases from Phaseolus vulgaris leaves infected with Agrobacterium tumejaciens. CAN. J. BOT. 49: 333-338.

0261. CURTIS, CR.; BARNETT, N.M. 1974. Isoelectric focusing of peroxidases released from soybean hypocotyl cell walls by Sclerotium rolfsii culture filtrate. CAN. J. BOT. 52: 2037-2040.

0262. CURTIS, CR.; HOWELL, R.K. 1971. Increases in peroxidase isoenzyme activity in bean leaves exposed to low doses of ozone. PHYTOPATHOL. 61: 1306-1307.

Page 171: peroxidases ( peroksida )

160 PEROXIDASES 1970/1980

0263. CURTIS, c.R.; HOWELL, R.K.; KREMER, D.F. 1976. Soybean peroxidases from ozone injury. ENVIRON. POLLUT. 11: 189-194.

0264. CZANINSKI, Y. 1978. Localisation u1trastructuraJe d'activités peroxydasiques dans les parois du xylème du Blé pendant leur différentiation. C.R. ACAD. Se. PARIS 286: 957-959.

0265. CZANINSKI, Y.; CATESSON, A.M. 1970. Activités peroxydasiques d'origines diverses dans les celIules d'Acer pseudoplatanus (tissus conducteurs et cellules en culture). J. MICROSe. 9: 1089-1102.

0266. CZANINSKI, Y.; PERESSE, M.; CATESSON, A.M.; MOREAU, M. 1971. Modifications ultrastructurales du xylème de l'Oeillet infecté par le Phialophora cinerescens (Wr) Van Beyma. C.R. ACAD. Sc. PARIS 273: 1576-1579.

0267. CZAPSKI, J.; ANTOSZEWSKI, R. 1970. Studies of 59 Fe incorporation into protein as an adaptation of IAA treatment. BULL. ACAD. POL. SCI. BIOL. 18: 489-492.

0268. CZAPSKI, J.; ANTOSZEWSKI, R. 1971. Peroxidase biosynthesis in pea root as influenced by IAA treatment. BIOCHEM. BIOPHYS. RES. COMM. 43: 12-19.

0269. DAEMS, W.T.; ROOS, D.; VANBERKEL, T.J.e.; VANDERRHEE, HL 1979. SubcelIular distribution and biochemical properties of peroxidases in monocytes and macrophages. ln 'LYSOSOMES IN APPLIED BIOLOGY AND THERAPEUTICS'. Dingle, J.T.; Jacques, P.J.; Shaw, I.H. (Eds). North Holland, Amsterdam, vol. 6, pp. 463-415.

0269a. DA GRACA, J.V.; VAN LELYVELD, L.J. 1978. Peroxidase and indole-3­acetic acid oxidase activities and isoenzymes in the nature bark of sunbloth­infected avocado (Persea americana). PHYTOPATH. Z. 92: 143-149.

0270. DALY, J.M. 1972. The use of near-isogenic lines in biochemical studies of the resistance of wheat to stem rust. PHYTOPATHOL. 62: 392-400.

0271. DALY, J.M.; LUDDEN, P.; SEEVERS, P.M. 1971. Biochemical comparisons of resistance to wheat stem rust disease controlled by the Sm or Sril alleles. PHYSIOL. PLANT. PA THOL. 1: 397-407.

0271a. DALY, J.M.; SE~ERS' P.M.; LUDDEN, P. 1970. rust resistance controlled at the Sm locus. 111. reaction. PH TOPATHOL. 60: 1648-1652.

Studies on wheat stem Ethylene and disease

027 lb. DALY, J.M.; JERINA, D.M. 1970. Aerobic_aromatic hydroxylation catalysed by horseradish peroxidase: absence of NIH shift. BIOCHIM. BIOPHYS. ACTA 208: 340-342.

0272. DANNER, D.1.; MORRISON, M. 1971. Isolation of the thyroid peroxidase complex. BIOCHIM. BIOPHYS. ACTA 235: 44-51.

Page 172: peroxidases ( peroksida )

REFERENCES 161

0273. DANNER, D.J.; BRIGNAC Jr., P.J.; ARCENEAUX, D.; PA'fEL, V. 1973. The oxidation of phenol and its reaction product by horseradish peroxidase and hydrogen peroxide. ARCH. BIOCHEM. BIOPHYS. 156: 759-763.

0274. DARBYSHIRE, B. 1971. Changes in indoleacetic acid oxidase actlYlty associated with plant water potentia!. PHYSIOL. PLANT. 25: 80-84.

0275. DARBYSHIRE, B. 1971. The etTect of water stress on indoleacetic acid oxidase in pea plants. PLANT PHYSIOL. 47: 65-67.

0276. DARBYSHIRE, B. 1973. The glycoprotein nature of indoleacetic acid ·oxidase/peroxidase fractions and their development in pea roots. PHYSIOL. PLANT. 29: 293-297.

0277. DARIMONT, E. 1971. Isoenzymes peroxydasiques de la racine de Vicia lens. ARCH. INTERNAT. PHYSIOL. BIOCHIM. 79: 625-626.

0278. DARIMONT, E. 1980. Interaction auxine-kinetine sur la croissance racinaire et sur des peroxydases liées aux membranes et aux parois. XIème RENCONTRE DE MERIBEL, pp./277-280.

0279. DARIMONT, E.; BAXTER, R. 1973. Ribosomal and mitochondrial peroxidase isoenzymes of the lentil (Lens culinaris) root. PLANTA llO: 205-210.

0280. DARIMONT, E.; GASPAR, T. 1972. A propos du nombre et du poids moléculaire des isoenzymes peroxydasiques de la racine de Lens culinaris. SOc. BOT. FR. MEMOIRES (Coll. Morpho!.), pp. 211-222.

0281. DARIMONT, E.; GASPAR, l'.; HOFINGER, M. 1971. Auxin-kinetin interaction on the lentil root growth in relation to indoleacrylic acid metabolism. Z. PFLANZENPHYSIOL. 64: 232-240.

0282. DARIMONT, E.; PENEL, c.; AUDERSET, G.; GREPPIN, H.; GASPAR, T. 1977. Peroxydases de haut poids moléculaire identifiées à des peroxydases membranaires chez la Lentille. ARCH. INTERNAT. PHYSIOL. BIOCHIM. 85: 497-507.

0283. DARIMONT, E.; SCHWACHHOFER, K.; GASPAR, T. 1973. Isoperoxydases et hydroxyproline dans les parois cellulaires des racines de Lentille. BIOCHIM. BIOPHYS. ACTA 321: 461466.

0284. DASHEK, W.V.; ERICKSON, S.S.; HAYWARD, D.M.; LlNDBECK, G.; MILLS, R.R. 1979. Peroxidase in cytoplasm and cell wall of germinating lily pollen. BOT. GAZ. 140: 261-265.

0285. DASS, H.C.; WEAVER, G.M. 1972. Enzymatic changes in intact leaves of Phaseolus vulgaris following ozone-fumigation. ATM. ENVIRONM. 6: 759-763.

0286. DAUSSANT, J. 197 J. Immunochemical characterization of protein in plant studies. AGRIC. AND FOOD CHEM. 19: 653-659.

Page 173: peroxidases ( peroksida )

162 PEROXIDASES 1970/1980

0287. DAUSSANT, J.; ROUSSAUX, J.; MANIGAULT, P. 1971. Caractérisations immunochimiques de deux auxines oxydases extmites de tumeurs végétales. FEBS LETTERS 14: 245-250.

0288. DAVIDSON, B.; SOOBACK, M.; STROUT, H.V.; NEARY, J.T.; NAKAMURA, C; MALOOF, F.F. 1979. Thiourea and cyanamide as inhibitors of thyroid peroxidase. Role of iodide. ENDOCRINOL. 104: 919-924.

0289. DAVIES, D.M.; JONES, R.; MANT LE, D. 1976. The kinetics of formation of horseradish peroxidase compound 1 by reaction with peroxobenzoic acids, pH and peroxoacid substituent effects. BIOCHEM. J. 157: 247-253.

0291. DEGN, H. 1973. Chemiluminescence in oscillatory oxidation reactions catalyzed by horseradish peroxidase. In 'BIOLOGICAL AND BIOCHEMICAL OSCILLATORS'. Lance, 8.; Pye E.K.; Ghosh, A.K.; Hers, 8. (Eds). Academic Press, New York, pp. 97-108.

0292. DE GREEF, JA; VAN HOOF, R.; CAUBERGS, R. 1977. Light-induced changes in auxin metabolism during hook opening of etiolated bean seedlings. BIOCHEM. SOC TRANS. 5: 1049-1051.

0293. DEIMANN, W.; FAHIMI, H.D. 1978. Peroxidase cytochemistry and ultrastructure of resident macrophages in fetal rat liver. A developmental study. DEVELOPM. BIOL. 66: 43-56.

0294. DE JONG, D. W. 1972. Detergent extraction of enzymes from tobacco leaves varying in maturity. PLANT PHYSIOL. 50: 733-737.

0295. DE JONG, D. W. 1973. Effect of temperature and daylength on peroxidase and malate (NAD) dehydrogenase isoenzyme composition in tobacco leaf extracts. AMER. J. BOT. 60: 846-852.

0296. DEKOCK, P.C; HALL, A.; INKSON, R.H.E. 1979. A study of peroxidase and catalase distribution in the potato tuber. ANN. BOT. 43: 295-298.

0297. DEKOCK, P.C; VAUGHAN, D. 1975. Effects of sorne chelating and phenolic substances on the growth of excised pea root segments. PLANTA 126: 187-195. .

0298. DELINCEE, H.; RADOLA, 8.J. 1970. Thin-layer isoelectric focusing on Sephadex layers of horseradish peroxidase. BIOCHIM. BIOPHYS. ACTA 200: 404-407.

0299. DELINCEE, H.; RADOLA, 8.J. 1971. Isoelectric fractionation of horseradish peroxidase. In 'PROTIDES OF BIOLOGICAL FLUIDS'. Proc. 18th Colloq., Brugge. Pergamon Press, Oxford, pp. 493-497.

0300. DELINCEE, H.; RADOLA, B.J. 1972. Detection of peroxidase by the print technique in thin-layer isoelectric focusing. ANAL. BIOCHEM. 48: 536-545.

0301. DELINCEE, H.; RADOLA, B.J. 1975. Fractionation of HRP by preparative isoelectric focusing, gel chromatography and ion-exchange chromatography. EUR. J. BIOCHEM. 52: 321-330.

Page 174: peroxidases ( peroksida )

REFERENCES 163

0302. DELINCEE, H.; RADOLA, 8.J. 1978. Determination of isoelectric points in thin-layer isoelectric focusing: the importance of attaining the steady state and the role of COz interference. ANAL. BIOCHEM. 90: 609-623.

0303. DELINCEE, H.; RADOLA, 8.1.; DRAWERT, F. on the isoelectric and size properties of EXPERIENTIA 27: 1265-1267.

1971. The effect of heat horseradish peroxidase.

0304. DELINCEE, H.; RADOLA, B.J.; DRAWERT, F. 1973. The effect ofcûmbined heat and irradiation treatment on the isoelectric and size properties of horseradish peroxidase. ACTA ALIMENTARIA 2: 259-274.

0305. DELINCEE, H.; SCHAFER, W. 1975. Der Einfluss thermischer Behandlung von Spinat in Temperaturbereich bis 100' auf den Gehalt an wesentlichen Inhaltsstoffen. VII. Mitteilung: Hitzaktivierung von Peroxydase Isozymen in Spinat. LEBENSM. WISS. TECHNOL. 8: 217-221.

0306. DELRIO, LA; GOMEZ, M.; LOPEZ-GORGE, 1. 1977. Catalase and peroxidase activities, chlorophyll and proteins during storage of pea plants at chilling temperatures. REV. ESP. FISIOL. 33: 143-148.

0307. DELRIO, LA, GOMEZ, M., YANEZ, J.; LEAL, A.; LOPEZ-GORGE, 1. 1978. Iron deficiency in pea plants. Effect on catalase, peroxidase, chlorophyll and proteins of leaves. PLANT SOIL 49: 343-353.

0308. DEMIREVSKA-KEPOVA, K.;' BAKARDJIEVA, N.T. 1976. Study on competition between guaiacol and ascorbic acid in peroxidase reaction and on ion effects by means of absorption spectra. CAN. J. BOT. 54: 90-99.

0309. DEMOREST, D.M.; STAHMANN, MA 1972. The binding of the peroxidase oxidation products ofindole-3-acetic acid to histone. BIOCHEM. BIOPHYS. RES. COMM. 47: 227-233.

0310. DENCHEVA, AV.; DOUSHKOVA, P.I.; KLISURSKA, D.Y. 1974. Influence of gibberellic acid and of the maleic hydrazide on the peroxidase in Senedesmus obliquus (Turp) Kütz. C.R. ACAD. BULG. Sc. 27: 703-706.

0311. DENCHEVA, AV.; KLISOURSKA, D.Y. 1976. Activity and isoenzyme composition of the peroxidase in the zones of growth and differentiation of the cells in shoots of maize. C.R. ACAD. BULG. SCI. 29: 1179-1182.

0312. DENDSAY, J.P.S.; SACHAR, R.C. 1978. Honnonal control of peroxidase activity in germinating mung bean cotyledons. PHYTOCHEM. 17: 1017-1019.

0313. DENNA, D.W.; ALEXANDER, M.8. 1975. The isoperoxidases ofCucurbita pepo L. In 'ISOZYMES. II. PHYSIOLOGICAL FUNCTION'. Markert, c.L. (Ed.). Academie Press, New York, pp. 851-864.

0314. DE OLMOS, J.S. 1977. nervous connections.

An improved HRP method for the study of central BRAIN RES. 29: 541-548.

Page 175: peroxidases ( peroksida )

164 PEROXIDASES 1970/1980

0315. DE RYCKER, J.; HALLIWELL, B. 1978. Oxidation of 2-nitropropane by horse radish peroxidase. Involvement of hydrogen peroxide and ofsuperoxide in the reaction mechanism. BIOCHEM. J. 175: 601-606.

0316. DESOMBRE, E.R.; ANDERSON, W.A.; KANG, Y.-H. 1975. Identification, subcellular localization, and estrogen regulation of peroxidase in 7,12­dimethylbenzo(a)anthracene - induced rat mammary tumors. CANCER RES. 35: 172-179.

0317. DE SOMBRE, E.R.; LYTTLE, e.R. 1978. Isolation and purification of rat mammary tumor peroxidase. CANCER RES. 38: 4086-4090.

0318. DESSER, R.K.; HIMMELHOCH, S.R.; EVANS, W.H.; JANUSKA, M.; MAGE, M.; SHELTON, E. 1972. Guinea pig heterophil and eosinophil peroxidase. ARCH. BIOCHEM. BIOPHYS. 148: 452-465.

0319. DEVI, G.; SHAILA, M.S.; RAMAKRISHNA, T.; GOPINATHAN, K.P. 1975. The purification and properties of peroxidase in Myobacterium tuberculosis H37Rv and its possible role in the mechanism of action of isonicotine acid hydrazide. BIOCHEM. J. 149: 187-197.

0320. DEWOLF, M.; HILDERSON, H.J.; LAGROU, A.; DIETRICK, W. 1977. Peroxidase, a marker enzyme for rough endoplasmic reticulum in bovine thyroid. ARCH. INTERNAT. PHYSIOL. BlOCHIM. 85: 971-974.

0321. DEZSI, L. 1975. Changes of glycolic acid oxidase and peroxidase activity in maize leaves during the vegetation period. ACTA AGRON. ACAD. SC\. HUNG. 24: 305-314.

0322. DEZSI, L.; PALFI, G.; FARKAS, G.L. 1970. increase in peroxidase activity in diseased PHYTOPATHOL. Z. 69: 285-291.

A new explanation for the and injured plant tissues.

0323. DHALIWAL, G.; BHATTACHARYA, N.e.; NANDA, K.K. 1974. Promotion of rooting by cycloheximide on hypocotyl cuttings in Impatiens balsamina and associated changes in the pattern of isoperoxidases. INDIAN J. PL. PHYSIOL. 17: 73-81.

0324. DHAWAN, A.K.; MALIK, e.P. 1979. Cyclic-AMP control of sorne oxido­reductases during pine pollen gennination and tube growth. PHYTOCHEM. 18: 2015-2017.

0325. DICKS, J.W. 1970. The participation of peroxidase and oxalic acid in crocin destruction by a particulate system from sugar beet leaves. PHYTOCHEM. 9: 1433-1441.

0326. DIMITRIJEVIC, L.; AUSSEL, c.; MUCCHlELLl. A.; MASSEYEFF, R. 1979. Purification and characterization of an estrogen binding peroxidase from human fetuses. BIOCHIMIE 61: 535-542.

0327. DINELLO, R.K.; DOLPHIN, D. 1978. Interaction of the hemin :2 and 4 substituents with apo horseradish peroxidase. BIOCHEM. BIOPHYS. RES. COMM. 80: 698-703.

Page 176: peroxidases ( peroksida )

REFERENCES 165

0328. DJAVADI-OHANIANCE, L.; RUDIN, y.; SCHATZ, G. 1978. Identification of enzymical1y inactive apocytochrome c peroxidase in anaerobical1y grown Saccharomyces cerevisiae. J. BIOL. CHEM. 253: 4402-4407.

0329. DOLMAN, D.; NEWELL, P.A.; THURLOW, M.D.; DUNFORD, H.B. 1975. A kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide. CAN. J. BIOCHEM. 53: 495-501.

0330. DO QUY HAl; KOVACS, K.; MAT KOVICS, 1.; MATKOVICS, B. 1975. Properties of enzymes. X. Peroxidase and superoxide dismutase contents of plant seeds. BIOCHEM. PHYSIOL. PFLANZ. 167: 357-359.

0331. DOUMENJOU, N.; MARIGO, G. 1978. Relations polyphenols-croissance: rôle de l'acide chorogénique dans le catabolisme auxinique chez Lycopersicum esculentum. PHYSIOL. VEG. 16: 319-361.

0331a. DOUZOU, P. 1973. Sorne preliminary experiments at low temperatures with intermediates of horseradish peroxidase. In 'OXIDASES AND RELATED REDOX SYSTEMS'. King, T.E.; Mason, H.S.; Morrison, M. (Eds). Proc. 2nd Int. Symp., University Park Press, Baltimore, pp. 389-400.

0332. DOYLE, M.P.; MARTH, E.H. 1979. Peroxidase activity in mycelia of Aspergillus parasiticus that degrade aflatoxin. EUR. J. APPL. MICROBIOL. BIOTECH. 7: 211-217.

0333. DUBERTRET, L.; BERTAUX, 8.; FOSSE, M.; TOURAINE, R. 1980. Endogenous peroxidases. A morphological and functional marker to study inflammatory skin diseases. BRITISH J. DERMATOL. 102: 669-674.

0334. DUBOUCHET, J. 1972. Structure and function of ANN. SCI. UNIV. BESANCON. BOT. 12: 103-113.

plant peroxidases.

0335. DUBOUCHET, J.; MOREAU, M.; CHAPPET, A; MOROT-GAUDRY, J.F. 1971. Effets de l'extrait du Phialophora cinerescens (Wr.) van Beyma sur l'activité peroxydasique. C.R. ACAD. Sc. PARIS 272: 3279-3282.

0336. DU BOUCHET, J.; MOREAU, M.; MOROT-GAUDRY, J.F.; PUGIN, A 1971. Activité auxinolytique du Phialophora cinerescens (Wr.) van Beyma. c.R. ACAD. Sc. PARIS 272: 1857-1860.

0337. DUBUCQ, M. 1976. Action comparée de l'auxine, l'ethrel sur la croissance et les isoperoxydases de BULL. SOc. ROY. BOT. BELG. 109: 93-108.

de la kinetine et de Lens culinaris Med.

0338. DUBUCQ, M.; BOUCHET, M.; GASPAR, T. 1973. Activité peroxydasique et isoperoxydases dans la betterave sucrière. J.I.I.R.B. 6: 109-116.

0339. DUDEN, R.; FRICKER, A; HEINTZE, K.; PAULUS, K.; ZOHM, H. 1975. Der Einfluss thermischer Behandlung von Spinat im Temperaturbereich bis 100'C auf den Gehalt an wesentlichen Inhaltsstoffen. IV. Peroxydase. LEBENSM. WISS. TECHNOL. 8: 147-150.

Page 177: peroxidases ( peroksida )

166 PEROXIDASES 1970/1980

0340. DUFFUS, C.M. 1970. Enzymatic changes and amyloplast âevclopmcnt the maturing barley grain. PHYTOCHEM. 9: 1415-1421.

in

0341. DUFFY, M.J.; DUFFY, G. 1977. Peroxidase activity as a possible marker for a functional oestradiol receptor in human breast tumours. BIOCHEM. SOc. TRANS. 5: 1738-1739.

0342. DUMITRESCU, M.; GORENFLOT, R.; COUDERC, H. 1975. La présence d'un inhibiteur de la peroxidase dans la gousse sèche de l'Anlhy/lis vulnl'ria L. ssp. di/lenii. REV. ROUM. BIOCHIM. 12: 15-20.

0343. DUNFORD, H.B. 1974. Stopped flow and temperature jump kinetic studies on horseradish peroxidase. PHYSIOL. VEG. 12: 13-23.

0344. DUNFORD, H.B. 1980. Structure and reactlVlty of peroxidase of higher oxidation states. ln 'MICROSOMES, DRUG OXIDATIONS, AND CHEMICAL CARCINOGENESIS'. Coon, M.I.; Conney, A.H.; Eastbrook, R.W.; Gelboin, H.V.; Gillette, I.R.; O'Brien P.J. (Eds). Academic Press, New York, vol. 1, pp. 273-284.

0345. DUNFORD, H.B.; ARAISO, T. 1979. Horseradish peroxidase. XXXVI. On the difference between peroxidase and metmyoglobin. BIOCHEM. BIOPHYS. RES. COMM. 89: 764-768.

0346. DUNFORD, H.B.; HEWSON, W.D. 1977. Effect of mixed solvents on the formation of horseradish peroxidase compound 1. The importance of diffusion-coiltrolled reactions. BIOCHEM. 16: 2949-2957.

0347. DUNFORD, H.B.; HEWSON, W.D.; STEINER, H. 1978. Horseradish peroxidase. XXIX. Reactions in water and deuterium oxide-cyanide binding, compound-I formation, and reactions of compound-I and compound-Il with ferrocyanide. CAN. J. CHEM. 56: 2844-2852.

0347a. DUNFORD, H.B.; STILLMAN, J.S. 1976. On the function and mechanism of action of peroxidase. COORDIN. CHEM. REV. 19: 187-251.

0348. DUNLEAVY, J.M.; URS, N.V.R. leaves of soybeans. CROP SCI.

1978. Peroxidase 18: 104-108.

activity in roots and

0349. DURAN, N.; FALlONl, A. 1978. Singlet oxygen formation during peroxidase catalyzed degradation of carcinogenic N-nitrosamine. BIOCHEM. BIOPHYS. RES. COMM. 83: 287-294.

0350. DURAN, N.; ZINNER, K.; VIGIDAL, c.c.c.; CILENTO, G. 1977. Generation of eiectronically excited aromatic aldehyde in the peroxidase catalyzed aerobic oxidation of aromatic acetaldehydes. BIOCHEM. BIOPHYS. RES. COMM. 74: 1146-1153.

0351. DUVAL, J.c.c. 1974. Etude polarographique de l'activité mitochondriale en présence de diaminobenzidine. C.R. ACAD. Sc. PARIS 278: 257-260.

0352. DVORAK, M.; CERNOHORSKA, J. 1972. Comparison of effects of calcium deliciency and IAA on the pumpkin plant (Cucurbila pepo L.). BIOL. PLANT. 14: 28-38.

Page 178: peroxidases ( peroksida )

REFERENCES 167

0353. DZIEWANOWSKA, K.; LEWAK, S.T. 1975. Indoleacetic acid oxidase in dormant apple embryos. BIOL PLANT. 17: 207-213.

0354. EARL. J.W.; KENNEDY, I.R. 1976. Plant peroxidase-analogue of cytochrome P450. PROC. AUST. BIOCHEM. SOc. 9: 74.

0355. EDREVA, A.M. 1976. On the biological role and the participation of the peroxidase in plant resistance phenomena. GENETIKA SELEKT. 3: 250-255.

0356. ELKINAWY, M.; RAA, J. 1973. Levels of indole-3-acetic (IAA), IAA-oxidase and peroxidase in developing cucumber seedlings. PHYSIOL. PLANT. 29: 250-255.

0356a. EL-METHANY, A.; YOUSSEF, A.A.; SHERIF, M. 1979. Peroxidase isozymes in Lycopersicon species. 1. Hybrid band in L. esculentum x L. pimpinellifolium interspecific FI hybrid. EGYPT. J. GENET. CYTOL. 8: 315-318.

0357. ELSTNER, E.F.; HEUPEL, A.L. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). PLANTA 130: 175-180.

0358. ENOO, T. stain.

1972. Application of the Nadi reaction to rice peroxidase isozyrne BOT. MAG. (TOKYO) 85: 147-151.

0359. ENDRESS, A.G.; SUAREZ, S.J.; TAYLOR, O.e. 1980. Peroxidase activity in plant leaves exposed to gaseous HCI or ozone. ENVIRON. POLLUT., SER. A, 22: 47-58.

0360. EPSTEIN, E.; KOCHBA, J.; NEUMANN, H. 1977. Metabolism ofindoleacetic acid by embryogenic and nonembryogenic callus lines of 'shamouti' orange (Citrus sinensis). Z. PFLANZENPHYSIOL. 85: 263-268.

0361. EPSTEIN, N.; SCHEJTER, A. of horseradish peroxidase.

1972. On the nature of the alkaline ionization FEBS LETTERS 25: 46-48.

0362. ERECINSKA, M.; OSHINO, N.; LOH, P.; BROCK LE HURST, E. 1973. In vitro studies on yeast cytochrome c peroxidase and its possible function in the electron transfer and energy coupling reactions. BIOCHIM. BIOPHYS. ACTA 292: 1-12.

0363. ERMAN, J.E.; YONETANI, T. 1975. The oxidation of cytochrome c peroxidase by hydrogen peroxide. Characterization of products. BIOCHIM. BIOPHYS. ACTA 393: 343-349.

0364. ERNEST, L.e.; VALDOVINOS, J.G. 1971. Regulation of auxin levels in Coleus blurnei by ethylene. PLANT PHYSIOL. 48: 402-406.

0365. ESEN, A.; SOOST, R.K. J. HERED. 67: 199-203.

1976. Peroxidase poJymorphism in Citrus.

0366. ESSNER, E. 1971. lacrimal gland.

Localization of endogenous peroxidase in rat J. H1STOCHEM. CYTOCHEM. 19: 216-221.

exorbital

Page 179: peroxidases ( peroksida )

168 PEROXIDASES 1970/1980

0367. ESSNER, E. 1974. Hemoproteins. In 'ELECTRON MICROSCOPY OF ENZYMES. PRINCIPLES AND METHODS'. Hayat, MA (Ed.). Van Nostrand Reinhold Co., New York, vol. 2, pp. 1-33.

0368. ESTERBAUER, H.; SCHWARZL, E. 1977. Aerobic oxidation of p-hYdroquinone by horseradish peroxidase in the presence of a thiol and MnC~. Z. NATURFORSCH. 32c: 650-651.

0369. ESTERBAUER, H.; GRILL, D.; ZOTTER, M. 1978. Peroxidase in needles of Picea abies L. Karst. BIüCHEM. PHYSIOL. PFLANZ. 172: 155-160.

0370. EVANS, J.J. 1970. Spectral similarities and kinetic differences of two tomato plant peroxidase isoenzymes. PLANT PHYSIOL. 45: 66-69.

0371. EVANS, J.J.; MECHAM, D.K. 1971. Occurence and properties ofperoxidase isoenzymes in wheat flour and milling fractions. (Abstr). CEREAL SCI. TODAY 16: 22.

0372. EVANS, M.L. 1976. Comparative effects of indole-3-acetic acid and 3-methyleneoxindole on intact lentil root elongation. PLANT SCI. LETT. 7: 447-453.

0373. EVANS, M.L.; RAY, P.M. 1973. Inactivity of 3-methyleneoxindole as mediator ofauxin action of ceIJ elongation. PLANT PHYSIOL. 52: 186-189.

0374. FACCIOLI, G. 1979. Relation of peroxidase, catalase and polyphenoloxidase to acquired resistance in plants of Chenopodium amaranticolor locally infected by tobacco necrosis virus. PHYTOPATHOL. Z. 95: 137-149.

0375. FAHIMI, H.D. 1970. The fine structural localization of endogenous peroxidase aetivity in buffer ceIls or rat liver. J. CELL BIOL. 47: 247-256.

0376. FAHIMI, H.D. 1979. An assessment of the DAB methods for cytochemical detection of catalase and peroxidase. J. HISTOCHEM. CYTOCHEM. 27: 1365-1366.

0377. FAHIMI, H.D.; HERZOG, V. 1973. A colorimetrie method for measlirement of the (peroxidase-mediated) oxidation of 3,3'-diaminobenzidine. J. HISTOCHEM. CYTOCHEM. 21: 499-502.

0378. FAVILLA, R.; CAVATORTA, P. 1975. Peroxidase activity of horse liver alcohol dehydrogenase in the presence of J3-NAa- and hydrogen peroxide. FEBS LETTERS 50: 324-329.

0378a. FEDAK, G.; RAJHATHY, T. 1972. CAN. J. PLANT SCI. 52: 751-756.

Isozyme studies in hybrid barley.

0379. FEDKINA, V.R.; ATAULLAKHANOV, F.I.; BRONNIKOVA, T.V.; BALABAEV, N.K. 1978. Experimental investigation and computer simulation of transitional behaviours in peroxidase-oxidase reaction. STUDIA BIOPHYS. 72: 195-202.

Page 180: peroxidases ( peroksida )

169 REFERENCES

0380. FEINGOLD, M.; LEVIN, S.; INSLER, V. 1979. The peroxidase content and the antibacterial activity of the amniotic fluid. ACTA OBSTET. GYNEC. SCAND. 58: 49-52.

0381. FELDBERG, N.T.; SCHULTZ, J. 1972. Evidence that myeloperoxidase is composed of isoenzymes. ARCH. BIOCHEM. BIOPHYS. 148: 407-413.

0382. FELDER, M.R. 1976. Genetic control of four cathodal peroxidase isozymes in barley. J. HERED. 67: 39-42.

0383. FERET, P.P. 1971. Isoenzyme variations in Picea glauca (Moench) voss seedlings. SILVAE GENET. 20: 46-50.

0383a. FERRI, M.V.; GUZMAN, CA. 1970. The isoperoxidases from leaves of sorne species of the genus Datura. PHYTON 27: 137-140.

0384. FIELDES, MA; BASHOUR, N.; DEAL, CL.; TYSON, H. 1976. Isolation ofperoxidase isozymes from two flax genotypes by column chromatography. CAN. J. BOT. 54: 1180-1188.

0385. FIELDES, MA; DEAL, CL.; TYSON, H. 1977. Preliminary characterization of peroxidase isozymes isolated from two flax genotrophs. CAN. J. BOT. 55: 1465-1473.

0386. FIELDES, M.A.; TYSON, H. 1972. Activity and relative mobility ofperoxidase isoenzymes in genotrophs and genotypes of flax (Linum usitatissimum L.). CAN. J. GENET. CYTOL. 14: 625-636.

0387. FIELDES, M.A.; TYSON, H. 1973. Activity and relative mobility ofperoxidase and esterase isozymes of flax (Linum usitatissimum) genQtrophs. 1. Developing main stems. CAN. J. GENET. CYTOL. 15: 731-744.

0388. FIELDES, M.A.; TYSON, H. 1973. Activity and relative mobility ofperoxidase and esterase isozymes of flax (Linum usitatissimum) genotrophs. II. Ii hybrids and nuclear DNA reversion types. CAN. J. GENET. CYTuL. 15: 745-755.

0389. FIELDES, M.A.; TYSON, H. 1973. Total phenolic content and peroxidase isozymes in Linum usitatissimum. PHYTOCHEM. 12: 2133·2143.

0390. FIELDES, MA; TYSON, H.; BASHOUR, N. 1976. Relative shifts in mobility in anionic peroxidase isoenzymes between stem base and apex of flax genotrophs. PHYTOCHEM. 15: 247-250.

0391. FIELDING, J.L.; HALL, J.L. 1978. A biochemical and cytochemicaI study of peroxidase activity in roots of Pisum sativum. 1. A comparison of DAB peroxidase and guaiacol-peroxidase with particuIar emphasis on the properties of œil wall activity. J. EXP. BOT. 29: 969-981.

0392. FIELDING, J.L.; HALL, J.L. 1978. A biochemical and cytochemicaI study of peroxidase activity in roots of Pisum sativum. II. Distribution of enzymes in relation to mot development. J. EXP. BOT. 29: 983-991.

Page 181: peroxidases ( peroksida )

170 PEROXIDASES 1970/1980

0393. FINK, 8.; LOEPFE, E.; WYLER, R. 1979. Demonstration of viral antigen in cryostat section by a new immunoperoxidase procedure eliminating endogenous peroxidase aetivity. J. HISTOCHEM. CYTOCHEM. 27: 1299-1303.

0394. FLUCKIGER, W. 1977. Interaction of 2,4-D (2,4-dichlorophenoxyacetic acid) and CCC (2-chloroethyltrimethylammonium chloride) on peroxidase activity and growth of wheat. Z. PFLANZENPHYSIOL. 83: 89-93.

0395. FLUCKJGER, W.; FLUCKIGER-KELLER, H.; OERTLl, J.J. 1978. Der Einfluss verkehrsbedingter Luftverunreinigungen auf die Peroxydaseaktivitiit. das ATP-Bildungsvermogen isolierter Chloroplasten und das Liingenwachstum von Mais. Z. PFLANZENKRANK. PLANZENSCH. 85: 41-47.

0396. FLURKEY, W.H.; JEN, J.J. 1978. Peroxidase and activities in developing peaches. J. FOOD SCI. 43:

polyphenol 1826-1828.

oxidase

0397. FLURKEY, W.H.; YOUNG, L.W.; JEN, J.J. 1978. Separation of soybean lipoxygenase and peroxidase by hydrophobie chromatography. J. AGRIC. FOOD CHEM. 26: 1474-1476.

0398. FOWLER, J.L.; MORGAN, P.W. 1972. indoleacetie aeid oxidase system to in PLANT PHYSIOL. 49: 555-559.

The relationship of the peroxidase vivo ethylene synthesis in cotton.

0399. FRENKEL, C. 1972. Involvement of peroxidase and indole-3-acetic acid oxidase isozymes from pear, tomato and blueberry fruit in ripening. PLANT PHYSIOL. 49: 757-763.

0400. FRENKEL, C. 1975. Oxidative turnover of auxins in relation to the of ripening in Bartlett pear. PLANT PHYSIOL. 55: 480-484.

onset

0402. FRENKEL, c.; HAARD, N.F. 1973. Initiation of ripening in Barlett pear with an antiauxin Cl. (p-ehlorophenoxy) isobutyric acid. PLANT PHYSIOL. 52: 380-384.

0404. FRENKEL, c.; HESS, C.E. initiation in mung bean.

1974. Isozymic changes in CAN. J. BOT. 52: 295-297.

relation to root

0405. FRETZDORFF, 8. 1980. Bestimmung der Peroxydase-Aktivitiit in Getreide. Z. LEBENSM. UNTERS. FORSCH. 170: 187-193.

0406. FRIC, F. 1971. Enzymes of indoleacetie aeid degradation in barley leaves. BIOLOGIA (BRATISLAVA) 26: 677.

0407. FRIC, F. 1974. Peroxydase- und IES-Oxydaseaktivitiit in der Geweben von mehltaubefallener Gerste (Erysiphe graminis f. sp. mordei Marchal). PHYTOPATHOL. Z. 80: 67-75.

0408. FRIC, F. 1976. Oxidative enzymes. In 'ENCYCLOPEDIA OF PLANT PHYSIOLOGY. IV. PHYSIOLOGICAL PLANT PATHOLOGY'. Heitefuss, R.; Williams, P.H. (Eds). Springer, Berlin, pp. 617-631.

Page 182: peroxidases ( peroksida )

REFERENCES 171

0409. FRIC, F.; FUCHS, W.H. 1970. Veranderungen der Aktivitiit einiger Enzyme im Weizenblatt in Abhangigkeit von der Temperaturlabilen Vertriiglichkeit fUr Puccinia graminis tritici. PHYTOPATHOL. Z. 67: 161-174.

0410. FRIEND, J.; THORNTON, J.D. 1974. Caffeic acid-o-methyl transferase, phenolase and peroxidase in potato tuber tissue inoculated with Phytophthora in.lèstans. PHYTOPATHOL. Z. 81: 56-64.

041 1. FRIES, D. 1971. Action de l'acide abscissique sur la croissance et l'activité auxine-oxydasique des racines de Lentille. C.R. ACAD. Sc. PARIS 272: 2884-2887.

0412. FRIES, D. 1972. Actions de l'acide abscissique et de la kinétine sur la croissance, l'activité peroxydasique et le spectre des isoperoxydases de Lens culinaris Med. ANN. PHYSI0L. VEG. UNIV. BRUXELLES 17: 83-104.

0413. FRlES, D.; GASPAR, T.; VERBEEK, R. 1971. Abscisic acid in the inhibitor­13 fraction of the lentil root. Tentative identification and properties. ANN. PHYSI0L. VEG. UNIV. BRUXELLES 41: 27-37.

0414. FRY, S.c. 1979. Phenolic components of the primary œil wall and their possible role in the hormonal regulation of growth. PLANTA 146: 343-351.

0415. FRY, S.c. 1980. Gibberellin-controlled pectinic acid and protein secretion in growing cells. PHYTOCHEM. 19: 735-740.

0416. FRYSMAN, R.B.; TOMARO, M.L.; FRYDMAN, B. 1972. Pyrrolooxygenases : isolation, properties, and products formed. BI0CHIM. BI0PHYS. ACTA 284: 63-79.

0417. FUJlTA, H.; SAWANO, F. 1979. The structural localization of endogenous peroxidase in the endostyle of ascidians, Ciona intestinalis. A part of phylogenetic studies on the thyroid gland. ARCH. HISTOLOG. JAPAN 42: 319-326.

0418. FUJlTA, S.; TONO, T. 1980. Peroxidase actlVlty of phloroglucinoloxidase from Satsuma mandarin fruits and effect of metal ions on the enzyme activities. Studies in trihydroxybenzene oxidase of agricultural products. J. AGRIC. CHEM. SOc. JAPAN 54: 201-206.

0419. GABORJANYl, R.; SAGI, F.; BALAZS, E. 1973. Growth inhibition of virus­infected plants: alterations of peroxidase enzymes in compatible and incompatible host-parasite relations. ACTA PHYTOPATHOL. ACAD. SeI. HUNG. 8: 81-90.

0420. GALE, M.D.; SPENCER, D. production in endosperm.

1974. Location of genes controlling enzyme EWAC NEWSLETT. 4: 16-17.

0421. GALLATI, H. 1977. Enzyme-immunological activity of peroxidase with the aid of the CHEM. CLIN. BI0CHEM. 15: 699-704.

tests: determination of the 'Trinder reagent'. J. CLIN.

Page 183: peroxidases ( peroksida )

172 PEROXIDASES 1970/1980

0421 a. GALLIANI, G.; RINDONE, B. 1978. Horseradish peroxidase-cata1yzed oxidation of aromatic tertiary amines with hydrogen peroxide. J. CHEM. SOC. PERKIN TRANS. 1, 1:456-460.

0422. GALLIANI, G.; RINDONE, B. 1980. Formation of superoxide radical anion in the horseradish peroxidase-cata1yzed oxidation of three aromatic tertiary amines with hydrogen peroxide. J. CHEM. SOc. PERKIN TRANS. II, 1: 1-3.

0423. GALLIARD, T.; PHILLIPS, D.R.; MATTHEW, J.A. 1975. Enzymic reactions of fatty acid hydroperoxidases in extracts of potato tubers. II. Conversion of 9- and 13-hydroperoxy - octade - cadienoic acids to monohydroxydienoic acid, epoxyhydroxy and trihydroxymonoenoic acid derivatives. BIOCHIM. BIOPHYS. ACTA 409: 157-172.

0423a. GALLOIS, T.; PUGIN, A.; PERESSE, M.; DUBOUCHET, J. 1980. Local and distant effect of Phialophora cinerescens on soluble and cel! wall bound isoperoxidases in Dianthus caryophyllus. PHYTOPATH. Z. 99: 215-228.

0424. GARDINER, M.G.; CLELAND, R. cessation of elongation in Pisum 1085-1098.

1974. sativum

Peroxidase changes during the stems. PHYTOCHEM. 13:

0425. GARDINER, M.G.; CLELAND, R. Avena coleoptile. PHYTOCHEM.

1975. Peroxidase 13: 1707-1711.

isoenzymes of the

0425a. GARRAWAY, M.O. 1973. Electrolyte and peroxidase leakage as indicators of susceptibility of various maize inbreds to Helminthosporium maydis races T and O. PLANT DIS. REP. 57: 518-522.

0425b. GARRAWAY, M.O. 1974. Release of peroxidase from corn leaves infected by Helminthoporium maydis race T. PROC. AMER. PHYTOPATHOL. SOC. 1: 34.

0425c. GARRAWAY, M.O.; EVANS, R.C. 1977. Sporulation and peroxidase in Bipolaris maydis: effects of xylose and thiamine. CAN. J. BOT. 55: 1996-2000.

0426. GARRETT, J.R.; KIDD, A. 1976. Acid phosphatase and peroxidase in 'resting' acinar cel!s of the major salivary glands of cats and their possible movement into sercretory granules. HISTOCHEM. J. 8: 523-538.

0427. GAS, c.; RETHORE, J.L.; FALLOT, J. 1974. Mise en évidence et caractérisation de plusieurs composés de type 'protecteurs d'auxine' dans les extraits de parenchyme vasculaire de tubercules de Topinambour. C.R. ACAD. Sc. PARIS 278: 1561-1564.

0428. GASPAR, T. 1970. Effet comparé de l'Amo-1618 et de l'AIA sur les peroxydases ribosomiques et cytoplasmiques de la racine de Lentille. PHYSIOL. VEG. 8: 641-648.

0429. GASPAR, T. 1970. Dégradation de l'acide p-indolylacrylique par le système peroxydase-acide p-indolylacétique en l'absence de peroxyde exogène. C.R. ACAD. Sc. PARIS 271: 928-932.

Page 184: peroxidases ( peroksida )

173 REFERENCES

0430. GASPAR, T 1971. Dégradation de l'acide ~-indolylacrylique par le système tyrosinase - catéchol. C.R. ACAD. Sc. PARIS 273: 529-532.

0431. GASPAR, T. 1971. Peroxydation, oxydation ou oxygénation de l'acide ~-indolylacétique? BULL. CL. Sc. ACAD. ROY. BELG. 57: 397-421.

0432. GASPAR, T. 1973. Inhibition ofroot growth as a result ofmethyleneoxindole formation. PLANT SCI. LETT. 1: 115-118.

0433. GASPAR, T. 1973. Tuber growth and isoperoxidase spectrum. TRANS. 3RD SYMPOSIUM ON ACCUMULATION AND TRANSLOCATION OF NUTRIENTS AND REGULATORS IN PLANT ORGANISMS (Poland, May 1973), pp. 297-305.

0434. GASPAR, T.; BERVILLE, A.; DARIMONT, E. 1974. Peroxidase activity and isoperoxidase pattern of a commercial cytochrome c compared with a rnaize mitochondrial fraction. PLANT BIOCHEM. J. 1: 59-66.

0435. GASPAR, T.; BOUCHET, M. 1973. Peroxidase as biochemical measure of fresh weight and sugar yield in sugar-beet. EXPERIENTIA 25: 1212.

0436. GASPAR, T.; BOUCHET, M. 1980. Peroxidase, IAA-oxidase, and auxin protectors from Pelargonium. PLANT BIOCHEM. J., S.M. SIRCAR MEMORIAL VOL., pp. 63-68.

0437. GASPAR, T.; BOUCHET, M.; DARIMONT, E. 1972. The combination of indole-acrylic acid with the peroxidase heme moiety and with other porphyrin derivatives. ARCH. INTERN. PHYSIOL. BlOCHlM. 80: 45-50.

0438. GASPAR, T.; BOUCHET, M.; FRIES, D. 1972. The localization ofinhibitory oxidation products of indole-3-acetic acid near abscisic acid in the inhibitor­~ complex. Z. PFLANZENPHYSIOL. 67: 75-85.

0439. GASPAR, T.; BOUCHET, M.; KHAN, A.A.; FRIES, D. 1975. Cytokinin interaction with abscisic acid and coumarin in relation to growth and isoperoxidases of lenti!.- BULL. SOc. ROY. BOT. BELG. 108: 5-15.

0440. GASPAR, T.; DUBUCQ, M.; ANTOSZEWSKI, R. 1975. Auxin decarboxylation and isoperoxidases in strawberry petiole extracts. BIOL. PLANT. 17: 23-30.

0441. GASPAR, T; DU BUCQ, M.; VAN HOOF, P. 1974. Des isoperoxydases spécifiques de racines. BIOL. PLANT. 16: 237-240.

0442. GASP~R, T.; GOREN, R.; HUBERMAN, M.; DU BUCQ, M. 1978. Citrus leaf abscission. Regulatory role of exogenous auxin and ethylene on peroxidases and endogenous growth substances. PLANT CELL ENVIRONMENT 1: 225-230.

0443. GASPAR, T.; KHAN, A.A.; FRIES, D. 1973. Hormonal control of isoperoxidases in lentil embryonic axis.. PLANT PHYSIOL. 51: 146-149.

Page 185: peroxidases ( peroksida )

174 PEROXIDASES 1970/1980

0444. GASPAR, T.; PENEL, e.; GREPPIN, H. 1975. Peroxidase and isoperoxidases in relation to root and flower formation. PLANT BIOCHEM. J. 2: 33-37.

0445. GASPAR, T.; PENEL, e.; TRAN THANH VAN, M.; GREPPIN, H. 1979. Des isoperoxydases comme marqueurs de la différenciation cellulaire chez les végétaux. Xème RENCONTRE DE MERIBEL, pp. 175-196.

0446. GASPAR, T.; SMITH, D.; THORPE, T. 1977. Arguments supplémentaires en faveur d'une variation inverse du niveau auxinique endogène au cours des deux premières phases de la rhizogénèse. e.R. ACAD. Se. PARIS 285: 327-330.

0447. GASPAR, T.; TEPPAZ-MISSON, e.; COURDUROUX, J.e. 1973. Isoperoxidases in Jerusalem artichoke in relation to tuberization and dormancy. BIOL. PLANT 15: 339-345.

0448. GASPAR, T.; THORPE, TA; TRAN THANH VAN, M. 1977. Changes in isoperoxidases during differentiation of cultured epidermal layers. ACTA HORne. 78: 61-73.

0449. GASPAR, T.; VAN HOOF, P. 1976. Application d'un test peroxydasique dans le choix des plantes d'asperge à propager in vitro. REV. AGRIe. 3: 583-592.

0450. GASPAR, T.; VERBEEK, R. 1974. Auxin-cytokinin control ofisoperoxidases in relation to growth and ex-amylase activity. In 'PLANT GROWTH SUBSTANCES'. Hirokawa Pub!. Co., Tokyo, pp. 761-766.

0451. GASPAR, T.; VERBEEK, R.; KHAN, A.A. 1971. Sorne effects of Amo­1618 on growth, peroxidase and ex-amylase which cannot be éasily explained by inhibition of gibberellin biosynthesis. PHYSIOL. PLANT. 24: 552-555.

0452. GASPAR, T.; WYNDAELE, R.; BOUCHET, M.; CEULEMANS, E. 1977. Peroxidase and ex-amylase activities in relation to germination of dormant and non-dormant wheat. PHYSIOL. PLANT. 40: 11-14.

0453. GASYNA, Z. 1979. Electron attachment to Fe (III)-NO center in nitric oxide peroxidase at low temperature. Rearrangement of the structure of the active site. STUDIA BIOPHYS. 76: 77-84.

0454. GEIGER, J.P.; GOUJON, M. 1977. Etude de deux peroxydases différentes extraites des tissus racinaires d'Hévéas sains et parasités par Leptorus lignosus (KI.) Heim. e.R. ACAD. Se. PARIS 284: 1053-1056.

0455. GEIGER, J.P.; NANDRIS, D.; GOUJON, M. 1976. Activité des laccases et des peroxydases au sein de racines d'Hévéa attaquées par le pourridié blanc (Leptoporus lignosus (KI.) Heim). PHYSIOL. VEG. 14: 271-282.

0456. GELfNAS, D.A. 1973. Proposed model for the peroxidase-catalyzed oxidation of indole-3-acetic acid in the presence of the inhibitor ferulic acid. PLANT PHYSIOL. 51: 967-972.

Page 186: peroxidases ( peroksida )

REFERENCES 175

0457. GEMANT, A with DNA.

1979. Histone: Oxidation by peroxidase alters its interaction MOLEC. BIOL. REP. 5: 257-259.

0457a. GEMANT, A 1980. Inhibitors of oxidation by peroxidase of histone as possible drugs in the treatment of senescence. DRUGS EXPTL. CLIN. RES. 2: 1-4.

0458. GENTILE, I.A.; MATTA, A relation to hyperauxiny in MEDIT. 12: 43-47.

1973. Indoleacetic acid Fusarium wiIt of tomato.

oxidase actlVlty in PHYTOPATHOL.

0459. GEORGESCU, C.M.; ROMER, D.; OLTEANU, G. 1979. Peroxidase activity as a possible test for distinguishing S-plasm from N-plasm in sugar beet (Deta vulgaris L.). EUPHYTICA 28: 779-784.

0460. GEORGlEV, G.H.; BAKARDJIEVA, N.T. 1973. Activity and isoenzyme composition of peroxidase in sorne genera of mosses (class Musci) with ditferent phylogenetic position. C.R. ACAD. BULG. sc. 26: 965-968.

0461. GEORGIEV, G.K.; BAKARDJIEVA, N.T.; GEORGIEV, G.I. 1977. Peroxidase activity in plants occupying ditferent taxonomie positions. FIZIOL. RAST. 24: 97-102.

0461a. GETTYS, K.L.; HANCOCK, l.E; CAVALIERI, Al. 1980. Salt tolerance of in vitro activity of leucine aminopeptidase, peroxidase, and malate dehydrogenase in the halophytes Spartina alterniflora and S. patens. BOT. GAZ. 141: 453-457.

0462. GEWITZ, H.S.; PIEFKE, J.; LANGOWSKA, K.; VENNESLAND, B. 1980. The formation of hydrogen cyanide from histidine in the presence of amino acid oxidase and peroxidase. BIOCHIM. BIOPHYS. ACTA 611: 11-26.

0462a. GHOSH, J.K.; SENGUPTA, D.N.; SEN, S.P. 1980. Changes in protein patterns in the leaves of rice in relation to the initiation of reproductive phase. 1. The photoperiod - sensitive cultivar Rupsaii. PLANT BIOCHEM. J. 7: 138-150.

0463. GlBSON, D.M.; LID, E.H. 1978. Substrate specificities of peroxidase isozymes in the developing pea seedling. ANN. BOT. 42: 1075-1084.

0464. GlBSON, D.M.; LID, E.H. 1978. The inhibition of plant peroxidase and indole-3-acetic acid oxidase activity by british anti-Iewisite. ARCH. BIOCHEM. BIOPHYS. 186: 317-323.

0465. GIEBEL, J.; KRENZ, J.; WILSKI, A. 1971. Localization of sorne enzymes in rootsof susceptible and resistant potatoes infected with Heterodera rostochiensis. NEMATOLOGICA 17: 29-33.

0466. GIRAUD, G.; CZANINSKI, Y. 1971. Localisation ultrastructurale d'activités oxydasiques chez le Chlamydomonas reinhardi. . C.R. ACAD. Sc. PARIS 273: 2500-2503.

Page 187: peroxidases ( peroksida )

176 PEROXIDASES 1970/1980

0467. GOFF, O.W. 1975. A light and electron microscopie study of peroxidase localization in the onion root tip. AMER. J. BOT. 62: 280-291.

0468. GORDON, AR.; ALLDRIDGE, N.A 1971. Cytochemical localization of peroxidase A' in developing stem tissues of extreme dwarf tomato. CAN. J. BOT. 49: 1487-1496. Î

0469. GORDON, J.e. 1971. Changes in total nitrogen soluble protein and peroxidases in the expanding leaf zone of eastem cotton wood. PLANT PHYSIOL. 47: 595-599.

0470. GORDON, W.R.; HENDERSON, J.H.M. 1973. Isoperoxidases of (IAA oxidase) oxidase in oat coleoptiles. CAN. J. BOT. 51: 2047-2052.

471. GORIN, N.; HEIDEMA, F.T. 1976. Peroxidase activity in golden delicious apples as a possible parameter of ripening and senescence. J. AGRle. FOOD CHEM. 24: 200-201.

0472. GOVE, J.P.; HOYLE, M.e. 1974. Peroxidase isoenzymes of horseradish and yellow birch. PLANT PHYSIOL. 53 (suppl.): 230.

0473. GOVE, J.P.; HOYLE, M.e. 1975. The isozymic similarity of indoleacetic acid oxidase to peroxidase in birch and horseradish. PLANT PHYSIOL. 56: 684-687.

0474. GREEN, R.e.; O'BRIEN, P.J. 1970. The cellular localisation of glutathione peroxidase and its release from mitochondria during swelling. BIOCHIM. BIOPHYS. ACTA 197: 31-39.

0475. GREIMEL, A; KOCH, H. 1977. Peroxidase isoenzymes in Si/ybum marianum. PLANTA MEDICA 32: 323-330.

0476. GREIMEL, A; KOCH, H. 1977. Silymarin - Inhibitor of horseradish peroxidase. EXPERIENTIA 33: 1417-1419.

0477. GREIMEL, A; KOCH, H. 1977. Peroxidase isoenzymes in cress seedlings (Lepidium sativum L.) and their inhibition by silybin, silydianin and silychristin. EXPERIENTIA 33: 1570-1571. .

0478. GREIMEL, A; KOCH, H. 1978. Einfluss von Silymarin auf die Aktivitat der Peroxydase aus Kressekeimlingen (Lepidium sativum L.). BIOCHEM. PHYSIOL. PFLANZ. 173: 91-95.

0479. GREPPIN, H.; AUDERSET, G.; BONZON, M.; PENEL, e. 1978. Changement d'état membranaire et mécanisme de la floraison. SAUSSUREA 9: 83-101.

0480. GRIFFlN, B.W.; STONIER, T. 1975. Studies on auxin protectors. XII. Auxin protectors and polyphenol oxidase in developing coffee fruit. PHYSIOL. PLANT. 33: 157-160.

0481. GRIFFIN, B.W.; TING, P.L. 1978. Mechanism of N-demethylation of aminopyrine by hydrogen peroxide catalyzed by horseradish peroxidase, metmyoglobin and protohemin. BIOCHEM. 17: 2206-221 1.

Page 188: peroxidases ( peroksida )

177 REFERENCES

0482. GRILL, D.; ESTERBAUER, H.; BIRKNER, M. 1980. Einfluss von Chrisomyxa abietis und Abgasen auf die Peroxidase in Fichtennadeln. Z. PFLANZENKRANK. PFLANZENSCH. 87: 236-243.

0483. GRISON, R.; DUBOUCHET, J.; MOREAU, M. 1975. Variations of isoperoxidase activity after experimental infections of carnations by Phialophora cinerescens. PHYTOPATHOL. Z. 84: 259-270.

0484. GRISON, R.; GALLOIS, T.; CHAPPET, A.; DUBOUCHET, J.; PERESSE, M. 1975. Variations du niveau d'activité d'une peroxydase acide le long de la tige de l'Oeillet sain ou infecté par le Phialophora cinerescens (Wr) van Beyma. C.R. ACAD. Sc. PARIS 281: 131-134.

0485. GRISON, R.; PILET, P.E. 1978. Analyse critique des peroxydases de la racine de Maïs. PLANT SCI. LETT. 13: 213-218.

0486. GROB, K.; MATILE, Ph. 1980. Compartmentation of ascorbic acid in vacuoles of horseradish root cel1s. Note on vacuolar peroxidase. Z. PFLANZENPHYSIOL. 98: 235-244.

0487. GROOME, N.P. 1980. Superiority of ABTS over tIlnder reagent as chromogen in highly sensitive peroxidase assays for enzyme linked immunoadsorbent assay. J. CLIN. CHEM. CLIN. BIOCHEM. 18: 345-350.

0487a. GROSS, G.G. 1977. Biosynthesis of lignin and related monomers. REC. ADV. PHYTOCHEM. II :141-184.

0488. GROSS, G.G. 1977. Cel1 wal1 bound malate dehydrogenase from horseradish. PHYTOCHEM. 16: 319-321.

0488a. GROSS, G.G.; JANSE, C. 1977. Fonnation ofNADH and hydrogen peroxide by cell wall-associated enzymes from Forsythia· xylem. Z. PFLANZENPHYSIOL. 84: 447-452.

0489. GROSS, G.G.; JANSE, c.; ELSTNER, E.F. 1977. Involvement of malate, monophenols, and superoxide radical in hydrogen peroxide fonnation by isolated cel1 wal1s from horseradish (Armoracia lapathifolia Gilib.). PLANTA 136: 271-276.

0490. GROVER, Y.P.; PANDEY, R.L.; SHARMA, V.K. 1980. Indirect immunoperoxidase and peroxidase-antiperoxidase studies on the detection of Buffalo pox virus antigens in cel1 culture. INDIAN J. EXP. BOT. 18: 427-429.

0491. GRZELINSKA, A. 1970. Peroxidase isoenzymes in Fusarium-infected tomato plants. PHYTOPATHOL. Z. 69: 212-222.

0492. GUPTA, R.K.; MILDVAN, A.S.; SCHONBAUM, G.R. 1980. Water proton relaxation studies of the heme-environment in Mn (III)-substituted and native horseradish peroxidases. ARCH. BIOCHEM. BIOPHYS. 202: 1-7.

0493. GURUMURTI, K.; NANDA, K.K. 1974. Changes in peroxidase isoenzymes of Phaseolus mungo hypocotyl cuttings during rooting. PHYTOCHEM. 13: 1089-1093.

Page 189: peroxidases ( peroksida )

178 PEROXIDASES 1970/1980

0494. GUZMAN, c.A.; FERRI, M.V.; TRIPPI, V.S. 1971. of two species of the genus Datura (Solanaceae). 2389-2391.

Isoperoxidases in organs PHYTOCHEM. 10:

0495. GUZMAN, C.A.; HERSZKOWICZ, 1. of main branches of Fagara coco. Argentina, 81: 167-174.

1973. Isoperoxidases in different tissues BOL. ACAD. NAC. CIENC., Cordoba,

0496. HAARD, N.F. 1973. Upsurge of particulate peroxidase in fruit. PHYTOCHEM. 12: 555-560.

ripening banana

0497. HAARD, N.F. 1978. Ergothioneine inhibition of peroxidase mediated indole­3-acetic acid oxidation. Z. PFLANZENPHYSIOL. 89: 87-90.

0498. HAARD, N.F.; MARSHALL, M. 1976. Isoperoxidase changes in soluble and particulate fractions of sweet potato root resulting from cut injury, ethylene and black rot infection. PHYSIOL. PLANT PATHOL. 8: 195-205.

0499. HAARD, N.F.; SHARMA, S.c.; WOLFE, R.; FRENKEL, C. induced isoperoxidase changes during liber formation Asparagus. J. FOOD SCI. 39: 452-456.

1974. Ethylene in postharvest

0500. HAARD, N.F.; TOBIN, c.L. 1971. Patterns of soluble peroxidase in ripening banana fruit. J. FOOD SCI. 36: 854-857.

0501. HABECK, H; CURTIS, C.R. 1974. Induction and photoreversaJ of bean Jeaf peroxidase isoenzymes by germicidal and near ultraviolet radiation. RADIAT. BOT. 14: 243-250.

0502. HADACOVA, V.; BENES, K. 1977. Investigation of isoenzyme patterns of sorne oxidoreductases, hydrolases and transferases in different growth zones of broad bean (Vicia faba L.) roots. PHYSIOL. VEG. 15: 735-745.

0503. HADDON, L.; NORTHCOTE, D.H. 1976. Correlation of the induction of various enzymes concerned with phenylpropanoid and lignin synthesis during differentiation ofbean ca1Jus (Phaseolus vulgaris L.). PLANTA 128: 255-262.

0504. HAGER, A. 1971. Krümmungen.

Das differenzielle Wachstum bei Photo- und Geotropischen BER. DTSCH. BOT. GES. 84: 331-350.

0505. HAGER, L.P.; DOUBEK, D.L.; SILVERSTEIN, R.M.; HARGlS, J.H.; MARTIN, J.e. 1972. Chloroperoxidase. IX. The Structure of compound 1. J. AMER. CHEM. SOc. 94: 4364-4366.

0506. HAGlMA, 1.; ALEXANDRESCU, V.; CSERESNYES, Z. 1978. Peroxidases and catalases of dormant, able to germinate and germinated wheat seeds. REV. ROUM. BIOCHIM. 15: 273-277.

0507. HAHLBROCK, K.; GRISEBACH, H. biosynthesis of lignin and flavonoids. 30: 105-130.

1979. Enzymic controls in the ANN. REV. PLANT PHYSIOL.

Page 190: peroxidases ( peroksida )

REFERENCES 179

0508. HAl, D.Q.; KOVACS, K.; MATKOVICS, 1.; MATKOVICS, B. 1975. Properties of enzymes. 10. Peroxidase and superoxide dismutase contents of plant seeds. BIOCHEM. PHYSIOL. PFLANZ. 167: 357-359.

0509. HAISMAN, D.R. 1974. The effect of sulphur dioxide on eXlstmg enzyme systems in plant tissues. J. SCI. FD. AGRIC 23: 803-810.

051 d. HAISSIG, B.E.; SCHIPPER Jr., A.L. 1971. Effect of ionic strength on recovery of plant enzymes in extracts prepared with anion exchange resin. BIOCHEM. BIOPHYS. RES. COMM. 45: 598-605.

0511. HALDMANN, M.; VELAN, B; SERY, T.; SCHUPPER, H. 1979. Peroxidase mediated chemiluminescence with phenol derivatives. Physicochemical parameters and uses in biological assays. PHOTOCHEM. PHOTOBIOL. 30: 165-167.

0512. HALL, H.G. 1978. Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tyrosines. CELL 15: 343-356.

0513. HALL, J.L.; AL-AZZAWI, M.J.; FIELDING, J.L. 1977. Microscopie cytochemistry in enzyme localization and development. In 'REGULATION OF ENZYME SYNTHESIS AND ACTIVITY IN HIGHER PLANTS'. Smith, H. (Ed.). Academie Press, London, pp. 329-363.

0514. HALL, J.L.; SEXTON, R. 1972. Cytochemical localization of peroxidase activity in root cells. PLANTA 108: 103-120.

0515. HALL, J.L.; SEXTON, R. 1974. Fine structure and cytochemistry of the abscission zone cells of Phaseolus leaves. Il. Localization of peroxidase and acid phosphatase in the separation zone cells. ANN. BOT. 38: 855-858.

0515a. HALL, T.C; McLEESTER, R.C; McCOWN, B.H.; BECK, G.E. 1970. Enzyme changes during deacclimation of willow stem. CRYOBIOL. 7: 130-135.

0516. HALLIWELL, B. 1974. Superoxide dismutase, catalase and glutathione peroxidase: solutions to the problems of living with oxygen. NEW PHYTOL. 73: 1075-1086.

0517. HALLIWELL, B. 1977. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase. BIOCHEM. J. 163: 441-448.

0518. HALLIWELL, B. 1978. Lignin synthesis: the generation of hydrogen peroxidase and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. PLANTA 140: 81-88.

0519. HALLIWELL, B.; AHLUWALIA, S. 1976. Production of superoxide radicals by horseradish peroxidase. BIOCHEM. SOC TRANS. 4: 73-74.

0519a. HALLIWELL, B.; AHLUWALIA, S. 1976. Hydroxylation of p-coumaric acid by horseradish peroxidase. BlOCHEM. J. 153: 513-518.

Page 191: peroxidases ( peroksida )

180 PEROXIDASES 1970/1980

0520. HALLIWELL, B.; DE RYCKER, J. 1978. Superoxide and peroxidase-catalyzed reactions. Oxidation of dihydroxyfumurate, NADH and dithiothreitol by horseradish peroxidase. PHOTOCHEM. PHOTOBIOL. 28: 757-763.

0521. HALPERIN, W.; MINOCHA, S. 1973. Benzyladenine etfects on cell separation and wall metabolism. CAN. J. BOT. 51: 1347-1354.

0522. HAMILTON, R.H.; MEYER, RE.; BURKE, R.E.; FEUNG, CS.; MUMMA, R.O. 1976. MetaboIism of indole-3-acetic acid. II. Oxindole pathway in Parthenocissus tricuspidata. PLANT PHYSIOL. 58: 77-81.

0523. HAMBRICK, J.L.; ALLARD, R.W. 1972. Microgeographical vanatlOn in allozyme frequencies in Avena barbata. PROC NAT. ACAD. SCI. USA 69: 2100-2104.

0524. HANCHEY, P.; BAKER, B.L.; BAKER, R. 1975. lsozyme patterns in gravity­compensated crown gall tissue. PHYTOPATHOL. 65: 1136-1138.

0525. HARKIN, J.M.; OBST, Y.R. 1973. exclusive peroxidase participation.

Lignification in trees: SCIENCE 180: 296-298.

indication of

0526. HARPER, CG.; GONATAS, T.O.; STIEBER, A.; GONATAS, NA 1980. ln vivo uptake of wheat germ agglutinin-horseradish peroxidase conjugates into neuronal GERL and lysosomes. BRAIN RES. 188: 465-472.

0527. HART, M.A.; TYSON, H.; BLOOMBERG, R. 1971. Measurement ofactivty of peroxidase isozymes in flax (Linum usitatissimum). CAN. J. BOT. 49: 2129-2137.

0528.

0529.

HARTENSTEIN, R. 1973. Characteristics of a peroxidase from the freshwater crayfish Cambarus bartoni. COMP. BIOCHEM. PHYSIOL. 45 B: 749-762.

HARTENSTEIN, R.; NEUHAUSER, E.F.; MULLIGAM, R.M. 1977. Mechanism of action of lignins and Iignin model compounds with horseradish peroxidase. PHYTOCHEM 16: 1855-1857.

,

0530. HASCHKE, R.H.; FRIEDHOFF, J.M. 1978. Calcium-related propérties of horseradish peroxidase. BIOCHEM. BIOPHYS. RES. COMM. 80: 1039-1042.

0531. HASINOFF, B.B.; DUNFORD, H.B. 1970. Kinetics of the ferrocyanide by horseradish peroxidase compounds 1 and II. 9: 4930-4939.

oxidation of BIOCHEM.

0532. HASSAN, RM.; FRIOOVICH, 1. 1978. and peroxidase in Escherichia coli.

Regulation of the synthesis of catalase J. BIOL. CHEM. 253: 6445-6451.

0533. HAYASHI, Y.; YAMADA, H.; YAMAZAKI, 1.1976. Heme-linked proton dissociation of carbon monoxide complexes of myoglobin and peroxidase. BIOCHIM. BIOPHYS. ACTA 427: 608-616.

0534. HAYASHI, Y.; YAMAZAKI, 1. 1978. Heme-linked ionization in compounds 1and II of horseradish peroxidase ~ and C ARCH. BIOCHEM. BIOPHYS. 190: 446-453.

Page 192: peroxidases ( peroksida )

REFERENCES 181

0535. HAYASHI, Y.; y AMAZAKl, 1. 1979. The oxidation-reduction potentials of compound I/compound II and compound IVferric couples of horseradish peroxidases ~ and C. J. BIOL. CHEM. 254: 9101-9106.

0536. HENDERSON, J.H.M.; PATEL, C.S. 1972. Oxindole-3-acetic acid : Physical properties and lack of influence on growth. PHYSIOL. PLANT. 27: 441-442.

0537. HENDERSON, W.R.; CHI, E.Y.; KLEBANOFF, S.J. 1980. Eosinophil peroxidase-induced mast cell secretion. J. EXP. MED. 152: 265-279.

0538. HENDERSON, W.R.; JONG, E.C.; KLEBANOFF, S.J. 1980. Binding of ::."

eosinophil peroxidase to mast cell granules with retention of peroxidatic activity. J. IMMUNOL. f24: 1383-1388.

0539. HENDERSON, W.R.; KALINER, M. 1979. Mast cell granule peroxidase : Location, secretion, and SRS-A inactivation. J.-IMMUNOL. 122: 1322-1327.

0540. HENDERSON, W.R.; MORTON, T.C. 1970. Peroxidase activity of haem c and haem c disulphone. In 'STRUCTURE AND FUNCnON OF OXIDAnON-REDucnON ENZYMES'. Akeson, A.; Ehrenberg, H. (Eds). PROC. WENNER-GREN SYMP. STOCKHOLM.

0541. HENDRICKS, T.1976. Iodination of maize coleoptiles: a possible method for identifying plant plasma membranes. PLANT SCI. LETT. 7: 347-357.

0543. HENRY, E.W. 1975. Peroxidases in tobacco abscission zone tissue. III. Ultrastructural localization in thylakoids and membrane-bound bodies of chloroplasts. J. ULTRASTRUCT. RES. 52: 289-299.

0544. HENRY, E.W. 1975. Peroxidases in tobaceo abscission zone tissue. IV. Fine structural localization in endoplasmic reticula du ring ethylene-induced abscission. CARYOWGIA 28: 477-487.

0545. HENRY, E.W. 1977. Peroxidases in tobacco abscission zone tissue. V. Time course studies of polyphenol oxidase activity during ethylene-induced abscission. Z. PFLANZENPHYSIOL. 84: 419-426.

0546. HENRY, E.W. 1979. Peroxidases in tobacco abscission zone tissue. VI. Ultrastructural localization in plasmodesmata during ethylene-induced abscission. CYTOLOGIA 44: 135-152.

0547. HENRY, E.W.; DEMORROW, J.M.; RICHARD, L.B. 1979. The effects of phenolic compounds on peroxidase and polyphenoJ oxidase in dwarf pea (Pisum salivum var. 'Little Marvel') tissue. Z. PFLANZENPHYSIOL. 92: 221-240.

0548. HENRY, E.W.; DEMORROW, J.M.; RICHARD, L.B.; O'CONNOR, M.N. 1979. Effect of ethephon and UV irradiation on auxin destruction in 'Little Marvel' dwarfpea (Pisum salivum). Z. PFLANZENPHYSIOL. 92: 469-472.

0550. HENRY, E.W.; JENSEN, T.E. 1973. Peroxidases in tobacco abscission zone tissue. 1. Fine structural localization in cell walls during ethylene-induced abscission. J. CELL SCI. 13: 591-601.

Page 193: peroxidases ( peroksida )

182 PEROXIDASES 1970/1980

0551. HENRY, E.W.; JORDAN, W. 1977. The enzymic response of pea (Pisum salivum) stem sections to applied indoleacetic ,acid, gibberellic acid and ethrel: catalase, peroxidase and polyphenol oxidase. Z. PFLANZENPHYSIOL. 84: 321-327.

0552. HENRY, E.W.; RICHARD, L.B. 1979. A study of the effects of applied ethephon on enzymes (polyphenol oxidase, peroxidase, catalase, ATPase) activity in tobacco (Nicoliana labacum) apical tissue chloroplast. Z. PFLANZENPHYSIOL. 92: 11-22.

0553. HENRY, E.W.; PETER, R.; WELSH, H.; DENNY, P. 1979. Peroxidase in tobacco abscission zone tissue. VII. Ultraviolet absorption spectra of ethylene-treated tobacco flower pedicel tissue. J. EXP. BOT. 30: 333-338.

0554. HENRY, E.W.; VALDüVINOS, J.G.; JENSEN, T.E. 1974. Peroxidases in tobacco abscission zone tissue. II. Time course studies of peroxidase activity during ethylene-induced abscission. PLANT PHYSIOL. 54: 192-196.

0555. HENRY, Y.; MAZZA, G. 1974. EPR studies of nitric oxide complexes of turnip and horseradish peroxidases. BIOCHIM. BIOPHYS. ACTA 371: 14-19.

0556. HEPLER, P.K.; RICE, R.M.; TERRANOVA, W.A. 1972. Cytochemical localization of peroxidase activity in wound vessel members of Co/eus. CAN. J. BOT. 50: 977-984.

0557. HERZOG, V. 1979. The secretory process as studied by the localization of endogenous peroxidases. 'J. HISTOCHEM. CYTOCHEM. 27: 1360-1362.

0558. HERZOG, V.; FAHIMI, H.D. 1973. A new sensitive colorimetricassay for peroxidase using 3,3'-diaminobenzidine as hydrogen donor. ANAL. BIOCHEM. 55: 554-562.

0559. HERZOG, V.; FAHIMI, H.D. 1976. IntraceUulardistinction between peroxidase and catalase in exocrine ceUs of rat lacrimal gland: a biochemical and cytochemical study. HISTOCHEM. 46: 273-286.

0560. HERZOG, V.; MILLER, F. 1970. Die Lokalisation endogener Peroxidase in der Glandula parotis der Ratte. Z. ZELLFORSCH. MIKROSK. ANAT. 107: 403-420.

0561. HERZOG, V.; MILLER, F. 1972. Endogenous peroxidase in the lacrimal gland of the rat and its differentiation against injected catalase and horseradish peroxidase. HISTOCHEM. 30: 235-246.

0562. HERZOG, V.; SIES, H.; MILLER, F. 1976. Exocytosis in secretory ceUs of rat lacrimal gland. Peroxidase release from lobules and isolated ceUs upon cholinergic stimulation. J. CELL BIOL. 70: 692-706.

0563. HEWSON, W.D.; DUNFORD, H.B. 1975. Horseradish peroxidase. XVIII. The Arrhenius activation energy for the formation of compound 1. CAN. J. CHEM. 53: 1928-1932.

Page 194: peroxidases ( peroksida )

REFERENCES 183

0563a. HEWSON, W.D.; HAGER, lipids in marine algae.

L.P. 1980. Bromoperoxidases and halogenated J. PHYCOL. 16: 340-345.

0564. HIGUCHI, T. 1971. Fonnation ADV. ENZYM. 34: 207-213.

and biological degradation of lignins.

0565. HILGENBERG, W.; BAUMANN, G.; KNAB, R. 1978. Variations of tryptophan synthase, indoleacetic acid oxidase, and peroxidase activity during development of liverwort Marchantia polymorpha L. Z. PFLANZENPHYSIOL. 87: 103-112.

0566. HILL, J.M. 1970. The oxidation of pyridoxal and related compounds by pea­seedling extracts or systems containing peroxidase. PHYTOCHEM 9: 725-734.

0567. HIRAI, K. 1971. Comparison between 3,3'-diaminobenzidine and auto-oxidized 3,3'-diaminobenzidine in the cytochemical demonstration of oxidative enzymes. J. HISTOCHEM. CYTOCHEM. 19: 434-442.

0568. HIRSCH, A.M. 1975. Evolution des activités peroxydasiques et phosphatasiques au cours du phénomène de rhizogénèse des fragments de rhizomes de Topinambour cultivés in vitro. C.R. ACAD. Sc. PARIS 280: 829-932.

0569. HIRSCH, A.M.; BLIGNY-FORTUNE, D. 1979. Organogénèse dans les cultures de tissus de deux plantes appartenant au genre Actinidia (Actinidia chinensis et Actinidia polygamma). Relations entre organogénèse et peroxydases. C.R. ACAD. Sc. PARIS 288: 1159-1162. -

0570. HIRSCH, A.M.; BLIGNY-FORTUNE, D.; TRIPATHI, B.K. 1977. Biochemical properties of tissue cultures from different organs of Actinidia chinensis. ACTA HORTiC. 78: 75-82.

0571. HISLOP, E.C.; STAHMANN, M.A. 1971. Peroxidase and ethylene production by leaves infected with Erysiphe graminis sp. hordeii. PHYSIOL. PLANT PATHOL. 1: 297-312.

0572. HOBSON, G.E. 1974. Electrophoretic investigation of enzymes from developing Lycopersicon esculentum fruit. PHYTOCHEM. 13: 1383-1390.

0573. HOESEL, W.; FREY, G.; BARZ, W. 1975. Ueber der Abbau von Flavonolen durch pflanzlische Peroxydasen. PHYTOCHEM. 14: 417-422.

0574. HOESS, R.H.; SMITH, RH.; STOWELL, c.P. 1974. peroxidase isozymes in two species of Nicotiana. Il: 319-323.

A genetic analysis of BIOCHEM. GENET.

0575. HOFFEREK, K. 1976. Correlations between enzyme actlvlty and disease resistance in plants. 2. Isoperoxidase-23 activity and yellow-rust resistance of barley. BIOCHEM. PHYSIOL. PFLANZ. 170: 23-26.

0576. HOFFEREK, H.; WOLFFGANG, H. 1975. Correlation between enzyme activities and disease resistance in plants. 1. Activity of peroxidase in barley after yellow-rust infection. BlOCHEM. PHYSIOL. PFLANZ. 168: 597-606.

Page 195: peroxidases ( peroksida )

184 PEROXIDASES 1970/1980

0577. HOFINGER, M.; GASPAR, T.; DARIMONT, E. 1970. Occurrence, titration and enzymatic degradation of 3-(3-indolyl)-acrylic acid in Lens culinaris Med. extracts. PHYTOCHEM. 9: 1757-1761.

0578. HOHLER, 8.; SCHLEGEL, R; BLUTHNER, W.D. 1979. Das Muster von Peroxidase-Isoenzymen in IR (1 B)-Weizen-Roggen- Substitutions- bzw. 1B­

.IR-Translokationslinien. BlOCHEM. PHYSIOL. PFLANZ. 174: 838-843.

0579. HORSMAN, D.C.; WELLBURN, A.R. 1975. Synergistic effect of So, and NO, polluted air upon enzyme activity in pea seedlings. ENVlRON. POtLUT. 8: 123-133.

0580. HORSMAN, D.C.; WELLBURN, A.R. 1977. Effect ofSo, polluted air upon enzyme activity in plants originating from areas with difterent annual mean . atmospheric S~ concentrations. ENVIRON. POLLUT. 13: 33-39.

0581. HORVATH, M.M.; NEMCSOK, J. 1976. and its ability to hydroxylate under chloramphenicol in seedling bean plants. 22: 367-372.

Changes in the peroxidase enzyme the effect of actinomycin D and ACTA BOT. ACAD. SCI. HUNG.

0582. HOYLE, M.C. 1972. Indoleacetic acid oxidase: PLANT PHYSIOL. 50: 15-18.

a dual catalytic enzyme?

0583. HOYLE, M.C. 1974. The hypothetical case for methyleneoxindole as a plant­growth arrestor. In 'MECHANISMS OF REGULATION OF PLANT GROWTH'. Bieleski, R.L.; Ferguson, A.R.; Cresswell, M.M. (Eds). ROYAL SOc. NEW ZEALAND BULL. 12: 659-664.

'~

0584. HOYLE, M.C. 1977. High resolution of peroxidase-indole acetic acid oxidase isoenzymes from horseradish by isoeletric focusing. PLANT PHYSIOL. 60: 787-793.

0585. HOYLE, M.C. 1978. Illustrated handbook for high resolution ofIAA oxidase­peroxidase isoenzymes by isoelectric focusing in slabs of polyacrylamide gel. FOREST SERY. GEN. TECHN. REPORT, NE-37, Broomall, 26 p.

0586. HOYLE, M.C. 1978. Optimum conditions for indoleacetic acid extraction from Betula leaves. PHYSIOL. PLANT. 42: 315-320.

oxidase

0587. HOYLE, M.C.; ROUTLEY, D.G. 1974. Promotion of the IAA oxidase­peroxidase complex enzyme in yellow birch. In 'MECHANISMS OF REGULATION OF PLANT GROWTH'. Bieleski, R.L.; Ferguson, A.R.; Cresswell, M.M. (Eds). ROYAL SOc. NEW ZEALAND BULL. 12: 743-750.

0588. HRADILIK, J. 1976. Effects of auxin, cytokinin, ethrel and cotyledon excision on the peroxidase activity in cotylar buds of decapitated pea (Pisum sativum) plants. BIOL. PLANT. 18: 93-98.

0589. HRYCAY, E.G.; O'BRIEN, P.J. peroxidase utilizing a lipid BIOPHYS. 147: 14-27.

1971. Cytochrome P-450 as a microsomal peroxide substrate. ARCH. BIOCHEM.

Page 196: peroxidases ( peroksida )

REFERENCES 185

0590. HRYCAY, E.G.; O'BRIEN, P.J. 1971. The peroxidase nature of cytochrome P-420 utilizing a lipid peroxide substrate. ARCH. BIOCHEM. BIOPHYS. 147: 28-35.

0591. HUANG, EH.; CECH, EC.; CLARKSON, R.B. 1977. Peroxidase variation in Robinia pseudoacacia roots. BIOCHEM. SYST. ECOL. 5: 273-278.

'."

0592. HUAULT, c.; KLEIN, D. 1980. Contrôle par le phytochrome des activités peroxydasiques de la plantule de Radis (Raphanus sativus L.). C.R. ACAD. sc. PARIS 290: 1039-1041.

0593. HùBBARD, A.L.; COHN, Z.A. 1972. The enzymatic iodination of the red cell membrane. J. CELL BIOL. 55: 390-405.

'.:'

0594. HUBER, C.T.; FRIEDEN, E. 1970. Substrate activation and the kinetics of ferroperoxidase. J. BIOL. CHEM. 245: 3973-3978.

0595. HUSSEY, R.S.; KRUSBERG, L.R. 1970. Histopathology of and oxidative enzyme patterns in Wando peas infected with two populations of Ditylenchus dipsacci. PHYTOPATHOL. 60: 1818-1825.

0596. HUSSEY, R.S.; SASSER, J.N. 1973. Peroxidase from Meloidogyne incognita. PHYSIOL. PLANT. PATHOL. 3: 223-229.

0597. HUSSEY, R.S.; SASSER, J.N.; HUISINGH, D. 1972. Disc-electrophoretic studies or soluble proteins and enzymes of MeloidogylJe incognita and M. arenaria. J. NEMATOWGY 4: 183-189.

0598. IDA, S.; KITAMURA, 1.; MORITA, Y. 1970. Studies on respiratory enzymes in rice kernel. Part III. Physicochemical and enzymatic properties of peroxidase 556 from rice embryo. AGR. BIOL. CHEM. 34: 715-723.

0599. IDA, S.; KITAMURA, 1.; NlKAIDO, H.; MORITA, Y. respiratory enzymes in rice kernel. IX. Peroxidase embryos. AGR. BIOL. CHEM. 36: 611-620.

1972. Studies on isoenzymes of rice

0600. IMASEKI, potato.

H. 1970. Induction of peroxidase activity by ethylene in PLANT PHYSIOL. 46: 172-175.

sweet

0601. IMBERT, M.P.; WILSON, LA 1970. Stimulatory and inhibitory effeets of scopoletin in IAA oxidase preparations from sweet potato. PHYTOCHEM. 9: 1779-1787. '"

0602. IMBERT, M.P.; WILSON, L.A. 1972. lAA oxidase preparations from sweet potato roots. PHYTOCHEM II: 29-36.

0603. IMBERT, M.P.; WILSON, L.A. 1972. on IAA oxidase preparations from II: 2671-2676.

Effects ofchlorogenic and caffeic acids sweet potato roots. PHYTOCHEM.

0604. INNOCENT!, A.M. 1973. Elaboration des parois des jeunes cellules metaxylemiennes dans la racine de l'AIlium cepa cultivar Fiorentina. Application de la méthode de Thiery et localisation de l'activité, peroxydasique. C.R. ACAD. sc. PARIS 277: 2677-2680.

Page 197: peroxidases ( peroksida )

186 PEROXIDASES 1970/1980

0604a. INOUYE, J.; HAGIWARA, T. 1980. Classification of floating rice varieties byacid phosphatase and peroxidase zymograms. JAP. J. TROP. AGRIC. 24: 159-164.

0605. IORDACHESCU, D.; DIMITRU, I.F.; NICULESCU, S. 1973. Substratum specificity of purified peroxidase isoenzymes of 'horsèndish root. EXPERIENTIA 20: 1215-1217.

0606. ISHIMARU, A.; YAMAZAKI, I. 1977. Hydroperoxide-dependent nydroxylation involving ~~ -reductible hemoprotein in micrososmes of pea seeds. A new type enzyme acting on hydroperoxide and a physiological role of seed lipoxygenase. J. BIOL. CHEM. 252: 6118-6124.

0607. IVANOVA, N.N.; OVCHARENKO, G.A.; KHUDTAKOVA, E.M.; ROSHCHUPKINA, T.G. 1979. Antagonism between nitrate reductase and peroxidase in manifestation of their nitrate-reducing activities. SOVIET PL. PHYSIOL. 26: 243-248.

0608. IVANOVA, N.N.; PEIVE, Y.V. 1973. Nitrate reduction by higher plarit peroxidase. FEBS LETTERS 31: 229-232.

0609. IVANOVA, T.M.; RUBIN, B.A.; DAVYDOVA, M.A. 1970. On the catalytic functions of chloroplast peroxidase. DOKL. AKAD. NAUK SSSR 190: 214-217.

0610. IVANOVA, T.N.; VASILEVA, AV. 1977. Enzymatic activities of isozymes fractions of fodder bean peroxidase. SOVIET PL. PHYSIOL. 24: 216-221.

0611. JACOBS, AA; LOW, L.E.; PAUL, B.B.; STRAUSS, R.R.; SBARBA, A.J. 1972. Mycoplasmacidal activity of peroxidase-~~ halide systems. INFECT. IMMUN. 5: 127-131.

0612. JEAGER-WUNDERER, M. 1980. Aktivitiiten der Peroxydasen, Polyphenoloxidasen und IES-oxidasen wahrend der Differenzierung der Zellen von Riella helicophylla (Bory et Mont.) Mont. Z. PFLANZENPHYSIOL. 98: 189-201.

0613. JAIN, S.M.; TALWAR, S.; SOPORY, S.K.; GUHAMUKHERJEE, S. 1978. Effect of light on distribution of peroxidase activity in Zea mays. Z. PFLANZENPHYSIOL. 88: 169-173.

0613a. JAISWAL, V.S.; KUMAR, A 1980. Changes in peroxidase and its multiple forms in relation to sex differentiation in Coccinia indica. BIOCHEM. PHYSIOL. PFLANZ. 175: 578-581.

0614. JAMALE, B.B.; JOSHI, G.V. 1978. Effect of age on minerai contituents, polyphenols, polyphenol-oxidase and peroxidase in leaves of mangrove. INDIAN J. EXP. BIOL. 16: 117-119.

0615. JANKAY, P.; MULLER, W.H. 1976. The relationships among umbelliferone, growth, and peroxidase levels in cucumber roots. AMER. J. BOT. 63: 126-132.

Page 198: peroxidases ( peroksida )

REFERENCES . 187

0616. JANSSEN, M.G.R 1970. Indoleacetic acid oxidase, peroxidase and polyphenoloxidase of pea roots. ACTA BOT. NEERL. 19: 73-80.

0617. JASANI, B. ; STARK, J. M. 1980. Endotoxin-induced appearance ofperoxidase­positive cells in the white pulp ofthe mouse spleen. IMMUNOL. 39: 535-540.

0618. JAYNES, TA; HASKINS, F.A.; GORZ, RJ. 1972. Oxidation of phenylpyruvate by sweetclover peroxidase. PHYTOCHEM. II: 563-570.

0619. JEANJEAN, M.F.; KOBREHEL, K.; FEILLET, P. 1975. Purification et caractérisation de deux peroxydases de blé dur. BIOCHIMIE 57: 145-154.

0620. JELLINCK, P.H.; FLETCHER, R. 1970. Peroxidase-catalyzed conjugation of (4-'4C) estradiol with albumin and thiols. CAN. J. BIOCHEM. 48: 1192-1195.

0621. JELLINCK, P.R; FLETCHER, R. 1971. Interaction of (4-'4C) estradiol and its metabolites with polynucleotides in the presence of peroxidase. CAN. J. BIOCHEM. 49: 885-890.

0622. JELLINCK, P.R; NEWCOMB, A.M. 1980. Effect of catechol estrogens and estriol on the induction of uterine peroxidase. J. STEROID BIOCHEM. 13: 681-684.

0623. JENNINGS, A.c.; STREET, H.E. 1974. Changes in peroxidase isoenzyme activities in batch-cultured sycamore ceIls. Problems of assay by gel electrophoresis. PLANT. SCI. LETT. 3: 357-363.

0624. JOB, D.; DUNFORD, H.B. 1977. Circular dichroism oftumip peroxidases. CAN. J. BIOCHEM. 55: 804-811.

0625. JOB, D.; DUNFORD, RB. 1978. Horseradish peroxidase. XXVIII. Formation and reactivity of the alkaline form. Evidence for an enzyme­substrate complex in compound 1 formation. CAN. J. CHEM. 56: 1327-1328.

0626. JOB, D.; JONES, R. 1975. Compound 1 formation with tumip peroxidases and peroxibenzoic acids. EUR. J. BIOCHEM. 56: 565-572.

0627. JOB, D.; RICARD, J. 1975. Kinetic and equilibrium studies of cyanide and fluoride binding to tumip peroxidase. ARCH. BIOCHEM. BIOPHYS. 170: 427-437.

0628. JOB, D.; RICARD, J.; DUNFORD, H.B. 1977. The alkaline transition of tumip peroxidases. ARCR BIOCHEM. BIOPHYS. 179: 95-99.

0629. JOB, D.; RICARD, J.; DUNFORD, RB. 1978. Kinetics of formation of the primary compound (compound I) from hydrogen peroxide and tumip peroxidases. CAN. J. BIOCHEM. 56: 702-707.

0630. JOHNSON, L.B.; CUNNINGHAM, B.A. 1972. Peroxidase activity in healthy and leaf-rust infected wheat leaves. PHYTOCHEM. II: 547-552.

C' . 1·

Page 199: peroxidases ( peroksida )

188 PEROXIDASES 1970/1980

0631. JOHNSON, L.B.; LEE, R.F. 1978. Peroxidase changes in wheat isolines with compatible and incompatible leaf-rust infections. PHYSIOL. PLANT PATHOL. 13: 173-181.

0632. JOHNSON, MA; CARLSON, J.A. 1979. Indoleacetic acid oxidase and related enzymes in cultured and seedling Douglas fir. BIOCHEM. PHYSIOL. PFLANZ. 174: 115-127.

0633. JONES, P.; DUNFORD, H.B. 1977. On formation from peroxidases and catalases.

the mechanism of compound 1 J. THEOR. BIOL. 69: 457-470.

0634. JONG, E.C.; HENDERSON, W.R.; KLEBANOFF, S.J. 1980. Bactericidal activity of eosinophil peroxidase. J. IMMUNOL. 124: 1378-1382.

0635. JONG, E.C.; KLEBANOFF, S.J. 1980. Eosinophil-mediated mammalian tumor ceU cytotoxicity: Role of the peroxidase system. J. IMMUNOL. 124: 1949-1953.

0636. JOSEPH, K.Y.; POTTY, Y.P.; JAYASA, N.K.; AR, N.P. 1976. Increase in polypheriol oxidase and peroxidase with higher intensities of coconut root (wilt) disease. J. PLANT CROPS 4: 4-6.

0637. JOUBERT, A.J.; YAN LELYYELD, L.J. 1975. An investigation harvest browning of litchi peel. PHYTOPHYLACTICA 7: 9-14.

of pre­

0638. WOEL, G.K. 1972. Anderungen in der Aktivitiit der Peroxydase und der Katalase und im Gehalt an Gesamtphenolen in den Bliittem der Sonnenblume unter dem Einfluss von Kupfer­ und Stickstoffmangel. Z. PFLANZENERNAHR. BODENK. 133: 81-92.

0639. JUDEL, G.K. 1975. Einfluss von pH und Temperatur auf die Aktivitiit von Phenoloxidase und Peroxydase aus Sonnenblumen. BIOCHEM. PHYSIOL. PFLANZ. 167: 243-252.

0640. JUO, P.S.; STOTZKY, G. 1973.. Electrophoretic analysis of isozymes from seeds of Pinus, Abies and Pseudotsuga. CAN. J. BOT. 51: 2201"2205.

0641. KACPERSKA-PALACZ, A.; ULIASZ, M. 1974. Cold induced changes in peroxidase activities in the winter rape leaves. PHYSIOL. YEG. 12: 561-570.

0642. KAHL, G. 1978. Induction and degradation of enzymes in aging plant storage tissues. In 'BIOCHEMISTRY OF WOUNDED PLANT TISSUE'. Kahl, G. (Ed.). W. de Gruyter & Co., Berlin, pp. 347-390.

0643. KAHLEM, G. Mercurialis

1973. Proteins and development in a dioecious annua L. Z. PFLANZENPHYSIOL. 69: 377-380.

plant :

0644. KAHLEM, G. 1975. A specific and general biochemical marker of Stamen morphogenesis in higher plants: anodic peroxidases. Z. PFLANZENPHYSIOL. 76: 80-85.

0645. KAHLEM, G. 1976. Isolation and localization by histoimmunology of' isoperoxidases specific for male flowers of the dioecious species Mercurialis annua L. DEYELOPMENT. BIOL. 50: 58-67.

Page 200: peroxidases ( peroksida )

189 REFERENCES

0646. KAHLEM, G.; CHAMPAULT, A; LOUIS, J.P.; BAZIN, M.; CHABIN, A.; DELAIGUE, M.; DAUPHIN, B.; DURAND, R; DURAND, B. 1975. Détennination génétique et régulation honnonale de la différenciation sexuelle chez Mercurialis annua L. PHYSIOL. VEG. 13: 763-779.

0647. KALYANARAMAN, V.S.; MAHADEVAN, S.; KUMAR, S.A. 1975. Oxidase­peroxidase enzymes of Datura innoxia. Oxidation of fonnylphenylacetic acid ethylester. BIOCHEM. J. 149: 565-576.

0648. KALYANARAMAN, V.S.; KUMAR, S.A.; MAHADEVAN, S. 1975. Oxidase­peroxidase enzymes of Datura innoxia. Oxidation of reduced nicotinamide­adenine dinucleotide in the presence of fonnylphenylacetic acid ethyl ester. BIOCHEM. J. 149: 577-584.

0649. KAMBOJ, RK.; NAINAWATEE, H.S. 1978. Peroxidase isoenzyme changes in genninating soybean varieties. SEED RES. 6: 140-144.

0650. KAMEL, M.Y.; GHAZY, A.M. 1973. Peroxidases of Cynara scolymus (global artichoke) leaves: purification and properties. ACTA BIOL. MED. GERM. 31: 39-49.

0651. KAMEL, M.Y.; GHAZY, AM. 1973. Peroxidases of Solanum melongena leaves. PHYTOCHEM. 12: 1281-1285.

6852. KAMINSKI, C. 1971. Variations des activités peroxydasiques et phénoloxydasiques au cours de la croissance de Coleus blumei Benth. var autommne. PLANTA 99: 63-72.

0652a. KANAZAWA, K.; EGUCHI, H.; IWASA, S.; UEMOTO, S. 1980. Application of esterase and peroxidase zymograms to breeding in Brassica with reference to nucleus substitution. J. FAC. AGRIC. KYUSHU UNIV. 25: 25-32.

0653. KANG, B.G.; NEWCOMB, W.; BURG, S. 1971. Mechanism ofauxin-induced ethylene production. PLANT PHYIOL. 47: 504-509.

0654. KANG, Y.J.; SPIKES, J.D. 1976. The porphyrin-sensitized photooxidation ofhorseradish apoperoxidase. ARCH. BIOCHEM. BIOPHYS. 172: 565-573.

0655. KAOSIRI, T.; ZENTMYER, G.A 1980. Proteins, esterase, and peroxidase patterns in the Phytophtora palmivora complex from cacao. MYCOLOGIA 72: 988-1000.

0656. KAPLOW, L.S. 1979. Leukocyte peroxidase and non-specifie esterase. In 'FLOW CYTOMETRY AND SORTING'. Melamed, M.R; Mullaney, P.E; Mendelsohn, M.L. (Eds). J. Wiley and Sons, New York, pp. 531-546.

0657. KAR, M.; MISHRA, D. 1976. Catalase, peroxidase and polyphenoloxidase activities du ring rice leaf senescence. PLANT PHYSIOL. 57: 315-319.

0658. KAREGE, E; PENEL, c.; GREPPIN, H. 1977. Evolution de l'activité peroxydasique dans les feuilles de l'épinard lors de l'ontogénèse en photopériode courte ou continue. SAUSSUREA 8: 75-83.

Page 201: peroxidases ( peroksida )

190 PEROXIDASES 1970/1980

0659. KAREGE, F.; PENEL, Co; GREPPIN, H. 1978. Effets de la castration les peroxydases de J'épinard. SAUSSUREA 9: 57-63.

sur

0660. KAREGE, F.; PENEL, C.; GREPPIN, H. 1979. Reaction of a peroxidase activity to red and far red light in relation to the floral induction of spinach. PLANT SCI. LETT. 17: 37-42.

0661. KAREGE, F.; PENEL, c.; GREPPIN, H. 1980. Photoregulation ofa peroxidase activity and primary events of the floral induction in spinach leaves. In 'PHOTORECEPTORS AND PLANT DEVELOPMENT'. De Greef, J.

. (Ed.). Antwerpen University Press, Antwerpen, pp. 311-316.

0662. KATAOKA, K. 1971. Fine structural localization of peroxidase activity in the epithelium and the gland of the rat larynx. HISTOCHEMIE 26: 319.

0663. KATAOKA, K.; NAKAI, Y.; FUJlTA, H. 1974. The fine structural localization of peroxidase activity in digestive organs of rats and mice. H1STOCHEM. 38: 5-18.

0664. KATO, M.; TOKUMASU, S. 1979. An electrophoretic study of esterase and peroxidase isozymes in Brassicoraphanus. EUPHYTICA 28: 339-349.

0665. KAUR-SAWHNEY, R.; GALSTON, A.W. 1972. Interaction of hormones in the control of enzymatic developmental patterns. In 'HORMONAL REGULATION IN PLANT GROWTH AND _DEVELOPMENT'. Kaldewey, H.; Vardar, Y. (Eds). PROC. ADV. STUD INST. IZMIR, Verlag Chemie, Weinheim, pp. 27-35.

0666. KEENAN, E.J.; BACON, D.R.; GARRISON, L.B. 1979. Relationship between peroxidase activity and steroid hormone receptors in human breast cancer. PROC. WEST PHARMACOL. SOC. 22: 277-280.

0667. KEENAN, E.J.; GARRISON, L.B.; MARRA, C.M.; KEMP, E.D.; LYLE, B.J.; LUCK, C.D.; RAMSEY, E.E. 1980. Effects of diethyl-stilbestrol (DES) on the hormone receptor content and peroxidase activity in the uterus and liver ofthe rat. PROC. WEST. PHARMACOL. SOC. 23: 107-112.

0668. KEEPING, H.S.; JELLlNK, P.H. 1980. Effect of iodide on estrogen-induced uterine peroxidase. BIOCHIM. BIOPHYS. ACTA 632: 150-158.

0670. KELLER, T. 1974. The use ofperoxidase activity for monitoring and mapping air pollution areas. EUR. J. FOREST PATHOL. 4: 11-19.

0671. KELLER, T. 1974. Die Peroxydase-Aktivitat aIs Indikator unsichbarer Immissions-Schiidigungen. ANZ. SCHADLINGSKDE. PFLANZEN­UMWELTSCHUTZ 47: 86-89.

0672. KELLER, T.; SCHWAGER, H. 1971. Der Nachweis unsichtbarer ('physiologischer') Fluor-Immissions-Schiidigungen an Waldbiiumen durch eine einfache kolorimetrische Bestimmung der Peroxidase-Aktivitat. EUR. J. FOREST PATHOL. 1: 6-18.

Page 202: peroxidases ( peroksida )

REFERENCES 191

0673. KELLY, G.J.; LATZKO, E. 66: 617-618.

1979. Soluble ascorbate peroxidase. NATURWISS.

0674. KHAN, A.A.; GASPAR, T.; ROE, C.H.; BOUCHET, M.; DUBUCQ, M. 1972. Synthesis of isoperoxidases in lentil embryonic axis. PHYTOCHEM. II: 2963-2969.

0675. KHAN, M.1. 1980. Effect of indoleacetic acid on the metabolic activity of Taraxacum root segments. BIOL. PLANT. 22: 86-90.

0676. KHAVKIN, E.E.; SUKHORZHEVSKAIA, T.B. 1979. Maintenance of isoenzyme spectra in caHus and suspension cultures derived from internodes ofmaize (Zea mays L.). BIOCHEM. PHYSIOL. PFLANZ. 174: 431-437.

0677. KIELISZEWSKA-ROKICKA, B. 1980. Isozyme of peroxidase, indole-3-acetic acid oxidase and polyphenoloxidase of poplar and pine. ACTA PHYSIOL. PLANT. 2: 195-207.

0678. KIHARA, H.; SAlGO, S.; lIZUKA, T.; ISHIMURA, Y. 1978. A new reaction scheme for the alkaline isomerization of horseradish peroxidase. BIOCHIM. BIOPHYS. ACTA 533: 112-119.

0679. KIM, S.S.; WENDER, S.H.; SMITH, E.C. 1980. Isolation and characterization of two isoperoxidases from tobacco tissue culture. PHYTOCHEM. 19: 165-168.

0680. KIM, S.S.; WENDER, S.H.; SMITH, E.C. 1980. Comparison peptide maps of eight isoperoxidases from tobacco· tissue PHYTOCHEM. 19: 169-171.

of tryptic cultures.

0681. KIMURA, S.; YAMAZAKI, 1. 1979. Comparisons between hog intestinal peroxidase and bovine lactoperoxidase-compound 1 formation and inhibition by benzhydroxamic acid. ARCH. BIOCHEM. BIOPHYS. 198: 580-588.

0681a. KINDL, H. 1971. Peroxydase PHYTOCHEM. 10: 1475-1479.

ais hexahydroxycyclohexen­ oxidase.

0682. KLISURSKA, D.; DENCHEVA, A. isoenzymes for hydrogen donors.

1980. Substrate specifity of peroxidase BIOL PLANT. 22: 404-409.

0683. KLUSAK, H. 1970. Die Veriinderungen der Peroxydase Aktivitiit von Weizen und Gerstenblattern nach der Infektion mit obligaten Parasiten. BIOL. PLANT. 12: 224-230.

0684. KNYPL, J.S.; CHYLINSKA, K.M. 1974. Removal of IAA-oxidase inhibitors from carrot root extracts by grinding with insoluble polyvinylpyrrolidone. BIOCHEM. PHYSIOL. PFLANZ. 166: 333-343.

0685. KOBREHEL, K. 1978. Identification of chromosome segments controHing the synthesis of peroxidases in wheat seeds and in transfer lines with Agropyron elongatum. CAN. J. BOT. 56: 1091-1094.

Page 203: peroxidases ( peroksida )

192 PEROXIDASES 1970/1980

0686. KOBREHEL, K.; FEILLET, P. 1975. Identification of genomes and chromosomes involved in peroxidase synthesis of wheat seeds. CAN. J. BOT. 53: 2336-2344.

0687. KOBREHEL, K.; GAUTHIER, M.F. 1974. Variability in peroxidase isoenzymes in wheat and related species. CAN. J. BOT. 52: 755-759.

0688. KOBREHEL, K.; LAIGNELET, B.; FEILLET, biochemical factors of brownness. (ABSTR.). No. 105.

P. 1972. Study of sorne CEREAL SCI. TODAy 17:

0689. KOBYL'SKAYA, G.V.; POLEVOI, V.V.; KOVALEVA, L.V. 1977. Nonspecificity of the effect of indolylacetic acid on peroxidase activity in segments of corn coleoptiles. FIZIOLOG. RASTEN. 24: 185-188.

l"

0690. KOCHBA, J.; LAVEE, S.; SPIEGEL-ROY, P. 1977. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic 'Shamouti' orange ovular callus lines. PLANT CELL PHYSIOL. 18: 463-467.

0691. KOCHHAR, S.; KOCHHAR, V.K.; KHANDUJA, S.D. 1978. Changes in the pattern of isoperoxidases in the dormant canes of Thompson seedless grapes. AMER. J. ENOL. VITIe. 29: 137-138.

0692. KOCHHAR, S.; KOCHHAR, V.K.; KHANDUJA, S.D. 1979. Changes in the pattern of isoperoxidases during maturation of grape bernes cv. Gulabi asaffected by ethephon (2-chloroethyl) phosphonic acid. AMER. J. ENOL. VIne. 30: 275-277.

0693. KOENIGS, J.W. 1970. Peroxidase activity ARCH. MIKROBIOL. 73: 121-124.

in brown-rot basidiomycetes.

0694. KOENIGS, J.W. 1972. Production of extracellular hydrogen peroxide and peroxidase by wood-rotting fungi. PHYTOPATHOL. 62: 100-110.

0695. KOHLER, B.; GEYER, G. 1978. Peroxidase exclusion test for cell viability. ACTA HISTOCHEM. 63: 261-264.

0696. KOKKINAKIS, D.M.; BROOKS, J.L. 1979. Tomato peroxidase. Purification characterization and catalytic properties. PLANT PHYSIOL. 63: 93-99.

0697. KOKKINAKIS, D.M.; BROOKS, J.L. 1979. Hydrogen peroxide-mediated oxidation of indole-3-acetic acid by tomato peroxidase and 'molecular oxygen. PLANT PHYSIOL. 64: 220-223.

0697a. KONZE, J.R.; KENDE, H. 1979. Ethylene formation from I-amino­cyclopropane-l-carboxylic acid in homogenates of etiolated pea seedlings. PLANTA 146: 293-301.

0698. KOSSATZ, V.e.; VAN HUYSTEE, R.B. 1976. The specifie activities of peroxidase and amino-levulinic acid dehydratase during the growth cycle of peanut suspension culture. CAN. J. BOT. 54: 2089-2094.

----­

Page 204: peroxidases ( peroksida )

193 REFERENCES

0699. KOVACS, I.; FEJER, O.; DEVAY, M. 1978. Cold-induced changes in peroxidase multiple enzyme pattern in winter wheat cultivars during hardening period. BIOCHEM. PHYSIOL. PFLANZ. 173: 327-332.

0700. KRASNUK, M.; JUNG, G.A.; WITHAM, EH. 1975. Electrophoretic studies of the relationship of peroxidases, polyphenol oxidase, and indoleacetic acid oxidase to cold tolerance of Alfalfa. CRYOBIOL. 12: 62-80.

0701. KREMER, M.L. 1970. Peroxidatic activity of catalase. BIOCHIM. BIOPHYS. ACTA 198: 199-209.

0702. KRINSKY, M.M.; ALEXANDER, N.M. 1971. Thyroid peroxidase. Nature of the heme binding to apoperoxidase. J. BIOL. CHEM. 246: 4755-4758.

0703. KRISHNANGKURA, K; COLD, M.H. 1979. Peioxidase catalyzed oxidative decarboxylation ofvanillic acid to methoxy-p-hydroquinine. PHYTOCHEM. 18: 2019-2021.

0704. KRISPER, J.; PUFF, C. 1976. Peroxidase isoenzymes and systematics of Argyranthemum . and Chrysanthemum s. str. (Asteraceae-Anthemidae). SYST. EVOL. 124: 291-302.

0705. KRÜGER, G.; PFIEL, E. 1976. Darstellung und Eigenschaften einer Peroxydase aus Phellinus igniasus. ARCH. MICROBIOL. 109: 175-179.

0706. KRUGER, J.E.; LABERGE, D.E. 1974. Changes in peroxidase activity and peroxidase isozyme patterns of wheat during kernel growth and maturation. CEREAL CHEM. 51: 345-354.

0707. KRUGER, J.E.; LABERGE, D.E. 1974. Changes in peroxidase activity and peroxidase isoenzymes of wheat during germination. CEREAL CHEM. 51: 578-585.

0708. KU, H.S.; YANG, S.E; PRATT, H.K 1970. Ethylene production and peroxidase activity during tomato fruit ripening. PLANT CELL PHYSIOL. Il: 241-246.

0709. KU, H.S.; YANG, S.F.; PRATT, H.K 1970. Inactivity ofapoperoxidase in indoleacetic acid oxidation and in ethylene formation. PLANT PHYSIOL. 45: 358-359.

0710. KUEHL, F.A.; HUMES, J.L.; HAM, E.A.; EGAX R.W.; DOUGHERTY, H.W. 1980. Inflammation - Role of peroxidasè-derived products. In 'ADVANCES IN PROSTAGLANDIN AND THROMBOXANE RESEARCH'. Ranwell, P.W.; Pauletti, R. (Eds). Raven Press, New York, vol. 6, 7 and 8, pp. 77-86.

0711. KUHLMANN, W.D.; VIRON, A. 1977. Diaminobenzidine cytochemistry in cryo-ultramicrotomy for the detection of peroxidases. HISTOCHEM. 54: 331-338.

0712. KUHNS, L.J.; FRETZ, T.A. 1978. Distinguishing rose cultivars by polyacrylamide gel electrophoresis. 1. Extraction and storage of proteins and enzymes from rose leaves. J. AMER. SOc. HORT. SCI. 103: 503-508.

Page 205: peroxidases ( peroksida )

194 PEROXIDASES 1970/1980

0713. KUHNS, L.J.; FRETZ, T.A. 1978. Distinguishing rose cultivars by polyacrylamide gel eletrophoresis. II. Isoenzyme variation among cultivars. J. AMER. SOc. HORT. SCI. 103: 509-516.

0714. KUMAR, D.; DASGUPTA, P.; BHATTACHARYA, S. 1973. In vitro demonstration of peroxidase activity in the fish kidney soluble supematant and its phyiological importance. EXPERIENTIA 29: 1076-1077.

0715. KUMLIEN, A. 1972. Iodine metabolism and peroxidase activity in salivary glands. ACTA ENDOCRINOL. 70: 239-246.

~: : .

0716. KURAOKA, T.; IWASAKI, K; ISHII, T. 1979. Elfects ofGA..J and ethephon on the level of ABA and peroxidase activity in the peel of satsuma mandarin (Citrus unshiu Marc.). J. JAP. SOc. HORT. SCI. 4: 437-442.

f'

0717. KUYPERS, H.G.; MAISKY, V. 1975. horseradish peroxidase from spinal cord cal. NEUROSCI. LETT. 1: 9-14.

Retrograde axonal transport of to brain stem cell groups in the

0718. KWIEK, S.; WYSZOMIRSKA, J.; RZUCIDLO, L. peroxidase distribution in extracts of mycobacteria. POL. 3: 145-152.

1971. Catalase and ACTA MICROBIOL.

0719. LABERGE, D.E. bariey kemels.

1975. Anatomical distribution of peroxidase isozymes CAN. J. PLANT SCI. 55: 661-666.

in

0720. LABERGE, D.E.; KRUGER, J.E. 1976. Changes in bariey peroxidase activity during kemel development. CEREAL CHEM. 53: 762-767.

0721. LABERGE, D.E.; KRUGER, J.E.; MEREDITH, W.O.S. 1973. Peroxidase isoenzymes in mature bariey kemels. CAN. J. PLANT SCI. 53: "705-714.

072~. LADONIN, V.F.; PRONINA, N.B. 1977. Elfect of 2,4-D on oxidase and peroxidase activity in bariey and pea leaves. FIZIOL. BIOKHIM. KULT. RAST. 9: 249-253.

0723. LALORAYA, Peroxidase 101-110.

M.M.; GURUPRASAD, KN.; CHAUDHARY, S.S. 1980. mediated oxidation of betacyanin. PLANT BIOCHEM. J. 7:

0723a. LAM, T.H.; SHAW, M. 1970. Removal of phenolics from plant extracts by grinding with anion-exchange resins. BIOCHEM. BIOPHYS. RES. COMM. 39: 965-968.

0724.' LAMAISON, J.L.; POURRAT, H.; POURRAT, A. 1977. Laccase and peroxidase activities of macromycetes. ANN. PHARM. FR. 35: 515-520.

0724a. LA MAR, G.N.; DE ROPP, J.S.; SMITH, KM.; LANGRY, KC. 1980. Proton nuclear magnetic resonance study of the electronic and molecular structure of the heme crevice in horseradish peroxidase. J. BIOL. CHEM. 255: 6646-6652.

Page 206: peroxidases ( peroksida )

REFERENCES 195

0725. LAMPORT, D.TA 1970. Cell wall metabolism. ANN. REV. PLANT PH);'SIOL. 21: 235-270.

0726. LANE, N.J.; TREHERNE, J.E. 1970. Uptake ofperoxidase by the cockroach central nervous system. TISSUE CELL. 2: 413-426.

0727. LANIR, A.; SCHEJTER, A. 1975. Nuclear magnetic resonance evidence for the absence of iron coordinated water in horseradish -j)eroxidase. BIOCHEM. BIOPHYS. RES. COMM. 62: 199-203.

0728. LAU, O.L.; MURR, D.P.; YANG, S.F. 1974. Effect of 2,4-dinitrophenol on auxin-induced ethylene production and auxin conjugation by mung bean tissue. PLANT PHYSIOL. 54: 182-185.

0729. LAUREMA, S. 1974. Indoleacetic acid oxidases in resting cereal grains. PHYSIOL. PLANT 30: 301-306.

0729a. LAZAR, G.; FARKAS, G.L. 1970. Patterns of enzyme changes during leaf senescence. ACTA BIOL. ACAD. SCI. HUNG. 21: 389-396.

0729b. LAVEE, S.; HOFFMAN, M. 1971. The effect of potassium ions on peroxidase activity and its isozyme composition as related to apple callus growth in vitro. BOT. GAZ. 132: 232-237.

0730. LEBEDEVA, O.V.; UGAROVA, N.N.; BEREZIN, 1. 1977. Kinetic study of oxidation of o-dianisidine by hydrogen peroxide in presence of horseradish peroxidase. BIOKHIM. 42: 1070-1075.

0731. LEBEDEVA, O.V.; UGAROVA, N.N.; BEREZIN, LV. 1979. Irreversible inactivation of heme-containing peroxidase in presence of phenylhydrazine and protective effect of inhibitors of free-radical reactions. Role ofcomplexing of heme with phenylhydrazine in destruction of heme. BIOKHIM. 44: 1766-1773.

0732. LEBEDEVA, O.V.; DOMBROVSKlI, VA; UGAROVA, N.N.; BEREZIN, 1. V. 1978. Effect of N-alkylimidazoles on oxidation of o-dianisidine catalyzed by horseradish peroxidase. BIOKHIM. 43: 556-560.

0733. LEE, K.c.; CUNNINGHAM, BA; PAULSEN, G.M.; LIANG, G.H.; MOORE, R.B. 1976. Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. PHYSIOL. PLANT. 36: 4-6.

0734. LEE, T.T. 1971. Cytokinin-controlled indoleacetic acid oxidase isoenzymes in tobacco callus cultures. PLANT PHYSIOL. 47: 181-185.

0735. LEE, T.T. 1971. Increase ofindoleacetic acid oxidase isoenzymes by gibberellic acid in tobacco callus cultures. CAN. J. BOT. 49: 687-693.

0736. LEE, T.T. 1972. Changes in indoleacetic acid oxidase isoenzymes in tobacco tissue after treatment with 2,4-dichlorophenoxyacetic acid. PLANT pHYSIOL. 49: 957-960.

Page 207: peroxidases ( peroksida )

196 PEROXIDASES 1970/1980

0737. LEE, T.T. 1972. Interaction ofcytokinin, auxin, and gibberellin on peroxiqase isoenzymes in tobacco tissues cultures in vitro. CAN. J. BOT. 50: 2471-2477.

0738. LEE, T.T. 1973. On extraction and quantitation of plant peroxidase isoenzymes. PHYSIOL. PLANT. 29: 198-203.

0739. LEE, T.T. 1974. Cytokinin control of subcellular localization of indoleacetic acid oxidase and peroxidase. PHYTOCHEM. 13: 2445-2453.

0740. LEE, T.T. 1977. Role ofphenolic inhibitors in peroxidase-mediated degradation of indole-3-acetic acid. PLANT PHYSIOL. 59: 372-375.

0741. LEE, T.T. 1980. Transfer RNA-peroxidase interaction. Inhibition of indole­3-acetic acid oxidation. PLANTPHYSIOL. 66: 1012-1014.

0742. LEE, T.T.; PILET, P.E. 1977. Indole-3-acetic acid oxidase and peroxidase in maize roots. PLANT SCI. LETT. 9: 147-151.

0743. LEE, T.T.; ROCK. G.L.; STOESSL, A. 1978. EtTects of orchinol and related phenantrenes on the enzymic degradation of indole-3~acetic acid. PHYTOCHEM. 17: 1721-1726.

0744. LEE, T.T.; STARRATT, A.N.; JEVNIKAR, J.J.; STOESSL, A. 1980. New phenolic inhibitors of the peroxidase-catalyzed oxidation of indole-3-acetic acid. PHYTOCHEM. 19: 2277-2280.

0745. LEGRAND, B. 1974. Influence des conditions d'éclairement sur la néoformation des bourgeons par les tissus de feuilles d'Endive cultivés in vitro et sur l'activité peroxydasique de ces tissus. C.R. ACAD. Sc. PARIS 278: 2425-2428.

0746. LEGRAND, B. 1977. Action de la lumière sur les peroxydases et sur la teneur en composés phénoliques de tissus de feuilles de Cichorium intybus L. cultivés in vitro. BIOL. PLANT. 19: 27-33.

0747. LEGRAND, B.; DUBOIS, J. 1977. Evolution des peroxydases et auxines­oxydases au cours de la croissance d'une suspension cellulaire de' Silene (Silene a/ba Miller E.H.L. Krause). C.R. ACAD. Sc. PARIS 285: 661-664.

0748. LEGRAND, B.; DUBOIS, J. 1978. EtTect ofgrowth regulatorson proliferation, peroxidase activity and isoperoxidases in cell suspension of Silene a/ba. BIOL. PLANT. 20: 107-113.

0749. LEGRAND, B.; GASPAR, T.; PENEL, c.; GREPPIN, H. 1976. Light and hormonal control of phenolic inhibitors of peroxidase in Cichorium intybus L. PLANT BIOCHEM. J. 3: 119-127.

0750. LEGRAND, B.; VASSEUR, J. 1972. Evolution de l'acide ribonucléique, des protéines et de l'activité peroxydasique au cours de la culture in vitro de fragments de feuille d'endive (Cichorium intybus var. Witloof). C.R. ACAD. Sc. PARIS 275: 357-360.

Page 208: peroxidases ( peroksida )

REFERENCES 197

0751. LEIGH, J.S.; MALTEMPO, M.M.; OHLSSON, P.J.; PAUL, KG. 1975. Optical, NMR and EPR properties of horseradish per:oxidase and its donor complexes. FEBS LETTERS 51: 304-308.

0752. LESCURE, AM. 1970. Cinétique enzymatique des 3-indolylacétique oxydases de deux lignées de cel1uÎes d'Acer pseudoplatanus L. dépendante ou indépendante de l'auxine. BULL. SOc. CHIM. BIOL. 52: 953-978.

0753. LESHEM, Y.; GALSTON, AW. 1971. Repression ofisoperoxidase formation in excised tobacco pith by exogenous, auxin-controlled RNA. PHYTOCHEM. 10: 2869-2878.

0754. LESHEM, Y.; GALSTON, A.W.; KAUR-SAWHNEY, R.; SHIH, L.M. 1970. Auxin, macromolecular repressors and the development of isoperoxidases in cultured tobacco pith. In 'PLANT GROWTH SUBSTANCES'. CaIT, D.J. (Ed.). Springer Verlag, Berlin - Heidelberg - New York, pp. 228-233.

0755. LEU, S.L.I<.; WENDER, S.H.; SMITH, E.C. 1975. Effect of darkness on isopèroxidases in tobacco tissue cultures. PHYTOCHEM. 14: 2551-2554.

0756. LEVINGS, C.S.; STUBER, C.W.; MURPHY. c.F. 1971. Inheritance of an auxin inducible peroxidase in oats (Avena sativa L.). CROP SCI. II: 271-272.

0757. LEW, J.Y.; SHANNON, L.M. 1973. Incorporation of carbohydrate residues into peroxidase isoenzymes in horseradish roots. PLANT PHYSIOL. 52: 462-465.

0758. LEWAK, S.T.; RYCHTER, A; ZARSKA-MACIEJEWSKA, B. 1975. Metabolic aspects of embryonal dormancy in apple seeds. PHYSIOL. VEG. 13: 13-22.

0759. LHOSTE, AM. 1979. The effect of fluoride on the polyphenoloxidase and peroxidase activities of tobacco leaves (Nicotiana tabacum L. var. PB91). FLUORIDE 12: 33-38.

0760. LIANG, G.H.; CUNNINGHAM, B.A; LEE, KC. 1974. in Triticale. ANN. WHEAT NEWSLETT. XX, pp.

Peroxidase activity 129-130.

0761. LIANG, G.H.; LEE, KC.; CHUNG, K; LIANG, Y.T.; CUNNINGHAM, B.A 1977. Regulation of internodal length by peroxidase enzymes in grain sorghum. THEOR. APPL. GENET. 50: 137-146.

0762. LIBERMAN-MAXE, M. 1974. peroxydasiques dans la stèle J. MICROSC. 19: 169-(82.

Localisation uitrastructurale d'activités de Polypodium vulgare (Polypodiacée).

0762a. LIEBERMAN, M. 1979. Biosynthesis and action of ethylene. PLANT PHYSIOL. 30: 533-591.

ANN. REV.

0763. LIEBERMAN, M.; KUNISHI, AT. 1971. An evaluation of 4-S-methyl-2­ketobutyric acid as an intermediate in the biosynthesis of ethylene. PLANT PHYSIOL. 47: 576-580.

Page 209: peroxidases ( peroksida )

198 PEROXIDASES 197011980

0764. LIEM, H.H.; CARDENAS, 1.; TAVASSOLl, M.; POH-FITZPATRICK, M.B.; MULLER-EBERHARD, U. 1979. Quantitative determination of hemoglobins and cytochemical staining for peroxidase using 3,3'5,5'­tetramethylbenzidine dihydrochloride, a safe substitute for benzidine. ANAL. BIOCHEM. 98: 388-392.

0765. LIUEOREN, D.R. 1978. Peroxidase-mediated hydroxylation of phenylacetonitrile, an intermediate of dhurrin synthesis in PHYTOCHEM. 17: 1695-1699.

p-hydroxy-Sorghum.

0766. LIPETZ, 1. 27: 1-28.

1970. Wound-healing in higher plants. INT. REV. CYTOL.

0766a. LIU, E.H. 1975. Substrate specificities of plant peroxidases isozymes. ln 'ISOZYMES. II. PHYSIOLOGICAL FUNCTION'. Markert, c.L. (Ed.). Academie Press, New York, pp. 837-849.

0767. LIU, E.H.; OIBSON, D.M. 1979. Visualization of peroxidase isozymes with eugenol, a noncarcinogenic substrate. ANAL. BIOCHEM. 79: 597-601.·

0768. LIU, E.H.; LAMPORT, D.T.A. 1973. The pH induced modification of the electrophoretic mobilities of horseradish peroxidase isozymes. ARCH. BIOCHEM. BIOPHYS. 158: 822-826.

0769. LIU, E.H.; LAMPORT, DTA. 1974. An accounting of horseradish peroxidase isozymes associated with the cell wall and evidence that peroxidase does not contain hydroxyproline. PLANT PHYSIOL. 54: 870-876.

0770. LOBARZEWSKl, 1. 1974. Peroxidase in syringic acid-stimulated cultures of lnonotus radiatus. ACTA MICROBIOL. POL. 6: 1-7.

0771. LOBARZEWSKl, J. 1977. Hemoproteid proxidase from lnonotus radiatus. ACTA MICROBIOL. POL. 26: 179-184.­

0772. LOBARZEWSKl, J.; TROJANOWSKl, J. 1979. Induction by ferulic acid of multiple forms of peroxidase in the fungus Tremetes versicolor (Basidiomycetes). ACTA BIOCHIM. POL. 26: 309-317.

0773. LOCKHART, B.E.; SEMANCIK, J.S. 1970. Orowth inhibition, peroxidase and 3-indoleacetic acid oxidase activity, and ethylene production in cowpea mosaic virus-infected cowpea seedlings. PHYTOPATHOL. 60: 553-554.

0774. LOEMOSZEWSLA-ROKlCKA, B. 1980. Isozymes of peroxidase indole-3­acetic acid oxidase and polyphenoloxidase of poplar and pine. ACTA PYHSIOL. PLANT. 2: 195-207.

0775. LOH, J.W.c.; SEVERSON Jr., J.O. 1975. Stimulation of IAA bean plants by naphthenates. PHYTOCHEM. 14: 1265-1'267.

oxidase of

0776. LOUIS, J.P.; DURAND, B. 1978. Increase ofperoxidase activity and hormones feminizing quantity in sterile males of Mercuralis annua L. BULL. SOc. BOT. FR. 125: 79-84.

Page 210: peroxidases ( peroksida )

REFERENCES 199

0777. LOY, J.B. 1972. A comparison of stem peroxidases in bush and vine forms of squash (Cucurbita maxima Duch. and C. pepo L.). J. EXP. BOT. 23: 450-457.

0778. LU, A.T.; WHITACKER, J.B. inactivation and reactivation 39: 1173-1178.

1974. Sorne factors affecting rates of heat of horseradish peroxidase. J. FOOD. SCI.

0779. LUNDQUISI, 1.; JOSEFSSON, J.O. 1971. Sensitive method for determination of peroxidase activity in tissue by means of coupied oxidation reaction. ANAL. BIOCHEM. 41: 567-577.

0780. LYTTLE, c.R.; DESOMBRE, E.R. 1977. Generality of oestrogen stimulation of peroxidase activity in growth responsive tissues. NATURE 268: 337-339.

0781. LYTTLE, C.R.; DESOMBRE, E.R. 1977. Uterine peroxidase as a marker for estrogen action. PROC. NATL. ACAD. SCI. USA 74: 3162-3166.

0782. LYTTLE, C.R.; GARAY, R.V.; DESOMBRE, E.R. 1979. Ontogeny of the estrogen inducibility of uterine peroxidase. J. STEROID BIOCHEM. 10: 359-364.

0783. MAC CAY, P.B.; GIBSON, 0.0.; FONG, K.L.; HORNBROOK, K.R. 1976. Effect of gluthathione peroxidase activity on lipid peroxidation in biological membranes., BIOCHIM. BIOPHYS. ACTA 431: 459-468.

0783a. MACCECCHINI, M.L.; RUDIN, Y.; SCHATZ, G. 1979. Transport of proteins across the mitochondrial outer membranes. A precursor form of the cytoplasmically made intermembrane enzyme cytochrome c peroxidase. J. BIOL. CHEM. 254: 7468-7471. '

0784. MAC COWN, RH.; MAC COWN, 0.0.; BECK, G.E.; HALL, T.C. 1970. Isoenzyme complements of Dianthus caHus cultures: influence of light and temperature. AMER. J. BOT. 57: 148-152.

D785. MAC CREIGHT, W.H.; PERLEY, J.E. 1974. The use of an enzyme electrode in the analysis of indole-3-acetic acid oxidase activity in Avena. PLANT PHYSIOL. 53: 712-716.

0786. MACDONALD, T.; SMITH, H.H. 1972. Variation associated with an Aegilops umbellata chromosome segment incorporated in wheat. II. Peroxidase and leucine aminopeptidase ,isozymes. GENETICS 72: 77-86.

0787. MACHACKOVA, 1.; GANCEVA, K; ZMRHAL, Z. 1975. The role of peroxidase in the metabolism of indole-3-acetic acid and phenols in wheat. PHYTOCHEM. 14: 1251-1254.

0788. MACHACKOVA, 1.; NASINEC, V.; ZMRHAL, Z. 1980. The effect of indole-3-acetic acid on ethylene formation in wheat seedlings. BIOL. PLANT. 22: 65-72.

0789. MACIEJEWSKA-POTAPCZYKOWA, W.; RENNERT, A.; MILEWSKA, E. 1972. Activities of enzymes connected with IAA oxidation in cucumbers of various sex types. ACTA SOc. BOTAN. POL. 41: 385-391.

Page 211: peroxidases ( peroksida )

200 PEROXIDASES 1970/1980

0790. MACIEJEWSKA-POTAPCZYKOWA, W.; ZALEWSKA, J.; URBANEK, H. 1970. Activities of enzymes connected with IAA oxidation in Cucumber warszawski Inspektowy (0) and MSU-713-5 (0). ZES. NAUK. UNIV. M. KOPERNlKA ZES. 23: 181-183.

0791. MACKEEVER, P.E.; SPICER, S.S. 1979. Demonstration of immune complex receptors on macrophage surfaces and erythrocytic endogenous peroxidase with correlated markers for light microscopy. Scanning electron microscopy and transmission electron microscopy. In 'CELL SURFACE LABELLING'. Becker, R.P.; Johari, O. (Eds). Scanning Electron Microscopy Inc., Chicago, pp. 601-610.

0792. MACKO, V.; RENWICK, J.A.A. 1974. Reversai of self-inhibition by peroxidase and hydrogen peroxide in wheat.Stem rust uredospores mode of action. PHYTOPATHOL. 64: 901-902.

0793. MACMILLAN, C. 1975. Systematic implications of the peroxidase isoenzymes in the Xanlhium slrumarium complex. BIOCHEM. SYST. ECOL. 3: 7-9.

0794. MACNABB, T.; JELLINCK, P.H. 1975. Purification and properties of oestrogen-induced uterine peroxidase. BIOCHEM. J. 151: 275-279.

0795. MACNABB, T.; SPROUL, J.; JELLINCK, P.H. 1975. Effect of phenols on the oxidation of estradiol by uterine peroxidase. CAN. J. BIOCHEM. 53: 855-860.

0796. MACNICOL, P.K. 1973. Differentiai extraction of isoperoxidases from Pisum shoots. PHYTOCHEM. 12: 1269-1272.

0797. MACNICOL, P.K. 1973. Isoperoxidase pattern and internode length genotype in Pisum. PHYTOCHEM. 12: 1273-1279.

0798. MACPHIE, J.L. 1979. Peroxidase activity in non-parenchymal cells isolated from rat liver : a cytochemical study. ACTA HEPATO-GASTROENROL. 26: 442-445.

0799. MACRIS, B.J.; MARKAKIS, P. 1971. Post irradiation inactivation of horseradish peroxidase. J. FOOD SCI. 36: 812.

0800. MADER, M. 1975. Anderung des Peroxydase Isoenzymmuster in Kall.uskulturen in abhangigkeit von der Differenzierung. PLANTA MEDICA SUPPL., pp. 153-162.

0801. MADER, M. 1976. Die Lokalization des Peroxidase - Isoenzymgruppe Gin der Zellwand von Tabak - Geweben. PLANTA 131: 11-15.

J

0802. MADER, M. j 980. Origin of the heterogeneity of peroxidase isoenzymes group GL from Nicotiana labacum. 1. Conformation. Z. PFLANZENPHYSIOL. 96: 283-296.

0803. MADER, M.; BOPP, M. 1976. Neue Vorstellungen zum Problem der Isoperoxidasen anhand der Trennung durch Disk-Elektrophoresis und Isoelektrische Fokussierung. PLANTA 128: 247-253.

Page 212: peroxidases ( peroksida )

/',/

REFERENCES 201

0804. MADER, M.; MEYER, Y.; BOPP, M. 1975. Lokalisation der Peroxidase-Isoenzyme in Protop1asten und Zellwanden -'von Nicotiana tabacum L. PLANTA 122: 259-268.

0805. MADER, M.; MEYER, Y.; BOPP, M. 1976. Zellwandregeneration und Peroxidase-Isoenzym-Synthese isolierter Protop1asten von Nicotiana tabacum. PLANTA 129: 33-38.

0806. MADER, M.; MUNCH, P.; BOPP, M. 1975. Regulation und Bedeutung der Peroxidase-Musteriinderungen in Sprossdifferenzierenden Kallusku1turen von Nicotiana tabacum L. PLANTA 123: 257-265.

0807. MADER, M.; NESSEL, A.; BOPP, M. 1977. Über die physio1ogische Bedeutung der Peroxydase-Isoenzym-Gruppen des Tabaks anhand einiger biochemischer Eigenschaften. II. pH-Optima, Michaelis-Konstanten, maximale Oxidationsraten. Z. PFLANZENPHYSIOL. 82: 247-260.

0808. MADER, M.; UNGEMACH, J.; SCHLOSS, P. 1980. The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. PLANTA 147: 467-470.

0809. MAGEE, W.E.; GOFF, C.W.; SCHOKNECHT, J.; SMITH, M.D.; CHERIAN, K. '1974. The interaction of cationic liposomes containing entrapped horseradish peroxidase with cel1s in culture. J. CELL BIOL. 63: 492-504.

0810. MAGONOW, S.N.; DAVYDOV, R.M.; BLYUMENFELD, L.A.; ARUTUYNYAN, A.M.; SHARONOV. Y.A. 1978. Absorption and magnetic circular dichroism spectra of heme-containing proteins in non­equilibrium states. III. Complexes of peroxidase. MOLEKUL. BIOL. 12: 869-875.

081 1. MAIER, R. 1978. Aktivitlit und multiple Formen des Peroxydase in unverbleiten und verbleiten Pflanzen von Zea mays und Medicago sativa. PHYTON (Austria) 19: 83-96.

0812. MAILLARD, F.; PILET, P.E.; ZRYD, J.P. auxin oxidase of cultured sycamore cells.

1976. Auxin dependence and EXPERIENTIA 32: 841-842.

0813. MAKINO, R.; YAMADA, H.; YAMAZAKI, 1. 1976. Effects of2,4-substituents of deuteroheme upon the stability of the oxy-form and compound 1 of horseradish peroxidases. ARCH. BIOCHEM. BIOPHYS. 173: 66-70.

813a. MALDONADO, B.A.; VAN HUYSTEE, R.B. 1980. Isolation of a cationic peroxidase from cultured peanut cells. CAN. J. BOT. 58: 2280-2284.

0814. MAKINO, R.; YAMAZAKI, 1. 1972. Effects of2,4-substituents ofdeuterohemin upon peroxidase functions. 1. Preparation and sorne properties of artificial enzymes. J. BIOCHEM. 72: 655-664.

0815. MAKINO, R.; YAMAZAKI, 1. 1973. Effectsof2,4-substituentsofdeuteroheme upon peroxidase functions. II. Reactions of peroxidases and met-myoglobin with azide, cyanide and tluoride. ARCH. BIOCHEM. BIOPHYS. 157: 356-368.

Page 213: peroxidases ( peroksida )

202 PEROXIDASES 1970/1980

0816. MAKJNO. R.; YAMAZAKJ, 1. 1974. EtTects of2,4-substituents ofdeuteroheme upon peroxidase functions. Reactions of peroxidase and myoglobin with oxygen, carbon monoxide and alkylisocyanides. ARCH. BIOCHEM. BIOPHYS. 165: 485-493.

0816a. MALIK, c.P.; MUR, S.P. 1980. Changes in levels of auxin and inhibitors during seed development in okra (Abelmaschus esculentus L. Moensch). PLANT BIOCHEM. J. 7: 5-14.

0817. MALTEMPO, M.M.; OHLSSON, P.-I.; PAUL, K.G.; PETERSSON, L.; . EHRENBERG, A. 1979. Electron paramagnetic resonance analyses of horseradish peroxidase in situ and alter purification. BIOCHEM. 18: 2935-2941.

0818. MANES, M.E. 1973. Actividad de polyfenol oxidasa e indol acetico oxidasa de peroxidasas separadas por electroforesis. PHYTON (BUENOS AIRES) 31: 79-84.

0819. MAPSON, L.W. 1970. Biosynthesis of ethylene and the ripening of fruit. ENDEAVOUR 39: 29-33.

0820. MAPSON, L.W.; WARDALE, D.A. 1971. Enzymes involved in the synthesis of ethylene from methionine, or its derivatives in tomatoes. PHYTOCHEM. 10: 29-39.

0821. MAPSON, L.W.; WARDALE, DA 1972. Role of indolyl-3-acetic acid in the formation of ethylene from 4-methylmercapto-2-oxobutyric acid by peroxidase. PHYTOCHEM. Il: 1371-1387.

0822. MARAITE, H. 1973. Changes in polyphenoloxidases and peroxidase in muskmelon (Cucumis mela L.) infected by Fusarium axysporum f. sp. melanis. PHYSIOL. PLANT PATHOL. 3: 29-49.

0823. MARANI, E.; RIETVELD, W.J.; OSSELTON, J.c. 1979. Ultrastructural localization of the endogenous peroxidase activity in the ventromedial arcuate nucleus. IRCS MED. SCI. BIOCHEM. 7: 501-504.

0824. MARCUS, A. 1971. Enzyme induction in plants. ANN. REV. PLANT PHYSIOL. 22: 313-336.

0825. MARIE, J.P.; VERNANT, J.P.; DREYFUS, 8.; BRETON-GORIUS, J. 1979. Ultrastructural localization of peroxidases in 'unditTerentiated' blasts during the blast crisis of chronic granulocytic leukemia. BRIT. J. HAEMATOL. 43: 549-558.

0826. MARKLUND, S. 1971. Hydroxymethylhydroperoxide as inhibitor and peroxide substrate of horseradish peroxidase. EUR. J. BIOCHEM 21: 348-362.

0827. MARKLUND, S. 1973. Mechanisms of the irreversible inactivation of horseradish peroxidase caused by hydroxymethyl-hydroperoxide. ARCH. BIOCHEM. BIOPHYS. 154: 614-622.

Page 214: peroxidases ( peroksida )

REFERENCES 203

0828. MARKLUND, S.; OHLSSON, P.J.; OPARA, A.; PAUL, K.G. 1974. The substrate profiles of the acidic and slightly basic horseradish peroxidases. BIOCHIM. BIOPHYS. ACTA 350: 304-313.

0828a. MARKWALDER, H.U.; NEUKOM, H. 1976. Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. PHYTOCHEM. 15: 836-837.

0829. MARR, CD. 1979. Laccase and tyrosinase oxidation of spot test reagents. MYCOTAXON 9: 244-276.

0830. MARSALEK, L. 1972. Unterschiede in der Aktivitiit elmger Enzyme bei den Genotypen einer Doppelhybriden von Mais. Z. PFLANZENPHYSIOL. 67: 305-312.

0831. MARSALEK, L. 1975. Inheritance of the peroxidase isoenzyme spectrum in selected maize genotypes occurring in the FI and F2 generations after diallele cross. GENET. POL. 15: 405-413.

0832. MARSHALL, D.R.; ALLARD, R.W. 1970. Maintenance of isozyme polymorphism in natural populations of Avena barbata. GENETICS 66: 393-399.

0833. MARSHALL, D.R.; ALLARD, R.W. 1970. Isozyme polymorphism in natural populations of Avena fatua and A. barbata. HEREDITY 25: 373-382.

0834. MARTY, F. 1971. Peroxysomes et compartiment Iysosomal dans les cellules du méristème radiculaire d'Euphorbia characias L.: une étude cytochimique. CR. ACAD. SC PARIS 273: 2504-2507.

0835. MARTYUCHENKO, S.A. 1975. Isoelectrofocusing of peroxidases of the leaves and roots of wheat plants infected with stem rust. FIZIOL. RASTEN. 22: 1079-1081.

0836. MARUYAMA, T.; UDA, H.; YOKOYAMA, M. 1980. Localization of non­specifie esterase and endogenous peroxidase in the murine epidermal langerhans cells. BRIT. J. DERMATOL. 103: 61-66.

0837. MASON, D.Y.; SAM MONS, R. 1978. Rapid preparation of peroxidase-anti­peroxidase complexes for immunocytochemical use. J. IMMUNOL. METHODS 20: 317-324.

0838. MATEESCU, MA; SCHELL, H.D.; BUDU, CE. 1979. Spectrophotometric method for rapid detennination of peroxidase activity. Possibilities of simultaneous detennination of p-diphenoloxidase (laccase). REV. ROUM. BIOCHIM. 16: 115-120.

0839. MATHYS, W. 1977. The raie of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. PHYSIOL. PLANT. 40: 130-136.

0840. MATILE, Th. peroxidase ?

1980. Catabolism of chlorophyll : Z. PFLANZENPHYSIOL. 99: 475-479.

involvement of

Page 215: peroxidases ( peroksida )

204 PEROXIDASES 1970/1980

0841. MATO, M.C. 1970. Action of resorcylic acids on the auxin-oxidase activity. PHYTOCHEM. 9: 275-279.

0842. MATO, M.C. ; CALVO, R. 1970. Effect of lunularic acid on auxin-oxidase activity. BIOL. PLANT. 19: 394-396.

0843. MATO, M.C.; GONZALEZ-ALONSO, L.M.; MENDEZ, J. 1972. Inhibition of enzymatic indoleacetic acid oxidation by soil f1uvic acids. SOfL BIOL. BIOCHEM. 4: 475-478.

0844. MATSUNO, H.; URITANI, 1. 1972. Physiological behaviour of peroxidase isozymes in sweet potato root tissue injured by cutting or with black rot. PLANT CELL PHYSIOL. 13: 1091-110 1.

0845. MATTHEWS, P.; WILLIAMS, H. 1973. Peroxidase zymograms of field beans (Phaseo/us vu/garis). 64TH ANN. REP. TECH. INNES. INST. NORWICH, pp. 39-40.

0846. MATTOO, A.K.; MODI, V.V. 1975. Palmitic acid activation of peroxidase and its possible significance in mango ripening. BIOCHIM. BIOPHYS. ACTA 397: 318-330.

0847. MATTOO, A.K.; VICIŒRY, R.S. 1977. Subcellulardistributionsofisoenzymes in fruits of a normal cultivar of tomato and of the rin mutant at two stages of development. PLANT PHYSIOL. 60: 496-498.

0848. MAYBERRY, J.S.; FERET, P.P. 1977. Peroxidases in developing acoms and seedlings of Quercus a/ba L. SILVAE GENET. 26: 218-222.

0849. MAZAU, D. 1976. Les peroxydases cytoplasmiques et pariétales de plantes de Melon atteintes d'anthracnose: étude par électrofocalisation. C.R. ACAD. SC. PARIS 283: 777-780.

0850. MAZAU, D.; ESQUERRE-TUGAYE, M.T. 1976. Hydroxyproline et peroxydases dans les parois cellulaires et le cytoplasme de tiges de melons atteint d'anthracnose. PLANT SCI. LETT. 7: 119-125.

0851. MAZZA, G.; JOB, c.; BOUCHET, M. 1973. Chemical compoSItion and hydrodynamic characteristics of tumip peroxidases. BIOCHIM. BIOPHYS. ACTA 322: 218-223.

0852. MAZZA, G.; RICARD, J.; BOUCHET, M. 1970. Potentiels de demi-réduction et activité 'auxine-oxydasique' de peroxydases de Navet (Brassica napus L.). C.R. ACAD. Sc. PARIS 270: 2492-2494.

0853. MAZZA, G.; WELINDER, K.G. 1980. Covalent structure oftumip peroxidase 7. Tryptic peptides. EUR. J. BIOCHEM. 108: 473-479.

0854. MAZZA, G.; WELINDER, K.G. 1980. Covalent structure oftumip peroxidase 7. Cyanogen bromide fragments, complete structure and comparison to horseradish peroxidase c. EUR. J. BIOCHEM. 108: 481-489.

Page 216: peroxidases ( peroksida )

REFERENCES 205

0855. MEGHA, B.M.; LALORAYA, M.M. 1977. Effect ofabscisic acid on growth, IAA oxidase, peroxidase and ascorbate oxidizing systems in Trigonella foenum-graecum L. seedlings. BlOCHEM. PHYSIOL. PFLANZ. 171: 269-278.

0856. MEGHA, B.M.; LALORAy A, M.M. 1978. Effect of galJic acid growth, IAA oxidase and peroxidase activities in Trigonella graeçum L. BIOCHEM. PHYSIOL. PFLANZ. 172: 305-310.

on dark­foenum­

0857. MEGHA, B.M.; LALORAYA, M.M. 1978. Effect of ethrel on dark-growth, IAA oxidase, peroxidase and ascorbate oxidising system in Trigonellafoenum­graecum L. seedlings. BIOCHEM. PHYSIOL. PFLANZ. 173: 229-237.

0858. MENDGEN, K. 1975. activities during the PATH. 6: 275-282.

Ultrastructural demonstration of different peroxidase bean rust infection process. PHYSIOL. PLANT.

0859. MENDGEN, K.; FUCHS, W.H. 1973. Elektronenmikroskopische DarstelJung peroxidatischer Aktivitiiten bei Phaseolus vulgaris nach Infektion mit Uromyces phaseoli typica. ARCH. MIKROBIOL. 88: 181-192.

0860. MENEGHINI, R.; HOFFMANN, M.E.; DURAN, N.; FALlONI, A.; CILENTO, G. 1978. DNA damage during the peroxidase catalyzed aerobic oxidation of isobutanoJ. BIOCHIM. BIOPHYS. ACTA 5J8: 177-180.

0861. MENNES, A.M. 1973. The indole-3-acetic acid oxidase of Lupinus lu/eus L. 1. A qualitative comparison of the activity of this enzyme in root nodules and roots. ACTA BOT. NEERL. 22: 694-705.

0862. MENNES, A.M. 1973. The indole-3-acetic acid oxidase of Lupinus /uteus L. II. A quantitative comparison of the activity of this enzyme root nodules and roots. ACTA BOT. NEERL. 22: 706-729.

0863. MENNES, A.M.; OOSTROM, H.; TREURNIERT, EE. 1974. Light and electron microscopic localization of peroxidase during the development of root nodules of Pisum sativum L. ln 'PLANT GROWTH SUBSTANCES'. Hirokawa Pub!. Co., Tokyo, pp. 655-662.

0864. MENZEL, D. 1977. Electron microscopic studies on the localization of catalase and peroxidase in Ace/abu/aria cells. ln 'PROGRESS IN ACETABULARIA RESEARCH'. Academie Press, New York, pp. 69-81.

0865. MENZEL, D. 1979. Accumulation ofperoxidase in the cap rays of Acetabu/aria during the development of gametangia. J. HISTOCHEM. CYTOCHEM. 27: 1003-1010.

0866. MESULAM, M.M.1978. Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J. HISTOCHEM. CYTOCHEM. 26: 106-117.

Page 217: peroxidases ( peroksida )

206 PEROXIDASES 1970/1980

0867. MESULAM, M.M.; HEGARTY, E.; BARBAS, H.; CARSON, K.A.;GOWER, E.C; KNAPP, A.G.; MOSS, M.B.; MUFSON, E.J. 1980. Additional factors inlluencing sensitivity in the tetramethylbenzidine method for horseradish peroxidase neurochemistry. J. HISTOCHEM. CYTOCHEM. 28: 1255-1259.

0868. METZLER, M.; MACLACHLAN, J. 1978. Peroxidase-mediated oxidation, a possible pathway for metabolic activation of diethylstilbestrol. BIOCHEM. BIOPHYS. RES. COMM. 85: 874-884.

0869. MEU DT, W.J. 1971. Interactions of sulfite and manganous ions with peroxidase oxidation products of indole-3-acetic acid. PHYTOCHEM. 10: 2103-2110.

0870. MEUDT, W.J.; STECHER, K.J. 1972. Promotion of peroxidase activity in the cell wall of Nicoliana. PLANT PHYSIOL. 50: 157-160.

0871. MIASSOD, R.; PENON, P.; TEISSERE, M.; RICARD, J.; CECCHINI, J.P. 1970. Contribution à l'étude d'acides ribonucléiques à marquage rapide de la racine de lentille. Isolement et caractérisation, action d'une hormone sur leur synthèse et sur celle de peroxydases. BIOCHIM. BIOPHYS. ACTA 224: 423-440.

0872. MICHOT, J.-L.; OSTY, J.; NUMEZ, J. 1980. Regulatory effects of iodide and thiocyanate on tyrosine oxidation catalyzed by thyroid peroxidase. EUR. J. BIOCHEM. 107: 297-302.

0873. MIGLER, R.; DECHATELET, R. 1978. Human eosinophilic peroxidase biochemical characterization. BIOCHEM. MED. 19: 16-26.

0874. MILLER, GA; GEORGE Jr., W.L. 1979. cucumbers. HORT. SCI. 14: 24-25.

Peroxidases in dwarfand determinate

0875. MILLER, R.W.; PARUPS, E.V. 1971. The effect of 2,2-diphenyl-l­picrylhydrazyl and p-cresol on the oxidative degradation of indole-3-acetate. ARCH. BIOCHEM.BIOPHYS. 142: 276-285.

0876. MILLER, R.W.; SIROIS, J.CL.; MORITA, H. 1975. The reaction coumarins with horseradish peroxidase. PLANT PHYSIOL. 55: 35-41.

of

0877. MILNE, D.L.; VAN LELYVELD, L.J.; DE VILLIERS, EA 1977. The response of peroxidase and indoleacetic acid oxidase in pineapple roots to foliar application of phenamiphos. AGROCHEMOPHYSICA 9: 65-70.

0878. MINOCHA, S.C; HALPERIN, W. 1974. Hormonal control of xylogenesis and its relation to enzymatic changes in cultured tuber slices of Jerusalem artichoke. In 'PLANT GROWTH SUBSTANCES'. Hirokawa Pub!. Co., Tokyo, pp. 907-916.

0879. MINOCHA, S.C; HALPERIN, W. 1976. Enzymatic changes and lignification in relation to tracheid differentiation in cultured tuber tissue of Jerusalem artichoke (Helianlhus luherosus). CAN. J. BOT. 54: 79-89.

Page 218: peroxidases ( peroksida )

REFERENCES 207

0880. MISAWA, M.; MARTIN, S.M. 1972. Two peroxidases isolated from kidney bean cell suspension cultures. CAN. J. BOT. 50: 1245-1252.

0881. MISRA, H.P.; FRIDOVICH, 1. 1977. Superoxide dismutase and peroxidase a positive activity stain applicable to polyacrylamide gel electropherograms. ARCH. BIOCHEM. BIOPHYS. 183: 511-515.

0882. MITRA, R.; BHATlA, CR. 1971. Isoenzymes and polyploidy. 1. Qualitative and quantitative isoenzyme studies in the Triticinae. GENET. RES. 18: 57 -69.

0883. MITRA, R.; JAGANNATH, D.R.; BHATIA, CR. 1970. Disc electrophoresis of analogous enzymes in Hordeum. PHYTOCHEM. 9: 1843-1850.

0884. MITSUI, T. 1978. Histochemical studies on peroxidase with special references to its application and inhibition test (rate assay) with fixatives. ACTA HISTOCHEM. CYTOCHEM. II: 100-128.

0885. MOCHAN, E.; NICHOLIS, P. 1971. Complex-formation between cytochrome c and cytochrome c peroxidase. BIOCHEM. J. 121: 69-82.

0886. MOLNAR, J.M.; LACROIX, L.J. 1972. Studies of the rooting of HydranKea macrophyl/a: enzyme changes. CAN. J. BOT. 50: 315-322.

0887. MOLOKOV, L.G.; YAKOVLEV, B.V.; ALESHIN, E.P. 1974. Activity of cytochrome oxidase, polyphenol oxidase, and peroxidase in rice seedlings on salinized substrates. SOVIET PL. PHYSIOL. 20: 996-1000.

0888. MONGET, D. 1978. Ortho-tolidine-more sensitive revealer of peroxidase in the ELISA immunoenzymatic method. ANN. BIOL. CLIN. 36: 527.

0889. MONTALBINI, P. 1972. Peroxidase isoenzymes in susceptible and resistant host-parasite complexes of Phaseo/us vu/garis and Uromyces phaseo/i. ACTA PHYTOPATHOL. ACAD. SC!. HUNG. 7: 41-45.

0890. MONTALBINI, P.; MARTE, M. 1972. Relationship between peroxidase, catechol-oxidase and catalase in bean leaves infected by Uromyces phaseo/i (pers.) Wint., in relation to resistance and susceptibility. PHYTOPATHOL. MEDIT. II: 37-41.

0890a. MONTIES, B. 1980. Monties, B. (Ed.).

Les lignines. ln 'LES POLYMERES VEGETAUX'. Gauthier-Villars, Paris, pp. 122-155.

0891. MOORE, T.S. 1973. An extracellular macromolecular complex from the surfacr of soybean suspension cultures. PLANT PHYSIOL. 51: 529-536.

0893. MORELL, D.B.; NICHOL, A.W. 1970. Studies of the haematin prosthetic group of myeloperoxidase. PROC AUST. BIOCHEM. SOC 3: 91.

0894. MORGAN, P.W.; FOWLER, J.L. 1972. Ethylene modification of peroxidase activity and isozyme complement in cotton (Gossypium hirsutum L.). PLANT CELL PHYSIOL. 13: 727-736.

Page 219: peroxidases ( peroksida )

208 PEROXIDASES 197011980

0895. MORGAN, p.w.; TAYLOR, D.M.; JOHAM, H.E. 1976. Manipulation of IAA-oxidase activity and auxin-deficiency symptoms in intact cotton plants with manganese nutrition. PHYSIOL. PLANT. 37: 149-156.

0896. MORlKAWA, T. 1978. Identification of monosomic and nullisomic using leaf peroxidase isozymes. JAP. J. GEN. 53: 191-198.

oats

0897. MORISHIMA, 1.; OGAWA, S. 1978. Proton nuclear magnetic resonance studies of compounds 1 and Il of horseradish peroxidase. BIOCHEM. BIOPHYS. RES. COMM. 83: 946-953.

0898. MORISHIMA, 1.; OGAWA, S. 1978. Proton nuclear magnetic resonance spectra of compounds 1 and Il of horseradish peroxidase. BIOCHEM. 17: 4384-4388.

0899. MORISHIMA, 1.; OGAWA, S.; INUBUSHI, T.; YONEZAWA, T. 1977. Nuclear magnetic resonance studies of hemoproteins. FEBS LETTERS 80: 177-181.

0900. MORISHIMA, 1.; OGAWA, S.; YONEZAWA, T.; NAKATANI, H.; HIROMI, K.; SANO, T.; YASUNAGA, T. 1978. Unusually fast ligand exchange rate in horseradish peroxidase as studies by temperature-jump method. BIOCHEM. BIOPHYS. RES. COMM. 83: 724-730.

090 l. MORITA, Y. 1977. Studies on structures and functions of plant enzymes and proteins. J. AGRIC. CHEM. SOc. JAPAN 51 : R65.

0902. MORITA, Y.; YOSHIDA, C. 1970. Aromatic amino acid residues in Japanese­radish peroxidase a and apoenzyme. AGR. BIOL. CHEM. 34: 590-598.

0903. MORITA, Y.; YOSHIDA, c.; KITAMURA, 1.; IDA. S. 1970. Isoenzymes of Japanese-radish peroxidase. AGR. BIOL. CHEM. 34: 1191-1197.

0904. MORITA, Y.; YOSHIDA, c.; MAEDA, Y. 1971. Properties and structures of peroxidase isoenzymes of Japanese-radish. AGR. BIOL. CHEM. 35: 1074-1091.

0905. MORRIS, G.; CAPONETTI, J.D. 1974. The monitoring ofperoxidase activity in cinnamon fem leaves during deveJopment in sterile culture. AMER. J. BOT. 61: 37-38.

0906. MORRISON, M. 1973. Thyroid peroxidase-catalyzed iodination and coupling reactions and their control. ANN. N.Y. ACAD. SCI. 212: 175-182.

0907. MORRISON, M.; BA YSE, G.S. 1970. lactoperoxidase. B10CHEM. 9: 2995-3000.

Catalysis of iodination by

0908. MORRISON, M.; BAYSE, G. 1973. Stereospecificity in peroxidase-catalyzed reactions. In 'OXIDASES AND RELATED REOOX SYSTEMS', King, T.S.; Mason, M.S.; Morrison, M. (Eds). University Park Press, Baltimore, pp. 375-388.

Page 220: peroxidases ( peroksida )

209 REFERENCES

0909. MORRISON, M; BAYSE, G.; DANNER, D.J. 1970. The role ofmammalian peroxidase in iodination reactions. ln 'BIOCHEMISTRY OF THE PHAGOCYTIC PROCESS'. Schultz, J. (Ed.). North Holland, The Netherlands, pp. 51-66.

0910. MUELLER, W.c.; BECKMAN, C.H. 1978. Ultrastructural localization of polyphenoloxidase and peroxidase in roots and hypocotyls of cotton seedlings. CAN. J. BOT. 56: 1579-1587.

091Oa. MUJER, C.V.; RAMIREZ, D.A. 1980. Peroxidase isozymes in the mutant (Makapuno) and normal endosperms of coconut. KALIKASAN­PHILIPPINE J. BIOL. 9: 25-30.

0911. MUKHERJEE, S.; BHATTACHARYA, S. 1975. Changes in the kidney peroxidase activity in fish exposed to sorne industrial pollutants. ENVIRON. PHYSIOL. BlOCHEM. 5: 300-307.

0912. MUKHERJI, S.; BAG, A. 1977. Metabolic responses of etiolated rice (Oryza saliva L.) seedlings to streptomycin. BIOL. PLANT. 19: 161-165.

0913. MUKHERJI, S.; GUPTA, B.D. 1972. Characterization of copper toxicity in lettuce seedlings. PHYSIOL. PLANT. 27: 126-129.

0914. MURESAN, T.; BRAD, 1.; COSMIN, O.; MARCU, Z. 1970. Differentiation of maize inbred lines and hybrids from the viewpoint of isoperoxidase spectrum. REV. ROUM. BlOCHlM. 7: 243-247.

0915. MURPHY, M.J.; O'HEOCHA, C. 1970. Partial purification and characterization of an iodide peroxidase from Enleromorpha linza. BIOCHEM. J. 119: 21-22.

0916. MURPHY, M.J.; O'HEOCHA, C. 1973. Peroxidase from the red alga Cysloclonium purpureum. PHYTOCHEM. 12: 55-59.

0917. MURPHY. M.J.; O'HEOCHA, C. 1973. Peroxidase from the green alga Enleromorpha linza. PHYTOCHEM. 12: 61-65.

0918. MURPHY, M.J.; O'HEOCHA, C. 1973. Peroxidase activity in the brown alga Laminaria digilala. PHYTOCHEM. 12: 2645-2648.

0918a. MUSSEL, H.W. 1973. Endopolygalacturonidase: evidence for involvement in Verlicillium wilt of cotton. PHYTOPATHOL. 63: 62-70.

0919. MYRZAEVA, S.V.; AKULOVA, E.A. 1975. The location of catalase and peroxidase in isolated pea chloroplasts and their fragments. BIOKHIM. 40: 166-168. .

0920. NADEZHDIN, A.; DUNFORD, H.B. 1979. Horseradish peroxidase. XXXIV. Oxidation of compound 11 to 1 by periodate and inorganic anion radicals. CAN. J. BIOCHEM. 57: 1080-1083.

0920a. NADEZHDIN, A.; DUNFORD, H.B. 1980. Horseradish peroxidase. XL. The oxidation of enzymes to compound Il. CAN. J. BIOCHEM. 58: 2504-2507.

Page 221: peroxidases ( peroksida )

210 PEROXIDASES 1970/1980

0921. NADOLNY, L.; SEQUEIRA, L. 1980. Increases in peroxidase activities are not directly involved in induced resistance in tobacco. PHYSIOL. PLANT PATHOL. 16: 1-8.

0922. NAGASAKA, A.; DEGROOT, LI.; HIDAKA, H. IlJ80. Binding of iproniazid to the polymerie forms of iodide peroxidase. EXPERIENTIA 36: 880-882.

0923. NAGLE, N.E.; HAARD, N.F. 1975. Fractionation and characterization of peroxidase from ripe banana fruit. J. FOOD SCI. 40: 576-579.

0924. NAKAJlMA, R.; YAMAZAKl, 1. 1979. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases. J. BIOL. CHEM. 254: 872-878.

0925. NAKAJlMA, R.; YAMAZAKl, 1. 1980. The conversion of horseradish peroxidase c to a verdohemoprotein by a hydroperoxide derived enzymatically from indole-3-acetic acid and by m-nitroperoxybenzoic acid. J. BIOL. CHEM. 255: 2067-2072.

0926. NAKAMURA, Y.; FUSHIKl, H.; HIGUCHI, T. 1974. Metabolic differences between gymnosperms and angiosperms in the formation of syringyl lignin. PHYTOCHEM. 13: 1777-1784.

0927. NAKANISHI, S. 1979. Peroxydases et bourgeonnement de fragments de racines d'Endive. CR. ACAD. SC PARIS 289: 695-698.

0928. NAKATANI, H.; DUNFORD, H.B. 1980. Binding mode of indole to horseradish peroxidase. ARCH. BIOCHEM. BIOPHYS. 204: 413-417.

0930. NANDA, K.K.; BHATTACHARYA, N.C; KAUR, N.P. 1973. Effect of morphactin on peroxidases and its relationship to rooting hypocotyl cuttings of Impatiens balsamina. PLANT CELL PHYSIOL. 14: 207-21 \.

0931. NANDA, K.K.; BHATTACHARYA, N.C; KAUR, N.P. 1973. Disc electrophoresis studies of IAA-oxidases and their re1ationship with rooting ofetiolated stem segments ofPopulus nigra. PHYSIOL. PLANT. 29: 442-444.

0932. NANDA, K.K.; BHATTACHARYA, N.C; KOCHHAR, V.K. 1974. Biochemical basis of adventitious root formation on etiolated stem segments. NEW ZEALAND J. FOREST. SCI. 4: 347-358.

0933. NANDA, K.K.; GURUMURTI, K.; CHIBBAR, R.N. 1975. Evidence for the allosteric nature of IAA oxidase system in Phaseolus mungo hypocotyls. EXPERIENTIA 31: 635-636.

0934. NATARELLA, N.J.; SINK Jr., K.C 1973. IAA oxidase and inhibitors from single and double flowered petunias. HORTSCI. 8: 212-213.

0935. NATARELLA, N.J.; SINK Jr., K.C 1975. E1ectrophoretic analysis of proteins and peroxidases of selected Petunia species and cultivars. BOT. GAZ. 136: 20-30.

0936. NAVASERO, E.P.; BAUN, L.C; JULIANO, B.O. 1975. Grain dormancy, peroxidase activity and oxygen uptake in Oryza sativa. PHYTOCHEM. 14: 1899-1902.

Page 222: peroxidases ( peroksida )

REFERENCES 211

0937. NEARY, J.T.; DAVIDSON, B.; ARMSTRONG, A; STROUT, H.; MALOOF, F. 1976. Solubilization of thyroid peroxidase by non-ionic detergents. J. BIOL. CHEM. 251: 2525-2529.

0938. NEGRUTlU, 1.; JACOBS, M.; GASPAR, peroxidases from Arabidopsis callus. 119-126.

T. 1979. Leaf formation and Z. PFLANZENPHYSIOL. 91:

0939. NELSON, E.C; BURR, B. 1973. Biochemical genetics of higher plants. ANN. REV. PLANT PHYSIOL. 24: 493-518.

0940. NELSON, E.C; MAYBERRY, M.; REID, R.; JOHN, K.V. 1971. The decarboxylation of retinoic acid by horseradish peroxidase and an acetone­butanoJ-ether-dried liver powder. BIOCHEM. J. 121: 731-734.

0941. NELSON, E.C; SITZMAN, E.V.; KANG, CH.; MARGOLIASH, E. Preparation of cytochrome c peroxidase from baker's yeast. BlOCHEM. 83: 622-631.

1977. ANAL.

0942. NESSEL, A; MÂDER, M. 1977. Über die physiologische Bedeutung der Peroxydase-Isoenzym-Gruppen des Tabaksanhand einiger biochemischer Eigenschaften. 1. Trennung, Reinigung, chemische und physikalische Daten. Z. PLANZENPHYSIOL. 82: 235-246.

0943. NGO, T.T.; LENHOFF, H.M. 1980. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. ANAL. BIOCHEM. 105: 389-397.

0944. NICHOLLS, P.; MOCHAN, E. 1971. Formation of a stable 'active' complex between cytochrome c and yeast peroxidase. NATURE NEW BIOLOGY 230: 276-277.

0945. NIEDERMEYER, W. 1975. EtTect of cytochrome plasmalemma of the yeast cell (Candida utilis). 485-490.

c and peroxidase on the CYTOBIOLOGIE 10:

0946. NIEMTUR, S. 1979. Influence of zinc smelter activity in Scots pine needles of various families. 9: 142-147.

emissions on peroxidase EUR. J. FOR. PATH.

0947. NIKOLAEVA, M.G.; JANKELEVICH, B.B. 1976. The influence of phytohormones on the growth and peroxidase activity of apple embryos. FRUIT SCI. REPORTS 3: 1-4.

0948. NIKOLOV, S.; TSIKOV. D. 1978. Peroxidase and polyphenoloxidase activity in leaves of male sterile tobacco forms. GENET. PLANT BREED. Il: 255-263.

0949. NIR, 1.; SELIGMAN, AM. /971. Ultrastructural localization of oxidase activities in corn root tip ceIls with two osmiophilic reagents compared to diaminobenzidine. J. HISTOCHEM. CYTOCHEM. 19: 611-620.

Page 223: peroxidases ( peroksida )

212 PEROXIDASES 1970/1980

0950. NOBLE, R.W.; GlBSON, Q.H. 1970. Reaction offerrous horseradish peroxidase with hydrogen peroxide. J. BIOL. CHEM. 245: 2409-2413.

0951. NOUGAREDE, A. 1971. Observations nouvelles sur les lieux de peroxydation de la 3,3'-diaminobenzidine (DAB) dans les cals et les suspensions cellulaires d'un mutant chlorophyllien obtenu à partir de la souche sauvage de l'Acer pseudoplatanus L. C.R. ACAD. Sc. PARIS 273: 864-867.

0952. NOUGAREDE, A.; LESCURE, A.M. 1970. Détermination des lieux de peroxydation de la diaminobenzidine (DAB) dans les suspensions cellulaires issues du cambium de l'Acer pseudoplatanus. C.R. ACAD. Sc. PARIS 271: 968-971.

0953. NOVACKY, A.; WHEELER, H. 1970. Victorin induced changes ofperoxidase isoenzymes in oats. PHYTOPATHOL. 60: 467-472.

0954. NOVACKY, A.; WHEELER, H. 1971. Stimulation of isoperoxidases by actinomycin D. AMER. J. BOT. 58: 858-860.

0955. NOVAK, J.F.; GALSTON, A.W. 1971. Studies on auxin protector substances, IAA-oxidase and peroxidase in cotyledons of Pharbitis ni!. PLANT CELL PHYSIOL. 12: 931-940.

0956. NOVAK, J.F.; GALSTON, A.W. 1975. Control of in vivo protein synthesis and peroxidase formation by DNA-containing extracts of normal and crown gall tissues. PHYTOCHEM. 14: 49-55.

0957. NOVIKOFF, A.B.; BEARD, M.E.; ALBALA, A.; SCHEID, 8.; QUINTANA, N.; BIEMPICA, L. 1971. Localization of endogenous peroxidases in animal tissues. J. MICROSCOP. 12: 381-404.

0958. NOVIKOFF, A.B.; NOVIKOFF, P.M.; QUINTANA, N.; DAVIS, C. 1971. Diffusion artefacts in 3,3' -diaminobenzidine cytochemistry. J. HISTOCHEM. CYTOCHEM. 20: 745.

0959. NOVIKOFF, A.B.; NOVIKOFF, P.M.; MA, M.; SHIN, W.-Y.; QUINTANA, N. 1974. Cytochemical studies of secretory and other granules associated with the endoplasmic reticulum in rat thyroid epithelial cells. In 'ADVANCES IN CYTOPHARMACOLOGY'. Ceccarelli, 8.; Clementi, F.; Meldolesi, J. (Eds). Raven Press, New York, vol. 2, pp. 349-368.

0960. O'BRIEN, P.J.; BECHARA, E.l.H.; O'BRIEN, C.R.; DURAN, N.; CILENTO, G. 1978. Generation of bioelectronic energy by electron transfer : reduction of peroxidase compound 1and compound II by eosine. BIOCHEM. BIOPHYS. RES. COMM. 8I: 75-81.

0961. O'BRIEN, P.l.; RAHIMTULA, A.D. 1978. Peroxidase assay for cytochrome P-450. In 'METHODS IN ENZYMOLOGY'. Fleischer, S.; Packer, L. (Eds). Academie Press, New York, vol. 52, pp. 407-411.

0962. OCKERSE, R.; GUSTIN, M.K.; LAMBERT, N.J. 1975. IAA-oxidase in terminal pea buds: multiple molecular forms and response to gibberellic acid. PLANT PHYSIOL. 56: Suppl. 30.

Page 224: peroxidases ( peroksida )

213 REFERENCES

0963. OCKERSE, R.; MUMFORD, L.M. 1973. The regulation ofperoxidase activity by gibberellin and auxin in pea stem segments. CAN. J. BOT. 51: 2237-2242.

0964. -OCKERSE, R.; WABER, J. 1970. The promotion of indole-3-acetic acid oxidation in pea buds by gibberellic acid and treatment. PLANT PHYSIOL. 46: 821-824.

0965. ODAJIMA, T.; YAMAZAKl, I.S. 1970. Myeloperoxidase of the leukocyte of normal blood. 1. Reaction of myeloperoxidase with hydrogen peroxide. BIOCHEM. BIOPHYS. ACTA 206: 71-77.

0966. OGAWA, S.; SHIRO, Y.; MORISHIMA, 1. 1979. Calcium binding by horseradish peroxidase C and the heme environmental structure. BlOCHEM. BIOPHYS. RES. COMM. 90: 674-678.

0967. OHGUCHI, T.; ASADA, Y. 1974. Dehydrogenation polymerization products of p-hydroxycinnamyl alcohols by isoperoxidases obtained from downy mildew-infected roots of Japanese radish (Raphanus sativus). PHYSIOL. PLANT PATHOL. 5: 183-192.

0968. OHLSSON, P.I.; PAUL, K.G. 1973. Horseradish peroxidase with 2,4-modified haematins, including vinyl homologues. BIOCHIM. BIOPHYS. ACTA 315: 293-305.

0969. OHTAKl, S.; NAKAGAWA, H.; YAMAZAKl, 1. 1980. Reaction of detergent­solubilized thyroid peroxidase with hydrogen peroxide. FEBS LETT. 109: 71-74.

0970. OHKAWA, K.I.; ANTAVKLY, T.W.; TANAKA, S.; SUGAI, N. 1976. New techniques for cytochemicallocalization of exogenous peroxidase activity with 2,7-fluorenediamine and 2,5-fluorenediamine as hydrogen donors. ANN. HISTOCHIM. 21: 353-363.

0971. OKUN, M.R.; EDELSTEIN, L.M.; OR, N.; HAMADA, G.; DONNELLAN, B.; LEVER, W.F. 1970. Histochemical ditTerentiation of peroxidase­mediated from tyrosinase-mediated melanin formation in mammalian tissues. The biologie significance of peroxidase-mediated oxidation of tyrosine to melanin. HISTOCHEM. 23: 295.

0972. OKUNO, Y.; FUKUNAGA, T.; SPISUPALUCK, S.; FURAI, K. 1979. A modified PAP (peroxidase-anti-peroxidase) staining technique using sera from patients with dengue haemorrhagic fever (DHF) : 4 step PAP staining technique. BIKEN J. 22; 131-136.

0973. OLSEN, J.L. ; DAVIS, L. 1976. The oxidation of dithiothreitol by peroxidase and oxygen. BIOCHIM. BIOPHYS. ACTA 445: 324-329.

0974. OLSEN, L.F. 1978. The oscillating peroxidase-oxidase reaction in an open system. Analysis of the reaction mechanism. BIOCHEM. BIOPHYS. ACTA 527: 212-220.

0975. OLSEN, L.F.; DEGN, H. 1978. Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. BIOCHIM. BIOPHYS. ACTA 523: 321-334.

Page 225: peroxidases ( peroksida )

214 PEROXIDASES 1970/1980

0975a. OLSEN, L.F.; DEGN, H. 267: 177-178.

1977. Chaos in an enzyme reaction. NATURE

0976. OLSEN, R.L.; LYTTLE, C. 1979. The peroxidase activity of rat EUR. J. BIOCHEM. 101: 333-340.

uterus.

0976a. OLSON, AC. 1971. Secreted polysaccharides and proteins from Nicoliana labacum suspension cultures. In 'LES CULTURES DE TISSUS DE PLANTES'. Coll. intern. CNRS (Paris), vol. 193, pp. 411-420.

0977. OMRAN, R.G. 1980. Peroxidase levels and the activities of catalase, peroxidase and indoleacetic acid oxidase during and after chilling cucumber seedlings. PLANT PHYSIOL. 65: 407-408.

0978. ONG, H. T. 1978. Gel electrophoresis patterns of proteins and peroxidases of excised tomato cotyledons subjected to mannitol induced water stress. BIOL. PLANT. 20: 330-334.

0979. OOSTROM, H.; TREURNIET, F.E.; MENNES, AM. 1975. Cytochemical localization of peroxidase during the development of root nodules of Pisum salivum L. Z. PFLANZENPHYSIOL. 74: 451-463.

0980. ORTEGA, E.I.; BATES, L.S. 1980. Enzymatic, isoelectric and molecular weight characterization of water-soluble maize-pollen proteins. PHYSIOL. PLANT. 48: 371-374.

0981. OSBORNE, D.J.; RIDGE, 1.; SARGENT, J.A 1972. Ethylene and the growth of plant cells: role of peroxidase and hydroxyproline-rich proteins. In 'PLANT GROWTH SUBSTANCES 1970'. Carr, D.J. (Ed.). Springer Verlag, Berlin - Heidelberg - New York, pp. 534-542.

0982. 6ZEL, M.; KRÔBER, H.; PETZOLD, H. 1980. Peroxydaseaktivitiit im kompatiblen und inkompatiblen System bei Falschem Mehltau an Spinat. PHYTOPATHOL. Z. 97: 156-168.

0983. PADMA, A; REDDY., G.M. 1975. Genetics and peroxidase isoenzyme studies of certain dwarfs of 0. saliva. GENETICS 80: Suppl. 62.

0984. PAl, c.; ENDO, T.; OKA, H.1. 1973. Genic analysis for peroxidase isozymes and their organ specificity in Oryza perennis and O. saliva. CAN. J. GENET. CYTOL. 15: 845-853.

0985. PALMER, C.E.; BARKER, W.G. 1972. Changes in enzyme activity during elongation and tuberization of stolons of So/anum luberosum L. cultured in vilro. PLANT CELL PHYSIOL. 13: 681-687.

0986. PALMIANO, E.P.; JULIANO, B.O. 1973. Changes in the activity of sorne hydrolases, peroxidase, and catalase in the rice seed during germination. PLANT PHYSIOL. 52: 274-277.

0987. PALMIERI, S.; ODOARDI, M.; SORESSI, G.P.; SALAMINI, F. 1978. Indoleacetic acid oxidase activity in two high-peroxidase tomato mutants. PHYSIOL. PLANT. 42: 85-90.

Page 226: peroxidases ( peroksida )

REFERENCES 215

0988. PANTEL, S.; WEISZ, Determination of dehydrogenase and 351-360.

H. 1979. A u.v.-absorptiostat and its applications. catalase, ascorbate oxidase, peroxidase, sorbitol

lactate dehydrogenase. ANAL. CHIM. ACTA 109:

0989. PAPADIMITRIOU, J.M.; VAN DUIJN, P.; BREDEROO, P.; STREEFKERK, J.G. 1976. A new method for the cytochemical demonstration of peroxidase for light, nuorescence and electron microscopy. J. HISTOCHEM. CYTOCHEM. 24: 82-90.

0990. PARISH, R.W. 1971. The isolation of peroxisomes, mitochondria and chlorop1asts from leaves of spinach beet (Beta vU/Karis L. sp. vU/Karis). EUR. J. BIOCHEM. 22: 423-438.

0991. PARISH, R. W. 1972. The intracel1ular location of phenol oxidases, peroxidase and phosphatases in the Jeaves of spinach beet (Beta vU/Karis L. sp. vu/garis). EUR. J. BIOCHEM. 31: 446-455.

0992. PARISH, R.W. 1972. The intracel1u1ar location peroxidase in stems of spinach beet Z. PFLANZENPHYSIOL. 66: 176-188.

of phenol oxidases and (Beta vU/Karis L.).

0993. PARISH, R.W. 1975. The lysosome-concept in plants. 1. associated with subceIJular and wall fractions ofmaize root tips for vacuole development. PLANTA 123: 1-13.

Peroxidases implications

0994. PARISH, R.W. 1975. The lysosome-concept in plants. Il. hydrolases in maize root tips. PLANTA 123: 15-31.

Location of acid

0995. PARK, K.H.; FRICKER, A. 1977. der Peroxydase beim Erhitzen. 167-170.

Verhalten von Holo-, Apo- und Coenzym Z. LEBENSM. UNTERS. FORSCH. 164:

0996. PARTRIDGE, J.E.; KEEN, N.T. 1977. Soybean phytoalexins: synthesis are not regulated by activation of initial enzymes in biosynthesis. PHYTOPATHOL. 67: 50-55.

Rates of flavonoid

0997. PATEL, R.P.; OKUN, M.R.; EDELSTEIN, L.M.; EPSTEIN, D. 1971. Biochemical studies of the peroxidase-mediated oxidation of tyrosine to melanin: demonstration of the hydroxylation of tyrosine by plant and human peroxidases. BIOCHEM. J. 124: 439-442.

0998. PATRA, H.K.; MISHRA, D. 1979. polypheno10xidase activities during PLANT PHYSIOL. 63: 318-323.

Pyrophosphatase, peroxidase and leaf development and senescence.

0998a. PATRIARCA, P.; BASFORD, R.E.; CRAMER, R.; DRI, P.; ROSSI, F. 1974. Studies on the NADPH oxidizing activity in polymorphonucJear leucocytes. The mode of association with the granule membrane, the relationship to myeloperoxidase and the interference of hemoglobin with NADPH oxidase determination. BIOCHIM. BIOPHYS. ACTA 362: 221-232.

Page 227: peroxidases ( peroksida )

216 PEROXIDASES 1970/1980

0999. PAUL, A.K.; MUKHERJl, S. 1972. Change in respiration rate of rice seedlings as atTected by storage and viability and its possible relation with catalase and peroxidase activities during germination. BIOL. PLANT. 14: 414-419.

1000. PAUL, B.B.; SELVARAJ, R.J.; SBARRA, A.J. 1978. A sensitive assay method for peroxidases from various sources. J. RETICULOENDOTH. SOc. 23: 407-410.

1001. PAUL, B.B.; STRAUSS, R.R.; SELVARAJ, R.J.; SBARRA, A.J. 1973. Peroxidase mediated antimicrobial activities ofalveolar macrophage granules. SCIENCE 181: 849-850.

1002. PAUL, K.G.; OHLSSON, P.1. 1978. Equilibria between horseradish peroxidase and aromatic donors. ACTA CHEM. SCAND. B 32: 395-404.

1003. PAUL, K.G.; OHLSSON, P.I.; HENRIKSON, A. 1980. The isolation and some liganding properties of lactoperoxidase. FEBS LETT. 110: 200-204.

[004. PAUL, K.G.; OHLSSON, P.I.; WOLD, S. 1979. Formation of horseradish peroxidase compound 1with alkyl hydroperoxides. ACTA CHEM. SCAND. B 33: 747-754.

1005. PAUL, K.G.; ÔHRMAN, B. 1980. Inertness of horseradish peroxidase to 2,4-dichlorophenoxyacetic acid. PHYSIOL. PLANT. 49: 185·187.

1006. PAUL, K.G.; STIGBRAND, T. 1970. Four isoperoxidases from horseradish root. ACTA CHEM. SCAND, 24: 3607-3617.

1007. PAWAR, V.S.; GUPTA, V.K. 1975. Peroxidase isoenzymes in development of taU and dwarf cultivars of rice. ANN. BOT. 39: 777-783.

1009. PEDERSEN, M. 1976. A brominating and hydroxylating peroxidase from the red alga Cysloclonium purpureum. PHYSIOL. PLANT. 37: 6-11.

1010. PEIRCE, L.C.; BREWBAKER, J.L. 1973. Applications of isozyme analysis in horticultural science. HORTSCI. 8: 17-22.

1011. PElVE, Y.V.; IVANOVA, N.N.; DROBYSHEVA, N.1. 1972. Nitrate reducing activity of plant peroxidase. SOVIET PL. PHYSIOL. 19: 278-284.

1012. REIVE, Y.V.; IVANOVA, N.N.; OVCHARENKO, GA; SHIRINSKAYA, M.G. 1975. Possible participation of peroxidase in reduction of nitrates in plants. SOVIET PL. PHYSIOL. 22: 438-444.

1013. PElVE, Y.V.; ZHIZNEVSKAYA, G.Y.; BORODENKO, L.1. 1972. Cytoplasmic nonhemin iron proteins from nodules of legumes. FIZIOL. RAST. 19: 1053-1059.

1014. PELLINIEMI, L.J.; DYM, M.; KARNOVSKY, M.J. 1980. Peroxidase histochemistry using diaminobenzidine tetrahydrochloride stored as a frozen solution. J. HISTOCHEM. CYTOCHEM. 28: 191-192.

Page 228: peroxidases ( peroksida )

217 REFERENCES

1015. PENEL, C; DARIMONT, E.; GREPPIN, H.; GASPAR, T. 1976. Etfect of acetylcholine on growth and isoperoxidases of the lentil (Lens culinaris) root. BIOL. PLANT. 18: 293-298.

1016. PENEL, C; DARIMONT, E.; GREPPIN, H.; GASPAR, T. 1979. Rôle du calcium dans l'association de peroxydases à des membranes de racines de Lentille. CR. ACAD. SC PARIS 289: 529-532.

1017. PENEL,C; DARIMONT, E.; LEGRAND, G.; GASPAR, T.; GREPPIN, H. 1977. Influence des traitements subis par les extraits végétaux sur le nombre et l'activité des isoperoxydases. CR. ACAD. SC PARIS 284: 679-682.

1018. PENEL, C; GREPPIN, H. 1972. Evolution de l'activité auxines-oxydasique et peroxydasique lors de l'induction photopériodique et de la sexualisation de l'épinard. PLANT CELL PHYSIOL. 13: 151-156.

1019. PENEL, C; GREPPIN, H. 1973. Action des lumières rouge et infra-rouge sur l'activité peroxydasique des feuilles d'épinards avant et après l'induction florale. BER. SCHWEIZ. BOT. GES. 83: 253-261.

1020. PENEL, C; GREPPIN, H. 1974. Variation de la photostimulation de l'activité des peroxydases basiques chez l'épinard. PLANT SCI. LETT. 3: 75-80.

1021. PENEL, C; GREPPIN, H. 1975. Photocontrôle immédiat de l'activité peroxydasique et correlation entre les feuilles de l'épinard. SAUSSUREA 6: 287-291.

1022. PENEL, C; GREPPIN, H. 1975. The balance between acid and basic peroxidases and its photoperiodic control in spinach leaves. PLANT. SCI. LETT. 5: 41-48.

1023. PENEL, C; GREPPIN, H. 1979. peroxidase activity in extracts 46: 208-210.

Etfect of far red and red light on a pelletable from spinach leaves. PHYSIOL. PLANT.

1024. PENEL, C; GREPPIN, H. 1979. Etfect of calcium on subcellular distribution of peroxidases. PHYTOCHEM. 18: 29-33.

1025. PENEL, C; GREPPIN, H.; BOISARD. J. 1976. ln vitro photomodulation of a peroxidase activity through membrane-bound phytochrome. PLANT SCI. LETT. 6: 117-121.

1026. PENEL, C; KAREGE, F.; GREPPIN, H. niveau des feuilles de l'épinard. Xlème pp. 281-283.

1980. Corrélations RENCONTRE DE

rapides au MERIBEL.

1027. PENNEY, G.C; peroxidase, an breast cancer.

SCOTT, K.M.; HAWKINS. RA alternative to oestrogen receptors in BRIT. J. CANCER 41: 648-651.

1980. Endogenous the management of

1028. PENON, P.; CECCHINI, J.P.; MIASSOD, R.; RICARD. J.; TEISSERE. M.: PINNA, M.H. 1970. Peroxidase associated with lentil root ribosomes. PHYTOCHEM. 9: 73-86.

Page 229: peroxidases ( peroksida )

218 PEROXIDASES 1970/1980

1029. PEREIRA, J.R.; MENDEZ, J. 1976. Inhibition of peroxidase by algal humic and fui vic acids. BIOL. PLANT. 18: 179-182.

1029a. PFLUG, W. 1980. EfTect of humic acids on the activity of two peroxidases. Z. PFLANZENERNAHR. BODENK. 143: 432-440.

1030. PHAN, C. T. 1972. L'éthylène: métabolisme et activité métabolique. MONOGR. PHYSIOL. VEG., No. 8, Masson et Cie, Paris, J30 p.

1031. PHIPPS, J.; BUIS, R. 1972. Etude physiologique de quelques activités oxydasiques de la feuille de Tabac. 1. Corrélation entre paramètres physiques et biochimiques. PHYSIOL. VEG. 10: 37-50.

1032. PHELPS, c.; ANTONIN1, E.; BRUNORI, M. 1971. The binding of cyanide to ferroperoxidase. BIOCHEM. J. 122: 79-87.

1033. PHELPS, c.; ANTONINI, E.; GIACOMETTI, G.; BRUNORI, M. 1974. The kinetics of oxidation of ferroperoxidase by molecular oxygen. A model of a terminal oxidase. BIOCHEM. J. 141: 265-272.

1034. PHELPS, c.; FORLANI, L.; ANTONINI, E. 1971. The hydrogen ion equilibria of horseradish peroxidase and apoperoxidase. BIOCHEM. J. 124: 605-614.

1035. PIATT, J.; O'BRIEN, P.J. 1979. Singlet oxygen formation by a peroxidase, H:1 ~ and halide system. EUR. J. BIOCHEM. 93: 323-332.

1036. PICKERING, J.W.; POWELL, B.L.; WENDER, S.H.; SMITH, E.C. 1973. Ferulic acid: a substrate for two isoperoxidases from Nicotiana tabacum tissue cultures. PHYTOCHEM. 12: 2639-2643.

1037. PILET, P.E.; BLANC, B. 1971. Properties of an auxin-oxidising system from Lactobacillus bu/garicus. EXPERIENTIA 27: 35-36.

1038. PILET, P.E.; LAVANCHY, P.; SEVHONKlAN, S. 1970. Interactions between peroxidases, polyphenoloxidases and auxin-oxidases. PHYSIOL. PLANT. 23: 800-804.

1039. PILZ, H.; O'BRIEN, J.S.; HEIPERTZ, R. 1976. Human saliva peroxidase : microanalytical isoelectric fractionation and properties in normal persons and in cases with neuronal ceroid-lipo fucinosis. CLIN. BIOCHEM. 9: 85-88.

1040. PINCUS, S.H. 1980. Peroxidase-mediated iodination by guinea pig peritoneal exudate eosinophils. INFLAMMATION 4: 89-106.

1041. PINGEL, U. 1976. The influence of phenolic promotors and inhibitors of IAA-oxidase activityon the induction of adventitious roots in Tradescantia a/bif/ora. Z. PFLANZENPHYSJOL. 79: 109-120.

1042. PINO, R.M.; BAN KSTON, P.W. 1979. The development of the sinusoids of fetal rat liver: localization of endogenous peroxidase in fetal kupfTer cells. J. HISTOCHEM. CYTOCHEM. 27: 643-652.

Page 230: peroxidases ( peroksida )

REFERENCES 219

1043. PIRVU, U.; MARCU, Z.; BRAD. 1. polypfoid series of Triticum genus.

1971. REV.

Isoperoxidases in seeds of the ROUM. BlOCH/M. 8: 239-250.

1043a. POËSSEL, J.L.; MARTINEZ, J.; MACHEIX, J.1.; JONARD, R. 1980. Variations saisonnières de l'aptitude au greffage in vitro d'apex de Pêcher

. (Prunus persica, Batsch). Relations avec les teneurs en composés phénoliques endogènes et les activités peroxydasique et polyphénoloxydasique. PHYS/OL. VEG. 18: 665-675.

1044. POLITYCKA, 8.; MLODZIANOWSKI, F.; WOZNY, A. 1979. Cytochemical localization of peroxidase activity in early developmental stages of the moss CeralOdon purpureus. Light microscopie observations. ACTA SOc. BOT. POL. 48: 171-177.

1045. POOVAIAH, abscission 263-267.

B.W.; RASMUSSEN, H.P. 1973. Peroxidase actlvlty in the zone of bean leaves during abscission. PLANT PHYS/OL. 52:

1046. POOVAIAH, B.W.; RASMUSSEN, H.P.; BUKOVAC, M.J. 1973. Histochemical localization of enzymes in the abscission zones of maturing sour and sweet cherry fruit. J. AMER. SOc. HORT. SCI. 98: 16-18.

1047. POOVAIAH, B.w.; VEST, G.; RASMUSSEN, H.P. 1972. Peroxidase activity in onion bulbs of long and short dormancy. HORTSCI. 7: 553-554.

1048. POOVAIAH, B.W.; WIEVE, H.H. 1971. Effects ofgaseous hydrogen fluoride on oxidative enzymes of Pelargonium zonale Jeaves. PHYTOPATHOL. 6/: 1277-1279.

1049. PORTSMOUTH, D.; BEAL, E.A. hemin. EUR. J. BIOCHEM.

1971. The peroxidase activity of deutero­19: 479-487.

1050. POTAPOV, N.G.; KOSULlNA, L.G.; MONAKHOVA, O.F. 1973. Characteristics of auxin catabolism in cells of growth zones of the root in lupine. SOVIET PL. PHYSIOL. 20: 968-974.

1051. POULOS, T.L.; KRAUT, J. 1980. The stereochemistry catalysis. J. BIOL. CHEM. 255: 8199-8206.

of peroxidase

1052. POUX, N. 1972. Localisation d'activités enzymatiques dans le méristème radiculaire de Cucumis salivus L. IV. Reactions avec la diaminobenzidine, mise en évidence de peroxysomes. J. M/CROSC. 14: 183-218.

1053. POUX, N. 1972. Observations sur les activités peroxydasiques liées aux peroxysomes foliaires du Daclylis glomerala L. (Graminées). C.R. ACAD. Sc. PARIS 274: 2647-2650.

1054. POWELL, B.L.; PICKERING, J.W.; WENDER, S.H.; SMITH, E.C. 1975. Isoperoxidases from tobacco tissue cultures. PHYTOCHEM. 14: 1715-1717.

1055. PRZYBYLSKA, J.; ZIMNIAK-PRZYBYLSKA, Z.; DABROWSKA, T. 1972. Isoenzyme patterns in several cultivated varieties of barJey (Hordeum vulgare L.). GENETICA POL. 14: 61-67.

Page 231: peroxidases ( peroksida )

220 PEROXIDASES 1970/1980

1056. PSENAKOVA, T.; KOLEK, J. 1972. Enzymatic degradation of indolyl-3­acetic acid within the maize (Zea mays L.) root. BIOCHEM. PHYSIOL. PFLANZ. 163: 536-544.

1057. PUGET, K; MICHELSON, A.M.; AVRAMEAS, S. 1977. Light emission techniques for the microestimation of levels of femtogram peroxidase. ANAL. BIOCHEM. 79: 447-456.

1058. PUGIN, A.; DU BOUCHET, J.; GRISON, R.; MOREAU, M. 1974. Effet de l'extrait de différents filtrats de culture de Phialophora cinerescens van Beyma sur l'activité peroxydasique de la racine du Lens. C.R. ACAD. Sc. PARIS 278: 739-742.

1059. PUPPO, A.; RIGAUD, J.; JOB, D.; RICARD, J.; ZEBA, B. 1980. Peroxidase content of soybean root nodules. BIOCHIM. BIOPHYS. ACTA 614: 303-312.

1060. PUROHIT, S.D.; RAMAWAT, K.G.; ARYA, H.C. 1979. Phenolics, peroxidase and phenolase as related to gall formation in sorne arid zone plants. CURR. SCI. 48: 714-715.

1060a. PUROHIT, S.D.; RAMAWAT, K.G.; ARYA, H.C. sorne oxidative enzymes in rust infected leaves INDIAN PHYTOPATHOL. 32: 255-259.

1979. Polyphenols and of Cyperus rotundus.

1060b. PUROVIT, S.D.; RAMAWAT, KG.; ARYA, H.C. 1980. Metabolic characteristic at enzymatic levels of Achyrantes leaves infected with white rust. INDIAN J. EXP. BIOL. 18: 98-99.

1061. PUTNEY, J.W.; VAN DE WALLE, C.M.; LESLlE, B.A. 1978. Stimulus­secretion coupling in the rat lacrimal gland. AMER. J. PHYSIOL. 235: C 188 - C 198.

1062. QUAIL, P.; BROWNING, A. 1977. Failure of lactoperoxidase to specifically the plasma membrane of Cucurbita tissue segments. PHYSIOL. 59: 759-766.

iodinate PLANT

1063. QUOIRIN, M.; BOXUS, P.; GASPAR, isoperoxidases of stem tip cuttings from VEG. 12: 165-174.

T. 1974. Root initiation and mature Prunus plants. PHYSIOL.

1064. RAA, J. 197 I. Indole-3-acetic acid levels and the role of indole-3-acetic acid oxidase in the normal root and club root of cabbage. PHYSIOL. PLANT. 25: 130-134.

1065. RAA, J. 1973. Cytochemical localization PHYSIOL. PLANT. 28: 132-133.

of peroxidase in plant cells.

1066. RAA, J. 1973. Properties of the ribosome-bound peroxidase/IAA-oxidase of cabbage roots. PHYSIOL. PLANT. 29: 247-249.

Page 232: peroxidases ( peroksida )

REFERENCES 221

1067. RAA, J.; ROBERTSON, 8.; SOLHEIM, B.; TRONSMO, A. 1976. Cell surface biochemistry related to specificity of pathogenesis and virulence of microorganisms. ln Solheim, B.; Raa, J. (Eds). Universitet Forlaget, Tromso - Oslo - Bergen, pp. 31-70.

1068. RACKIS, J.J.; HONIG, D.H.; SESSA, D.J.; MOSER, H.L.A. 1972. Lipoxygenase and peroxidase activities of soybeans as related to the Ilavor profile during maturation. CEREAL CHEM. 49: 586-597.

1068a. RADûLA, B.J.; DELINCEE, B. 1971. Ultraviolet scanning of proteins on ordinary glass plates in thin-layer isoelectric focusing. J. CHROMATOGR. 61: 365-369.

1069. RALSTON, J.; DUNFORD, H.B. 1978. Horseradish peroxidase. pH dependence of the oxidation of L(-)-tyrosine by compound I. BIOCHEM. 56: 1115-1119.

XXXII. CAN. J.

1070. RAM, c.; BALASIMHA, D.; TEWARI, M.N. 1975. Studies on peroxidase activity in Phaseolus radiatus L. seedlings and its relationship to sulfhydryl level. PLANT BIOCHEM. J. 2: 61-64.

1071. RAM, c.; BALASIMHA, D.; TEWARI, M.N. 1976. Effect of gibberellic acid and auxins on growth, sulfhydryl content and peroxidase activity in Phaseolus radiatus L. seedlings. PLANT BIOCHEM. J. 3: 128-133.

1072. RAM. c.; BALASIMHA, D.; TEWARI, M.N. 1977. Effect of morphactin on peroxidase activity in relation to growth and sorne metabolic parameters. INDIAN J. EXP. BIOL. 15: 398-400.

1073. RAMAIAH, P.K; DURZAN, D.J.; MIA, A.J. 1971. Amino acids, soluble proteins, and isoenzyme patterns of peroxidase during the germination of jack pine. CAN. J. BOT. 49: 2151-2162.

1073a. RAMAWAT, KG.; PUROHIT, S.D.; ARYA, H.C. oxidising enzymes and phenolics in Cordia gall. 4: 38-41.

1979. Altered state of TRANS. ISDT UCDS

1073b. RAMAWAT, KG.; PUROHIT, S.D.; ARYA, H.C. 1980. Phenolics and oxidative enzymes in normal and gall tissues of Gisekia. SCIENCE AND CULTURE 46: 111-112.

1074. RANADIVE, A.S.; HAARD, N.F. 1972. Peroxidase localization and lignin formation in developing pear fruit. J. FOOD SCI. 37: 381-383.

1075. RAO, V.R.; METHA, S.L.; JOSHI, M.G. 1976. Peroxidase and amylase activity in developing grains of triticale, wheat and rye. PHYTOCHEM. 15: 893-895.

1075a. RAPPAPORT, L. 1980. Plant growth hormones: BOT. GAZ. 141: 125-130.

internai control points.

1076. RATHMELL, W.G.; BENDALL. oxidation of a chaIcone and BIOCHEM. J. 127: 125-132.

D.S. 1972. its possible

The peroxidase-catalysed physiological significance.

Page 233: peroxidases ( peroksida )

222 PEROXIDASES 1970/1980

1077. RATHMELL, W.G.; SEQUEIRA, L. 1974. the intercellular spaces of tobacco leaves.

Soluble peroxidase in lluid from PLANT PHYSIOL. 53: 317-318.

1078. RATHMELL, W.G.; SEQUEIRA, L. 1975. Induced resistance in tobacco leaves. The role of inhibitors of bacterial growth in the intercel!ular lluid. PHYSIOL. PLANT PATHOL. 5: 65-73.

1078a. RAUF, A. 1980. development. 6. 7: 173-177.

Comparative growth and biochemical studies on seed Peroxidase and IAA-oxidase. PLANT BIOCHEM. J.

1079. RAUTELA, G.S.; PAYNE, M.G. 1970. The relationship of peroxidase and ortho-diphenol oxidase to resistance of sugar beets to Cercospora leaf spot. PHYTOPATHOL. 60: 238-245.

1080. RAWITCH, A.B.; TAUROG, A.; CHERNOFF, S.B.; DORRIS, M.L. 1979. Hog thyroid peroxidase. Physical, chemical and catalytic properties of the highly purified enzyme. ARCH. BIOCHEM. BIOPHYS. 194: 244-257.

1080a. RAY, K.; BISWAS, B.B. 1980. Possible origin of multiple IAA-oxidase and peroxidase activities in genninating Avena. INDIAN J. EXP. BIOL. 18: 1474-1477.

1081. REDDY, M.N.; GARBER, E.D. 1971. Genetic study of variant enzymes. 111. Comparative electrophoretic study of esterases and peroxidases for species, hybrids, and amphiploids in the genus Nicoliana. BOT. GAZ. 132: 158-166.

1082. REDDY, M.N.; STAHMANN, MA 1972. Multiple molecular fonns of enzymes in peas infected with Fusarium oxysporum f. sp. pisi Rece 1. PHYTOPHATHOL. Z. 74: 55-68.

1083. REDDY, M.N.; STAHMANN, M.A. 1973. A comparison ofisozyme patterns of crown gall and bacteria free gal! tissue cultures with noninfected stems and noninfected tissue cultures of sunllower. PHYTOPATHOL. Z. 78: 301-313.

1084. REGARD, E.; MAUCHAMP, J. 1973. Activité peroxydasique dans la glande thyroïde de xénope au cours du développement larvaire: corrélations avec l'organification de l'iodure et contrôle thyréotrope. J. MICROSC. 18: 29 J -306.

1085. REIGH, D.L; SMITH, E.C. 1977. Elfect of indole-3-acetic acid on kinetics of horseradish peroxidase catalyzed scopoletin oxidation. EXPERIENTIA 33: 1451-1453.

1086. REIGH, D.L.; STUART, M.; FLOYD, R.A. N-hydroxy-2-acetylaminofluorene by EXPERIENTIA 34: 107-108.

1978. Activation of carcinogen rat mammary peroxidase.

1087. REIGH, D.L.; WENDER, S.H.; SMITH, E.C. 1973. Scopoletin : a substrate for an isoperoxidase from Nic(}liana lahacum tissue culture W-38. PHYTOCHEM. 12: 1265-1268.

Page 234: peroxidases ( peroksida )

REFERENCES 223

1088. REIGH, D.L.; WENDER, S.H.; SMITH, E.C. 1975. Scopoletin: kinetic nature of isoperoxidase A3 catalyzed oxidation and its possible relation to the physiological action ofthis naturally-occuring growth effector. PHYSIOL. PLANT. 34: 44-46.

/089. REl MANN, L.; SCHONBAUM, G.R. 1978. Purification of plant peroxidases by affinity chromatography. In 'METHODS IN ENZYMOLOGY'. Fleischer, S.; Packer, L. (Eds). Academie Press, New York, No. 52, pp. 514-520.

1090. REINER, A.; GAMLlN, horseradish peroxidase 28: 187-188.

P. 1980. On histochemistry.

noncarcinogenic chromogens for J. HISTOCHEM. CYTOCHEM.

1091. RENNEBERG, R.; SCHELLER, F.; MOHR, P. 1978. of cytochrome P-45c\'M as compared with peroxidase. 67: 141-142.

Peroxidatic activity STUDIA BIOPHYS.

1092. RENNEBERG, R.; SCHELLER, F.; RUCKPAUL, K.; PIRRWITZ, J.; MOHR, P. 1978. NADPH and ~ ~ -dependent reactions of cytochrome P-45C\.M compared with peroxidase catalysis. FEBS LETT. 96: 349-353.

1093. RENNKE, H.G.; VENKATACHALAM, MA 1979. Chemical modification of horseradish peroxidase. Preparation and characterization of tracer enzymes with different isoelectric points. J. HISTOCHEM. CYTOCHEM. 27: 1352-1353.

1094. RETIG, N. 1974. Changes in peroxidase and polyphenoloxidase associated with natural and induced resistance of tomato to Fusarium will. PHYSIOL. PLANT PATHOL. 4: 145-150.

1095. RETIG, N.; RUDICH, J. 1972. Peroxidase and IAA oxidase activity and isoenzyme patterns in cucumber plants, as affected by sex expression and ethephon. PHYSIOL. PLANT. 27: 156-160.

1096. REUVENI, R.; PERL, M. 1975. In vitro interaction between indole-3-acetic acid and peroxidase. ISRAEL J. BOT. 24: 57-58.

1097. REUVENI, R.; PERL. M. 1979. Peroxidase isoenzyme specificity in abscission zone fragments of pepper leaves affected by powdery mildew or stress condition. PHYTOPATHOL. Z. 96: 208-214.

1098. REYNOLDS, T. 1979. An analysis of enzyme multiple relation to cytology and morphology in Gibasis schiedeana. KEW BULL. 34: 83-111.

forrn vanatlon in 1. Peroxidases.

1099. RHODES, J.M.; WOOLTORTON, L.S.c. 1978. The biosynthesis of phenolic compounds in wounded plant storage tissues. In 'BIOCHEMISTRY OF WOUNDED PLANT TISSUES'. Kahl, G. (Ed.). W. de Gruyter & Co., Berlin - New York, pp. 243-286.

1101. RICARD, J.; JOB, D. 1974. degradation by peroxidases. spectroscopie study. EUR. J.

Reaction mechanisms of indole-3-acetate A stopped flow and low-temperature

BIOCHEM. 44: 359-374.

Page 235: peroxidases ( peroksida )

224 PEROXIDASES 1970/1980

1102. RICARD, J.; MAZZA, G.; WILLIAMS, R.J.P. 1972. Oxidation-reduction potentials and ionization states of two tumip peroxidases. EUR. J. BIOCHEM. 28: 566-578.

1102a. RICARD, J.: PENON, P. 1974. La croissance des végétaux. SAIS-JE, No. 898, Presses Universitaires de France, Paris.

Ed. QUE

1103. RICH, P.R.; BOVERIS, A.; BONNER, W.D.; MOORE, A.L. 1976. Hydrogen peroxide generation by the altemate oxidase of higher plants. BIOCHEM. BIOPHYS. RES. COMM. 71: 695-703.

1104. RICH, P.R.; WIEGAND, N.K.; BLUM, H.; MOORE, A.L.; BONNER, W.D. 1978. Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids. BIOCHIM. BIOPHYS. ACTA 525: 325-337.

1105. RICK, e.M.; FOBES, J.F. polymorphism, geographic 443-457.

1975. Allozymes of Galapagos tomatoes, distribution and affinities. EVOLUTION 29:

1106. RICK, e.M.; FOBES, J.F. 1976. Peroxidase complex with concomitant anodal and cathodal variation in red-fruited tomato species. PROe. NAT. ACAD. SCI. USA 73: 900-904.

1107. RICK, e.M.; ZOBEL, R.W.; FOBES, J.F. 1974. Four peroxidase loci in red­fruited tomato species: genetics and geographical distribution. PROe. NAT. ACAD. SCI. USA 71: 835-839.

1108. RIDGE, 1.; OSBORNE, D.J. ethylene in Pisum sativum: J. EXP. BOT. 21: 720-734.

1970. Regulation of peroxidase activity by requirement for protein and RNA synthesis.

1109. RIDGE, 1.; OSBORNE, D.J. walls of Pisum sativum: 843-856.

1970. Hydroxyproline and peroxidases in cell regulation by ethylene. J. EXP. BOT. 21:

1110. RIDGE, I.; OSBORNE, D.J. 1971. Role of peroxidase when hydroxyproline­rich protein in plant cell wall is increased by ethylene. NATURE (NEW BIOL.) 229: 205-208.

1111. RIETVELD, W.J.; OSSELTON, J.e.; VERWOERD, N.; VANINGEN, E.M. 1979. Effect of monosodium glutamate on the endogenous peroxidase activity in the hypothalamic arcuate nucleus in rats. IRCS MED. SCI. BIOCHEM. 7: 573-574.

J J 13. RITZERT, R.W.; TURIN, B.A. 1970. Fonnation of peroxidases in response to indole-3-acetic acid in cultured tobacco cells. PHYTOCHEM. 9: 1701-1705.

1114. RIVA, A.; PUXEDDU, P.; DEL FIACCO, M.; TESTA-RIVA, F. 1978. Ultrastructural localization of endogenous peroxidase in human parotid and submandibular glands. J. ANAT. 127: 181-191.

Page 236: peroxidases ( peroksida )

REFERENCES 225

1115. RIZVI, S.J.H.; JAISMAL, V.; MATHUR, S.N. 1979. Nitrate reductase and peroxidase activities in leaves of Vigna mumbo (L.) hepper as affected by sodium chloride. NAT. ACAD. SCI. LETT. 2: 171-173.

1116. ROBBINS, D.; FAHIMI, H.D.; COTRAN, R.S. 1971. Fine structural cytochemical localization of peroxidase activity in rat peritoneal ceIls, mononuclear ceIls, eosinophils, and mast cells. J. HISTOCHEM. CYTOCHEM. 19: 571-582.

1117. ROBERTSON, TA; ARCHER, J.M.; PAPADIMITRIOU, J.M.; WALTERS, . M.N.1. 1971. Transport ofhorseradish peroxidase in the murine placenta. J. PATH. 103: 141-147.

1117a. ROBINS, R.J.; JUNIPER, B.E. 1980. The secretory cycle of Dionaea muscipula Ellis. IV. The enzymology of the secretion. NEW PHYTOL. 86: 401-412.

1118. ROELS, F.; WISSE, E.; DE PREST, B.; VAN DER MEULEN, J. 1975. Cytochemical discrimination between catalases and peroxidases using diaminobenzidine. HISTOCHEM. 14: 281-312.

1119. ROGAN, E.G.; KATOMSKI, PA; ROTH, R.W.; CAVALIERI, E.L. 1979. Horseradish peroxidase/hydrogen peroxide-catalyzed binding of aromatic hydrocarbons to DNA. J. BIOL. CHEM. 254: 7055-7059.

1120. ROMAN, R.; DUNFORD, RB. 1972. pH dependence of the oxidation of iodide by compound 1ofhorseradish peroxidase. BIOCHEM. Il: 2076-2082.

1121. ROMAN, R.; DUNFORD, H.B. 1973. Studies on horseradish peroxidase. XII. A kinetic study of the oxidation of sulfite and nitrite by compound 1 and Il. CAN. J. BIOCHEM. 51: 588-596.

1122. ROMAN, R.; DUNFORD, H.B.; EVETT, M. 1971. Studies on horseradish peroxidase. VII. A kinetic study of the oxidation of iodide by compound II. CAN. J. BIOCHEM. 49: 3059-3063.

1122a. ROSEN, H.; KLEBANOFF, S.J. 1977. Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system. J. BIOL. CHEM. 252: 4803-4810.

1123. ROTTLIO, G.; FALCIONI, G.; FIORETTI, E.; BRUNORI, M. 1975. Decay of oxyperoxidase and oxygen radicals : a possible role for myeloperoxidase. BIOCHEM. J. 145: 405-407.

1124. ROUGE, P. 1971. Evolution des protéines solubles et de quelques activités enzymatiques chez le Bryophyllum dai~remonlanillm berger. au cours de l'endurcissement progressif au froid. C.R. ACAD. Sc. PARIS 272: 2170-2173.

1124a. ROUSSAUX, J.; DAUSSANT, J.; MANIGAULT, P. 1971. Mise en évidence de certaines peroxydases dans les tissus sains et tumoraux de Da/lll"a stramonium L. In 'LES CULTURES DE TISSUS DE PLANTES'. Coll. Intern. CNRS (Paris) 193: 437-442.

Page 237: peroxidases ( peroksida )

226 PEROXIDASES 1970/1980

1125. RUBERY, P.H. from crown compounds.

1972. Studies on indoleacetic acid oxidation by liquid medium gall tissue culture cells: the role of malie acid and related

BIOCHIM. BIOPHYS. ACTA 261: 21-34.

1126. RUBIN, B.A.; AKSENOVA, VA; KOZHANOVA, O.N. 1973. New formation of peroxidase protein in tissues of cabbage under the effect of infection with Botrytis cinerea. DOKL. AKAD. NAUK. 210: 485-488.

1127. RUBIN, B.A.; LADYGINA, M.E.; EDREVA, A.M. 1973. Characteristics of peroxidase isoenzyme composition during physiological and infectious diseases of tobacco. SOVIET PL. PHYSIOL. 20: 1079-1083.

1128. RUBIN, B.A.; VORONKOV, L.A.; ZHIVOPISTSEVA, l.V. specificities of catalytic properties of the peroxidase of BIOKHIM. 35: 1480-1483.

1970. Sorne ch loroplasts.

1129. RUCKER, W.; MARKOTAI, J. 1978. Gewebewachstum und isoelectrische Peroxidasemuster bei Tabakgewebekulturen unter dem Einfl uss von Cytokinin, verschiedene Phenylcarbonsiiuren und aromatischen Aminosiiuren. PHYTON. ANN. REl. BOT. 19: 1-11.

1130. RUCKER, W.; MARKOTAI, J. 1977. Growth and isoelectric patterns of peroxidase in tobacco tissue cultures under the influence of growth regulator systems. ln 'ELECTROFOCUSING AND ISOTACHOPHORESIS'. W. de Gruyter & Co., Berlin - New York, pp. 213-220.

1131. RUCKER, W.; RADOLA, B.J. 1971. Isoelectric patterns of peroxidase isoenzymes from tobacco tissue cultures. PLANTA 99: 192-198.

1132. RULE, A.J.; SCHAUMBERG-LEVER, G.; PATEL, R.P.; SCHMIDT-ULRICH, B.; OKUN, M.R. 1976. Purification of peroxidase by isoelectric focusing. Use of uJtrastructural localization of immunoglobulins. IMMUNOCHEM. 13: 819-821.

1133. RUNKOVA, L.V.; GASPAR, T. 1976. isoperoxydases par l'acide gibbérellique et C.R. ACAD. Sc. PARIS 282: 545-548.

Modification du spectre des les réducteurs de croissance.

1134. RUNKOVA, L.V.; US, E.K.; TOMASZEWSKl, M.; ANTOSZEWSKl, R. 1972. Function of phenolic substances in the degradation system of indole­3-acetic acid in strawberries. BIOL. PLANT. 14: 71-81.

1J35. R YCHTER, A.; LEW AK, S. PHYTOCHEM. 10: 2609-2614.

1971. Apple embryo peroxidases.

1136. SACHER, J.A. 1973. Senescence and postharvest physiology. PLANT PHYSIOL. 24: 197-224.

ANN. REV.

1137. SACHER, J.A.; TOWER, G.J.N.; DAVIES, D.D. 1972. Effect of light and ageing on enzymes, particularly phenylalanine ammonialyase, in discs of storage tissue. PHYTOCHEM. Il: 2383-2391.

Page 238: peroxidases ( peroksida )

REFERENCES 227

1138. SAE, S.W.; KADOUM, A.M.; CUNNINGHAM, B.A. and sorne properties of SorKhum grain estcrasc PHYTOCHEM. 10: 1-8.

1971. and

Purification pcroxidase.

1139. SAFONOVA, M.; DE1AEGERE, R.; SA FONOV, V. 1970. Specificity of protein components and isoenzyme spectra in functionally different organs of plants. ANN. PHYSIOL. VEG. UNIV. BRUXELLES 15: 31-50.

1140. SAGIV, 1.; BAR-AKIVA, A. 1972. peroxidase activity in iron and EXPERIENTIA 28: 645-646.

Visual demonstration of differences in manganese deficient citrus Jeaves.

1141. SAHULKA, 1. 1970. Electrophoretic study on peroxidase, indo1eacetic acid oxidase, and o-diphenol oxidase fractions in extracts from different growth zones of Vicia faba L. roots. BIOL. PLANT. 12: 191-198.

1142. SADURAI, N.; SHIBATA, K.; KAMISAKA, S. 1975. Stimulation of auxin­induced elongation of cucumber hypocotyl sections by dihydroconiferyl alcohol. Dihydroconiferyl alcohol inhibits indole-3-acetic acid degradation in vivo and in vitro. PLANT CELL PHYSIOL. 16: 845-856.

1143. SAMSHERY, R.; BANERll, D. 1979. Sorne biochemical changes accompanying loss of seed viability. PLANT BIOCHEM. 1. 6: 54-63.

1143a. SANDERS, G.T.B.; PASMAN, A.l.; HOEK, F.l. 1980. Determination of uric acid with uricase and peroxidase. CLIN. CHIM. ACTA 101: 293-298.

1144. SANIEWSKI, M.; PUCHALSKI, 1. 1975. Effect of mechanical wounding of hyacinth bulbs on isoenzyme patterns and activities of peroxidase, phenolase and catalase. BULL. ACAD. POL. SCI. SER. B. 23: 725-730.

1145. SANIEWSKI, M.; PUCHALSKI, tulip cultivars and their parrot

l. 1977. muta~ts.

Isoperoxidase spectra of single EXPERIENTIA 33: 869-700.

1146. SANO, H. 1970. Studies on peroxidase isolated from etiolated Alaska pea seedlings. 1. General properties. PLANT CELL PHYSIOL. 11: 747-756.

1147. SANO, H. 1970. Transformation of peroxidase into a photosensitive compound in the presence of indole-3-acetic acid. SCI. REP. TOHOKU UNIV. 35: 101-116.

1148. SANO, H. 1971. Studies on peroxidase isolated from etiolated Alaska pea seedlings. III. Effect of quercetin on the oxidation of indole-3-acetic acid. BIOCHIM. BIOPHYS. ACTA 227: 565-575.

1149. SANO, H.; NAGAO, M. 1970. Change in the indole-3-acetic acid oxidase level in leaves of Begonia evansiana cuttings at the time of aerial tuber formation under short-day conditions. PLANT CELL PHYSIOL. Il: 849-856.

1150. SANTIMONE, M. 1975. Kinetic evidence of horseradish peroxidase oxidation by compound 1. BIOCHIMIE 57: 265-270.

1

Page 239: peroxidases ( peroksida )

228 PEROXIDASES 1970/1980

1151. SANTIMONE, M. 1975. The mechanism of ferrocytochrome c oxidation by a horseradish isoperoxidase. BIOCHIMIE 57: 91-96.

1152. SANTIMONE, M. 1975. peroxidase. CAN. J.

Titration study of guaiacol oxidation by horseradish BIOCHEM. 53: 649-657.

1153. SARDHAMBAL, R.V.; SINGH, S.P.; SHIV PRAKASH; NAIK, M.S. 1978. Effect of bacterial blight on the activities of nitrate reductase and peroxidase in rice plants. INDIAN J. BIOCHEM. BIOPHYS. 15: 105-107.

1154. SARGENT, JA; ATACK, AV.; OSBORNE, D.J. 1973. Orientation of cell growth in the etiolated pea stem. PLANTA 109: 185-192.

1155. SARGENT, JA; ATACK, AV.; OSBORNE, D.J. 1974. control of growth in epiderrnal cells of Pisum sativum to auxin. PLANTA 115: 213-225.

Auxin and ethylene a biphasic response

1156. SA WADA, y.; IYANAGI, T.; YAMAZAKl, I. 1975. Relation between redox potentials and rate constants in reactions coupied with the system oxygen-superoxide. BIOCHEM. 14: 3761-3764.

1157. SAWHNEY, S.S.; SAWHNEY, N.; KUMAR, S.; NANDA, K.K. 1979. Enzyme activity and electrophoretic pattern of isoenzymes of amylase catalase and peroxidase in photo- and gibberellin-induced plants of Impatiens balsamina L. var. Rose. NEW PHYTOL. 82: 41-47.

1158. SCANDALIOS, J.G. 1974. Isozymes in development and differentiation. ANN. REV. PLANT PHYSIOL. 25: 225-258.

1159. SCANDALIOS, J.S.; SORENSON, J.c. 1976. Isozymes in plant tissue culture. ln 'APPLIED AND FUNDAMENTAL ASPECTS OF PLANT CELL, TISSUE AND ORGAN CULTURE'. Reinert, J.; Bajaj, Y.P.S. (Eds). Springer Verlag, Berlin, pp. 719-730.

1160. SCHAEFER, H. 1971. Eine einfache Methode zum Saulenchromatographischen Nachweis der Peroxydase. 1. CHROMATOGR. 56: 158-159.

1161. SCHAFER, P.; WENDER, S.H.; SMITH, E.C. 1971. Effect of scopoletin on two anodic isoperoxidases isolated from tobacco tissue culture W-38. PLANT PHYSIOL. 48: 232-233.

1162. SCHE.ITER, A; LANIR, A.; EPSTEIN, N. 1976. Binding of hydrogen donors to horseradish peroxidase: a spectroscopie study. ARCH. BIOCHEM. BIOPHYS. 174: 36-44.

1163. SCHELL, H.D.; TURCU, A.; MATEESCU, MA 1973. Preparation and properties of peroxidase covalently coupled to CNBr-activated agarose. REV. ROUM. BIOCHIM. 10: 233-238.

1164. SCHERTZ, K.F.; SUMPTER, NA; SARKlSSIAN, M.V.; HART, G.E. 1971. Peroxidase regulation by the 3-dwarf height locus in Sorghum. J. HERED. 62: 235-238.

Page 240: peroxidases ( peroksida )

REFERENCES 229

1165. SCHIPPER Jr., A.L. 1975. of aspen, infected with 440-445.

Changes in dehydrogenase and peroxidase activities Hypoxy/on mammatum. PHYTOPATHOL. 65:

1166. SCHMID, P.P.S.; FEUCHT, W. 1980. Tissue-specifie oxidation browning of polyphenols by peroxidase in cherry shoots. GARTENBAUWISSENSCHAFT. 45: 68-73.

1167. SCHMIDT, G.M.; BROSS, R.J.; BLUME, K.G.; BEUTLER, E. 1980. Demonstration of HLA antigens on humanskin fibroblasts by the peroxidase­antiperoxidase method. TRANSPLANTAT10N 29: 344-346.

1168. SCHMIDT, H. 1979. different effectors.

Phenol oxidase and peroxidase activity in presence of ACTA HISTOCHEM. 64: 194-205.

1169. SCHNEIDER, EA; WIGHTMAN, F. 1974. Metabolism of auxin in higher plants. ANN. REY. PLANT PHYSIOL. 25: 487-513.

1170. SCHNEIDER, J.; SZWEYKOWSKA, A. 1974. Changes in enzyme activities accompanying cytokinin-induced formation ofgametophore buds in Ceratodon purpureus. Z. PFLANZENPHYSIOL. 72: 95-106.

1172. SCHONBAUM, G.R. 1973. New complexes of peroxidases with hydromaxic acids, hydrazides and amides. J. BIOL. CHEM. 248: 502-5 Il.

1173. SCHONBAUM, G.R.; LO, S. 1972. Interaction of peroxidases with aromatic peracids and alkyl peroxides. J. BIOL. CHEM. 247: 3353-3360.

1174. SCHOPFER, P. 1972. Role of phytochrome in the control of enzyme activity in higher plants: photomodulation and photodetermination of enzyme synthesis. SYMP. BIOL. HUNG. 13: 115-126.

1174a. SCHOPFER, P. 1973. Modulation und Determination der Enzymbildung ais Regulationsprinzipien bei der phytochromabhiingigen Photomorphogenese. BER. DEUTSCH. BOT. GES. 86: 271-286.

1175. SCHOPFER, P. 1977. Phytochrome PLANT PHYSIOL. 28: 223-252.

control of enzymes. ANN. REY.

1176. SCHOPFER, P.; PLACHY, C. 1973. Die organspezifische Photodetermination der Entwicklung von Peroxydaseaktivitiit in Senfkeimling (Sinapsis a/ha L.) durch Phytochrom. 1. Kinetische Analyse. Z. NATURFORSCH. 28: 296-301.

1177. SCHREIBER, W. 1974. Action of horseradish peroxidase upon sorne l1avones. FEBS LETT. 41: 50-52.

1178. SCHREIBER, W. 1975. Degradation of 3-hydroxyl1avone by horseradish peroxidase. BIOCHEM. BIOPHYS. RES. COMM. 63: 509-514.

1178a. SCHULZ, H. 1980. Enzymatish-6kologische Untersuchungen an elmgen Bodenpl1anzen eines naturnahen Berg-Fichttenwaldes. Methodik Jer Probenahme. Probeaufbereitung und Enzymextraktion. FLORA 169: 135-149.

Page 241: peroxidases ( peroksida )

230 PEROXIDASES 1970/1980

11. 78b. SCHULZ, H. 1980. Enzymatisch-okologische Untersuchungen an einigen Bodenpflanzen eines naturnahen Berg-Fichten-waldes. Peroxydaseaktivitatsanderungen ais Indikation der experimentellen StOrung von Oekosystemelementen. FLORA 170: 303-315.

1179. SCHWENZER-RODRIGUEZ, N.; HARTE, C. 1980. Proteingehalt und Aktivitat von Peroxydase und Katalase in verschiedenen Entwicklungsstadien der Blatter von Antirrhinum majus L., Sippe 50, und deren Mutanden ambigua und graminijà/ia. BIOL. ZBL. 99: 275-295.

1180. SEEVERS, P.M.; DALY, J.M. controlled at the Sr6 locus. 60: 1642-1647.

1970. Studies on wheat stem rust resistance II. Peroxidase activities. PHYTOPATHOL.

1181. SEEVERS, P.M.; DALY, J.M.; CATEDRAL, F.F. 1971. The role ofperoxidase isozymes in resistance to wheat stem rust disease. PLANT PHYSIOL. 48: 353-360.

1182. SEKHON, A.S.; COLOTELO, N. 1970. Effects of temperature on growth, proteins, peroxidases, protease, RNA, RNase, and HCN production of ageing cultures ofa low-temperature basidiomycete. CAN. J. BOT. 48: 1827-1837.

1183. SELIGMAN, A.M. 1971. Unreliability of ultrastructural demonstration of enzymes which depend upon hydrogen peroxide production from action on their substrates. J. HISTOCHEM. CYTOCHEM. 19: 809.

1184. SELIGMAN, A.M.; SHANNON Jr., W.A.; HOSHINO, Y.; PLAPINGER, R.E. 1973. Sorne important principles in 3,3 '-diaminobenzidine ultrastructural cytochemistry. J. HISTOCHEM. CYTOCHEM. 21: 756-758.

1184a. SENGUPTA, D.N.; SENGUPTA, 8.; SEN, S.P. 1980. Changes in protein patterns in the leaves of rice in relation to the initiation of the reproductive phase. Il. The dayneutral cultivar IR-8. PLANT BIOCHEM. J. 7: 151-158.

1185. SENGUPTA, T.; GHOSH, B.; SIRCAR, S.M. 1977. Effect ofgrowth substances on IAA oxidase-peroxidase activity during seed germination of rice (Oryza saliva L.). PLANT BIOCHEM. J. 4: 28-33.

1186. SEQUEIRA, L. 1973. Hormone metabolism in diseased plants. PLANT PHYSlOL. 24: 353-380.

ANN. REV.

1187. SEQUI, P.; MARCHESlNI, A.; CHERSI, A. 1970. in germinating wheat. FEBS SYMP. 18: 297-303.

Peroxidase isoenzymes

1187a. SEVIER, E.D.; SHANNON, L.M. 1977. Plant glycoprotein biosynthesis. Uridine diphosphate N-acetylglucosaminyl transferase from horseradish root. BIOCHlM. BlOPHYS. ACTA 497: 578-585.

Page 242: peroxidases ( peroksida )

REFERENCES 231

1188. SGARAGLl, G.; DELLACORTE, L.; PULlTI, R.; DESARLO, F.; FRANCALANCI, R.; GUARNA, A.; DOLARA, P.; KOMARYNSKY, M. 1980. Oxidation of 2-t-butyl-4-methoxyphenol (BHA) by horseradish and mammaJian peroxidase systems. BIOCHEM. PHARMACOL. 29: 763-770.

1189. SHANKARLINGAM, T.; SINGH, T.G.; RAO, S.S.; THIRUPATHAIAH, V. 1980. Peroxidase, phenoloxidase and total phenols in the spinach leaves infected with Fusarium equiseli. CURR. SCI. 49: 594-595.

1190. SHANNON, L.M.; URITANr, 1.; IMASEKI, H. 1971. De novo synthesis of peroxidase isozymes in sweet potato slices. PLANT PHYSIOL. 47: 493498.

1191. SHANNON, M.C; BALLAL, S.K.; HARRIS, electrophoresis of enzymes from nine species BOT. 60: 96-100.

J.w. 1973. of Polysporus.

Starch gel AMER. J.

1192. SHANNON, S. 1976. Comparative effects ôt' (2-chloroethyl) phosphonic acid and the mono-2-chloroethyl ester of the acid on growth, peroxidase activity, and sex expression of a monoecious cucumber. AMER. SOC. HORT. SCI. 101: 606-610.

1193. SHARMA, R.; BISWAL, U.C 1976. activity of detached barley leaves.

Effect of kinetin and light on peroxidase Z. PFLANZENPHYSIOL. 78: 169-172.

1/94. SHARMA, R.; SOPORY, S.K.; GUHA-MUKHERJEE, S. 1976. Phytochrome regulation of peroxidase activity in maize. PLANT SCI. LETT. 6: 69-75.

1195. SHARMA, R.; SOPORY, S.K.; GUHA-MUKHER.iEE, S. 1977. Phytochrome regulation of peroxidase activity in maize. II. Interactions with hormones, acetyl-choline and C-AMP. Z. PFLANZENPHYSIOL. 82: 417-427.

1196. SHARMA, R.; SOPORY, S.K.; GUHA-MUKHERJEE, S. 1979. Phytochrome regulation of peroxidase activity in maize. III. Age dependence and subcellular localization. Z. PFLANZENPHYSIOL. 94: 37 J-375.

1197. SHARMA, R.; SOPORY, S.K.; GUHA-MUKHERJEE, S. 1979. Phytochrome regulation of peroxidase activity in maize. IV. Photosynthetic independence of peroxidase enhancement. PLANT CELL PHYSIOL. 20: 1003-1012.

1198. SHARMA, R.; SOPORY, S.K.; GUHA-MUKHERJEE, S. 1980. Phytochrome regulation of peroxidase activity in maize. V. Role of RNA and protein synthesis. PLANT CELL PHYSIOL. 21: 345-350.

1199. SHARONOV, YA; MINEYEY" A.P.; LIVSHITZ, NA; SHARONOVA, NA; ZHURKIN, V.B.; LYSOV, Y.P. 1978. Magnetic circular dichroism studies of myoglobin, hemoglobin and peroxidase at room temperatures. Ferrous high spin derivates. STRUCT. MECH. 4: 139-158.

1200. SHAW, CR.; PRASAD, R. a compilation of recipes.

1970. Starch gel electrophoresis of enzymes BIOCHEM. GENET. 4: 297-320.

1201. SHEEN, S.J. 1972. lsoenzymic envidence bearing on the origin of NicOliana labacum L. EVOLUTION 26: 143-/54.

Page 243: peroxidases ( peroksida )

232 PEROXIDASES 1970/1980

1202. SHEEN, S.J. 1974. BOT. GAZ. 135:

Polyphenol oxidation by leaf peroxidases in Nicotiana. 155-161.

1203. SHEEN, S.J.; REBAGAY, G.R. 1970. On the localization and tissue difference ofperoxidases in Nicotiana tabacum and its progenitor species. BOT. GAZ. 131: 297-304.

1204. SHEORAN, T.S.; GARG, O.P. 1979. Quantitative and qualitative changes in peroxidase during gennination of mung bean under salt stress. PHYSIOL. PLANT. 46: 147-150.

1205. SHIBATA, H.; OCHIAI, H.; AKIYAMA, M.; ISHII, H.; KATOH, T. 1980. The reactivity of 4-thiouridine with peroxidase and superoxide radicals. AGR. BIOL. CHEM. 44: 1427-1430.

1206. SHIGA, 1.; IMAIZUMI, K. 1975. Electron spin resonance study on peroxidase and oxidase reactions of horseradish peroxidase and methemoglobin. ARCH. BIOCHEM. BIOPHYS. 167: 469-479.

1207. SHIGEOKA, S.; NAKANO, Y.; KlTAOKA, S. 1980. properties of L-ascorbic acid-specific peroxidase in ARCH. BIOCHEM. BIOPHYS. 201: 121-127.

Purification and sorne Euglena gradlis Z.

1208. SHIH, J.H.C.; SHANNON, L.M.; KAY, isoenzymes from horseradish roots. IV. CHEM. 246: 4546-4551.

E.; LEW, J.Y. 1971. Structural relationships.

Peroxidase J. BIOL.

1209. SHINDLER, J.S.; CHILDS, R.E.; BARDSLEY, W.G. 1976. Peroxidase from human cervial mucus. The isolation and characterisation. EUR. J. BIOCHEM. 65: 325-331.

1210. SHINSHI, H.; NOGUCHI, M. 1975. Relationships between peroxidase, IAA oxidase and polyphenol oxidase. PHYTOCHEM. 14: 1255-1256.

1211. SHINSHI, H.; NOGUCHI, M. 1975. Properties of peroxidase from tobacco cell suspension culture. PHYTOCHEM. 14: 2141-2144.

1212. SHINSHI, H.; NOGUCHI, M. 1976. Comparison of isoperoxidase patterns in tobacco cell cultures and in the intact plant. PHYTOCHEM. 15: 556-557.

1213. SHUMAKER, K.M.; BABBLE, G.R. 1980. Patterns of allozymic similarity . in ecologically central and marginal populations of Hordeum jubatum in

Utah. EVOLUTION 34: 110-116.

1214. SIEGEL, B.Z.; SIEGEL, S.M. 1970. the algal peroxidases. AMER. J.

Anomalous substrate specificities among BOT. 57: 285-287.

1215. SIEGEL, S.M.; LAVEE, S.; SIEGEL, B.Z. 1978. amines by peroxidase at pH 14. PHYTOCHEM.

Oxidation of aromatic 17: 1221-1224.

1216. SILVEIRA, S.R.; HADLER, W.A. 1978. Catalases and peroxidases histochemical detection. Techniques suitable to discriminate these enzymes. ACTA HISTûCHEM. 63: 1-10.

Page 244: peroxidases ( peroksida )

REFERENCES 233

1217. SIMOLA, L.K. 1973. Changes in the activity of several enzymes during root differentiation in cultured cells of Atropa bel/adonna. Z. PFLANZENPHYSIOL. 68: 373-378.

1218. SIMOLA, L.K.; SOPANEN, T. 1970. Changes in the actlVlty of certain enzymes of Acer pseudoplatanus L. cens at four stages ofgrowth in suspension cultures. PHYSIOL. PLANT. 23: 1212-1222.

1219. SIMOLA, L.K.; SOPANEN, T. 1971. Effect ofcx-naphthalene and cx-naphthoxy­acetic acid on the activity of certain enzymes of Atropa bel/adonna cv. lutea cens in suspension cultures. PLANT. 25: 8-15.

1220. SIMON, L.M.; FATRAI, Z.; JONAS, D.E.; MATKOVICS, B. 1974. Study of peroxide metabolism enzymes during the development of Phaseolus vulgaris. BIOCHEM. PHYSIOL. PFLANZEN. 166: 387-392.

1221. SIMONS, T.J.; ROSS, A.F. 1970. Enhanced peroxidase actlVlty associated with induction of resistance to tobacco mosaic virus. PHYTOPATHOL. 60: 383-384.

1222. SIMONS, T.J.; ROSS, A.F. 1971. Metabolic changes associated with systemic induced resistance to tobacco mosaic virus in Samsun NN tobacco. PHYTOPATHOL. 61: 1261-1265.

1223. SINDILE, N.; MARCU, Z.; BRAD, I. 1970. Characterization of certain varieties belonging to different species, cultivars and forms of the Brassica genus, from the standpoint of the isoperoxidases spectrum. REV. ROUM. BIOCHEM. 7: 225-230.

1224. SINGH, J. P. 1978. Catalase and peroxidase activity in Dioscorea composita leaves infected with Gloeosporium pestis massee. CURR. SCI. 47: 505.

1225. SINGH, R.S.; JAIN, S.K. 1971. Population biology of Avena. II. Isoenzyme polymorphisms in populations of the mediterranean region and central Califomia. THEOR. APPL. GENET. 41: 79-84.

1226. SINGH, R.S.; JAIN, S.K.; QUALSET, C.O. 1973. Protein electrophoresis as an aid to oat variety identification. EUPHYTICA 22: 98-105.

1227. SINGH, R.S.; SINGH, D. 1974. Effect of temperature on peroxidase. polyphenol oxidase and catalase isoenzymes du ring germination of tan and dwarfwheat (Triticale aestivum Linn.). BIOCHEM. PHYSIOL. PFLANZEN. 166: 469-474.

1228. SINGH, R.S.; SINGH, D. 1974. Peroxidase, polyphenol oxidase and catalase isoenzymes during germination and early plant development of tan and dwarf wheats (Triticum aestivum L.). BIOL. PLANT. 17: 235-240.

1229. SINGH, R.S.; SINGH, D. 1975. Isoenzymes of peroxidase. polyphenol oxidase and catalase du ring germination and early plant development of dark and light grown wheat (Triticum aestivllm Linn.). INDIAN J. EXPTL. BIOL. 13: 581.

l·-:."

Page 245: peroxidases ( peroksida )

234 PEROXIDASES 1970/1980

1230. SINGHAL, N.C; MEHTA, S.L.; SINGH, M.P. 1979. Peroxidase activities in relation to plant height and grain weight in bread wheat (Triticum aestivum L.). THEOR. APPL. GENET. 55: 87-92.

1231. SIRJU, G.; WILSON, L.A. 1974. IAA oxidase preparations from fresh and aged Ipomoea batatas tuber dises. PHYTOCHEM. 13: 111-117.

1232. SIRKAR, S.; AMIN, J.V. 1974. PHYSIOL. 54: 539-544.

The manganese toxicity of cotton. PLANT

1233. SIROIS, J.C; MILLER, R.W. 1972. The mechanism of the scopoletin induced inhibition of the peroxidase catalyzed degradation of indole-3-acetate. PLANT PHYSIOL. 49: 1012-1018.

1234. SKAKOUN, A.; DAUSSANT, J. 1971. L'électrophorèse en gel de polyacrylamide à gradient de concentration en acrylamide: application à l'étude d'enzymes végétales. CR. ACAD. SC PARIS 273: 733-736.

1235. SLEMMON, J.R.; SALVATERRA, P.M.; SAlTO, K. 1980. Preparation and characterization of peroxidase: antiperoxidase-Fab complex. J. HISTOCHEM. CYTOCHEM. 28: 10-15.

1236. SMAOUI, A. 1972. Distributions des peroxysomes dans les feuilles de deux chénopodiacées différant par leur structure et leur métabolisme photosynthétique: Atriplex halimus L. et Chenopodium album L. CR. ACAD. SC PARIS 275: 1031-1034.

1237. SMITH, H.; BILLET, E.E.; GILES, A.B. 1977. The photocontrol of gene expression in higher plants. In 'REGULATION OF ENZYME SYNTHESIS AND ACTIVITY IN HIGHER PLANTS'. Smith, H. (Ed.). Academie Press, London - New York - San Francisco, pp. 93-128.

1238. SMITH, H.H. 1971. Broadening the base of genetic variability in plants. J. HERED. 62: 265-276.

1238a. SMITH, H.H.; CONKLIN, M.E. 1975. Effect of gene dosage on peroxidase isozymes in Datura stramonium trisomies. In 'ISOZYMES. III. DEVELOPMENTAL BIOLOGY'. Markert, CL. (Ed.). Academie Press, New York, pp. 603-618.

1239. SMITH, H.H.; HAMILL, D.E.; WEAVER, E.A.; THOMPSON, K.H. 1970. Multiple molecular forms of peroxidases and esterases among Nicotiana species and amphiploids. J. HERED. 61: 203-212.

1240. SMITH, K.M. 1976. 'PORPHYRINS AND Elsevier Scientific Pub!. Co., Amsterdam.

METALLOPORPHYRINS'.

1241. SMITH, M.M.; O'BRIEN, T.P. 1979. Distribution of autofluorescence and esterase and peroxidase activites in the epidermis of wheat roots. AUST. J. PLANT PHYSIOL. 6: 201-220.

1242. SMITH, P.I.; SWAN, G.A. 1976. A study of the supposed hydroxylation of tyrosine catalysed by peroxidase. BIOCHEM. J. 153: 403-408.

Page 246: peroxidases ( peroksida )

REFERENCES 235

1243. SMITH, R.L. 1970. Peroxidase polymorphism in cultivated oats sativa L. and A. byzantina C. Koch. CROSP SCI. 10: 273-276.

Al'ena

1244. SMITH, R.L. 1972. The J. HERED. 63: 317-320.

inheritance of two peroxidases in oat leaves.

1245. SNYDER, E.B.; HAMAKER, J.M. 1978. Inheritance of peroxidase isozymes in needles of loblolly and longleaf pines. SILVAE GENET. 27: 125-128.

1246. SOBKOWIAK, A.; MLODZIANOWSKI, F.; SZWEYKOWSKA, A. 1976. Cytochemical localization of peroxidase activity in protonema of moss Ceratodon purpureus during differentiation of gametophore buds induced by kinetin. ACTA SOc. BOT. POL. SER. B 45: 119-126.

1247. SOLOMOS, T.; MALHOTRA, S.S.; PRASAD, S.; MALHOTRA, S.K.; SPENCER, M. 1972. Biochemical and structural changes in mitochondria and other cellular components of pea cotyledons during germination. CAN. J. BIOCHEM. 50: 725-737.

1248. SORESSI, G.P.; GENTINETTA, E.; ODOARDI, M.; SALAMINI, F. 1974. Leaf peroxidase activities in tomato mutants affecting plant morphoJogy. BIOCHEM. GENET. 12: 181-198.

1249. SORESSI, G.P.; GENTINETTA, E.; ODOARDI, M.; SALAMINI, F. 1974. Peroxidase activities in tomato mutants affecting leaf and plant morphology. ATTI. ASS. GENET. ITAL. 19: 83-84.

1250. SPAETH, S.c.; MARA VOLO, N.e. 1973. Partial purification and characterization of an auxin-degrading enzyme in the liverwort Marchantia po/ymorpha L. BOT. GAZ. 134: 274-282.

1251. SPETTOLI, P.; CACCO, G.; FERRARI, G. 1976. Comparative evaluation of the enzyme multiplicity in a diploid, a triploid and a tetraploid sugar beet variety. J. SCI. FOOD AGRIC. 27: 341-344.

1252. SPIEGEL-ROY, P.; KOCHBA, J. 1980. Embryogenesis in Citrus tissue cultures. In 'ADVANCES IN BIOCHEMICAL ENGINEERING 16, PLANT CELL CULTURES l'. Flechter, A. (Ed.). Springer-Verlag, Berlin­Heidelberg - New York, pp. 27-48.

1253. SPRINZ, H.; JUNGHANS, P.; GROSSER, c.; HÜBNER, G. 1976. Untersuchungen zum Bindungsverhalten von synthetischen Wachstumregulatoren gegenüber Modellsubstanzen. Il. Bindung der Phenoxyessigsaurederivate an Meerettich-Peroxydase. STUDIA BIOPH YS. 54: 147-157.

1253a. SRIDHAR, R. 1978. Changes in peroxidase isoenzymes in blast diseased rice leaves. ACTA PHYTOPATHOL. ACAD. SCI. HUNG. 13: 161-164.

1254. SRIVASTAVA, H.S.; ASTHANA, J.S.; JAIN, A. 1979. Induction of nitrate reductase and peroxidase activity in the seedlings of normal and high lysine maize. PHYSIOL. PLANT. 47: 119-123.

Page 247: peroxidases ( peroksida )

236 PEROXIDASES 1970/1980

1255. SRIVASTAVA, O.P.; VAN HUYSTEE, R.B. 1973. Evidence for close association of peroxidase, polyphenol oxidase and IAA oxidase isozymes of peanuts suspension culture medium. CAN. J. BOT. 51: 2207-2215.

1256. SRIVASTAVA, O.P.; VAN HUYSTEE, R.B. 1977. IAA oxidase and polyphenol oxidase activities ofpeanut peroxidase isozymes. PHYTOCHEM. 16: 1527-1530.

1257. SRIVASTAVA, a.p.; VAN HUYSTEE, R.B. 1977. An interrelationship among peroxidase, IAA oxidase and polyphenol oxidase l'rom peanut cells. CAN. J. BOT. 55: 2630-2635.

1258. SRIVASTAVA, O. P. ; VAN HUYSTEE, R.B. 1977. Interactions phenolics and peroxidase isozymes. BOT. GAZ. 138: 457-464.

among

1259. SRIVASTAVA, O.P.; VAN HUYSTEE, R.B. properties of peanut peroxidase isozymes.

1977. Spectral and molecular PHYTOCHEM. 16: 1657-1659.

1260. STAFFORD, H.A. 1974. The metabolism of aromatic compounds. REV. PLANT PHYSIOL. 25: 459-486.

ANN.

1261. STAFFORD, RA. 1974. Possible multienzyme complexes regulating the formation of C6 -c, phenolic compounds and lignins in higher plants. RECENT ADV. PHYTOCHEM. 8: 53-79.

1262. STAFFORD, RA.; BRAVIN DER-BREE, S. J972. Peroxidase isozymes of tirst internodes of Sorghum. Tissue and intracellular 10calization and multiple peaks of activity isolated by gel filtration chromatography. PLANT PHYSIOL. 49: 950-956.

1263. STAFFORD, H.A.; DRESLER, S. 1972. 4-Hydroxycinnamic acid hydroxylase and polyphenolase activites in Sorghum vu/gare. PLANT PHYSIOL. 49: 590-595.

1264. STAHMANN, M.A.; DEMOREST, D.M. 1972. Changes in isozymes of host and pathogen following sorne fungal infections. SYMP. BIOL. HUNG. 13: 355-365.

1265. STAHMANN, M.A.; DEMOREST, D.M. 1973. Changes in enzymes of host and pathogen with special reference to peroxidase interaction. /n 'FUNGAL PATHOGENICITY AND THE PLANTS RESPONSE'. Byrde, R.: Cutting, C. (Eds). Academie Press, New York. pp. 405-420.

1266. STAINES, W.A.; KIMURA, H.; FIBIGER, H.C.; Peroxidase labelled lectin as a neuroanatomical CNS pathway. BRAIN RES. 197: 485-490.

McGEER, E.G. 1980. tracer: evaluation in a

1267. STEIN, A.; LOEBENSTEIN, G. 1976. Peroxidase activity in tobacco plants with polyanion-induced interference to tobacco mosaic virus. PHYTOPATHOL. 66: 1192-1194.

1268. STEINER, H.; DUNFORD, H.B. 1978. Ionie strength dependence of the oxidation of iodide and ferrocyanide by compound 1 of horseradish peroxidase. EUR. J. BIOCHEM. 82: 543-549.

Page 248: peroxidases ( peroksida )

REFERENCES 237

1269~ STEINMAN. R.M.: COHN, ZA. 1972. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J. CELL BIOL. 55: 180-204.

1270. STEINMAN. R.M.: COHN, Z.A. 1972. The interaction of particulate horseradish peroxidase (HRP)-anti HRP immune complexes with mouse peritoneal macrophages in vitro. J. CELL BIOL. 55: 616-634.

1271. STEPHAN, D.; VAN HUYSTEE, R.B. 1980. Peroxidase biosynthesis as part of protein synthesis by cultured peanut cells. CAN. J. BIOCHEM. 58: 715-719.

1272. STEPHENS, G.J.; WOOD, K.R. 1974. Release of enzymes from by an endopectate-trans-eliminase. NATURE 251: 358.

cel! walls

1273. STEVENS, H.C; CALVAN, M.; LEE, K,c.; SIEGEL, B.Z.; SIEGEL, S.M. 1978. Peroxidase activity as a screening parameter for salt stress in Brassica species. PHYTOCHEM. 17: 1521-1522.

1274. STEWART, R.R.C.; BEWLEY, J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. PLANT PHYSIOL. 65: 245-248.

1275. STILLMAN, J.S.; STILLMANN, M.J.; DUNFORD, H.B. 1975. Horseradish peroxidase. XIX. A photochemical reaction of compound 1 at 5°K, BIOCHEM. BIOPHYS. RES. COMM. 63: 32-35.

1276. STILLMAN, J.S.; STILLMAN, M.J.; DUNFORD, H.B. 1975. Photochemical reactions of horseradish peroxidase compounds 1and II at room temperature and lOT BIOCHEM. 14: 3183-3188.

1277. STONIER, T.; HUDEK, J.; VANDESTOUWE, R.; YANG, H. 1970. of auxin protectors. VIII. Evidence that auxin protectors act as poisers. PHYSIOL. PLANT 23: 775-783.

Studies cellular

1278. STONIER, T; McGALDRIE, K,; SHAW, G. 1979. Studies on auxin protectors. XIV. Chlorogenic acid, a low molecular weight auxin protector in sunf1ower. PLANT CELL ENVIRON. 2: 79-82.

1279. STONIER, T; STASINOS, S.; REDDY, K,B.S.M. 1979. The masking of peroxidase-catalyzed oxidation of IAA in Vigna. PHYTOCHEM. 18: 25-28.

1280. STONIER, T.; YANG, H.M. 1971. Studies on auxin protectors. X. Protector levels and lignification in sunf10wer crown gall tissue. PHYSIOL. PLANT. 25: 474-481.

1281. STONIER, T; YANG, H.M. 1973. Studies on auxin protectors. XI. Inhibition of peroxidase-catalyzed oxidation ofglutathione by auxin protectors and 13-dihydroxyphenols. PLANT PHYSIOL. 51: 391-399.

1282. STOWARD, P.J.; SPICER. S.S.; MILLER, R.L. of peanut lectin-horseradish peroxidase CYTOCHEM. 28: 979-990.

1980. Histochemical reactivity conjugate. J. HISTOCHEM.

Page 249: peroxidases ( peroksida )

238 PEROXIDASES 1970/1980

1283. STRAND, L.L.; MUSSELL. H. 1975. Solubilizalion of pcroxidasc aClivity From cotton ccii walls by cndopolygalacturonases. PHYTOPATHOL. 65: 830-831.

1284. STRAND, L.L.; RECHTORIS. c.; MUSSELL. H. 1976. Polygalacluronascs release cell-wall bound proteins. PLANT PHYSIOL. 58: 722-725.

1285. STRAUS, W. 1971. Inhibition of peroxidase by methanol and by methanol nitroferricyanide for use in immunoperoxidase procedures. J. HISTOCHEM. CYTOCHEM. 19: 682-688.

1286. STRAUS, W. 1972. Improved stammg for peroxidase with benzidine and improved double staining immunoperoxidase procedures. J. HISTOCHEM. CYTOCHEM. 20: 272-278.

1287. STRAUS, W. 1972. Phenylhydrazine as inhibitor of horseradish peroxidase for use in immunoperoxidase procedures. J. HISTOCHEM. CYTOCHEM. 20: 949-951.

1288. STRAUS, W. 1974. Cleavage of heme from horseradish peroxidase by methanol with inhibition of enzymic activity. J. HISTOCHEM. CYTOCHEM. 22: 908-9ll.

1289. STRAUS, W. 1979. Peroxidase procedures. Technical problems encountered during their application. J. HISTOCHEM. CYTOCHEM. 27: 1349-1351.

1290. STRAUS, W. 1980. Factors affecting the sensitivity and the specificity of the cytochemical reaction for the anti-horseradish peroxidase antibody in Iymph tissue sections. J. HISTOCHEM. CYTOCHEM. 28: 645-652.

1291. STRAUVEN, TA; ARMSTRONG, D.; JAMES, G.T.; AUSTIN, J.H. 1978. Separation of leukocyte peroxidase isoenzymes by agarose acrylamide disc electrophoresis. AGE 1: 111-117.

1292. STREEFKERK, J.G.; VAN DER PLOEG, M. 1973. Quantitative aspects of cytochemical peroxidase procedures investigated in a model system. J. HISTOCHEM. CYTOCHEM. 21: 715-722.

1293. STRICKLAND, E.; KAY, E.; SHANNON. L.M. 1970. Effects ofdenaturing agents on the phenylalanyl circular dichroism bands of horseradish peroxidase isoenzymes and apo-isoenzymes. J. BIOL. CHEM. 245: 1233-1237.

1294. STROINSKI. A.; KRZYWANSKI. Z.; BORYS, M.W.; WOJClECHOWSKI, J. 1978. Peroxidase isoenzymes in germinating barley seeds and in seminal roots. ACTA AGROBOT. 31: 71-76.

1295. STRUM, J.M. 1978. Hormonal activation of mammary gland peroxidase. TISSU E AND CELL 10: 505-514.

1296. STRUM, J.M.; KARNOVSKY, M.J. 1970. Ultrastructural loca1ization of peroxidase in submaxillary acinar cells. J. ULTRASTRUCT. RES. 3[: 323-336.

Page 250: peroxidases ( peroksida )

REFERENCES 239

1297. STRUM, J.M.; KARNOWSKY, M.J. 1971. Aminotriazole goiter fine structure and localization of thyroid peroxidase activity. LA B. INVEST. 24: 1-/2.

1297a. SUBHASH, K.; MEERABAI, A.; SWAMY, G.K.; SADANANDAM, A. 1980. Peroxidase isozyme pattern in leafy mutants of tomato Lycopersicon esculentum. INDIAN J. EXP.BIOL. 18: 1526.

/298. SULEIMANOV, I.G.; RAMAZANüVA, LX.; ALEXEEVA, V.J. 1972. On isoenzymes of peroxidase of winter rye leaves. PROC ACAD. SCI. USSR 202: 718-720.

1299. SUTERI, B.D.; BALA, S.; JOSHI, G.C; lOSHI, M.M. 1979. peroxidase activity of soybean infected with yellow mosaic. 204-206.

Catalase and GEOBIOS. 6:

1300. SUZUKl, Y; KAWARDA, A. 1978. Products of peroxidase catalyzed oxidation of indolyl-3-acetic acid. AGR. BIOL. CHEM. 42: 1315-1322.

1301. SUZUKl, Y.; OGISO, K. 1973. Development of ascorbate oxidase activity and its isoenzyme pattern in the roots of pea seedlings. PHYSIOL. PLANT. 29: 169-172.

1302. SVACHULOVA, J.; VELEMINSKY, J.; GICHNER, T. 1975. Activity of three oxidases and total dehydrogenases during the recovery from methyl methane sulphonate induced mutagenic damage in barley. BIOL. PLANT. 17: 109-112.

1303. SVRKOTA, B.; DROUET, A.; HARTMANN, C 1971. Influence de différents herbicides sur les activités catalasiques et peroxydasiques du Concombre (Cucumis sativus L.). CR. ACAD. SC PARIS 273: 1945-1948.

1304. SYMEONIDIS, L.; KARATAGLIS, S.; TSEKOS, 1. 1979. Electrophoretic variation in esterases and peroxidases of native greek diploid Aegilaps species (Ae. caudata and Ae. camasa, Poaceae). PLANT SYST. EVOL. 131: 1-15.

1305. SYONO, K. 1979. Correlation between induction of auxin-nonrequiring tobacco calluses and increase in inhibitor(s) of lAA-destruction activity. PLANT CELL PHYSIOL. 20: 29-42.

1306. SYREN, E. 1974. Lysozyme-negative, peroxidase-positive mononuclear cells : a new kinetically distinct cell population in normal rat blood. ACTA HAEMATOL. 51: 282-289.

1307. TAFURI, F.; BUSINELLI, M.; SCARPONI, L.; MARRUCCHINI, C 1977. Stimulation of the activity of the IAA-oxidising enzyme system in Lens culinaris roots by dalapon and perfluidone. J. SCI. FOOD AFRIC 28: 180-184.

1308. T AKANAKA, K.; O'BRIEN, P.J. 1975. Mechanisms of hydrogen peroxide formation in leukocytes : the NAD(P)H oxidase activity ofmyeloperoxidase. BIOCHEM. BIOPHYS. RES. COMM. 62: 966-970.

i

Page 251: peroxidases ( peroksida )

240 PEROXIDASES 1970/1980

1309. TAKEO, R.; KATO, y. 1971. Tea leaf peroxidase. Isolation and purification. PLANT CELL PHYSIOL. 12: 217-223.

partial

1310. T AMURA, M. 1971. Optical and magnetic measurements of horseradish peroxidase. Il. pH dependence of peroxidase. BIOCHIM. BIOPHYS. ACTA 243: 249-258.

1311. T AMURA, M.; ASAKURA, T.; YONETANI, T. 1972. Herne-modification studies on horseradish peroxidase. BIOCHIM. BIOPHYS. ACTA 268: 292-304.

1312. TAMURA, M.; YAMAZAKI, 1. 1972. Reactions of the oxyfonn ofhorseradish peroxidase. J. BIOCHEM. 71: 311-320.

1313. TAMURA, Y.; MORITA, Y. 1975. Thennal denaturation and regeneration of Japanese-radish peroxidase. J. B/OCHEM. 78: 561-571.

1314. TANAKA, Y.; URITANI, 1. 1977. Polarity of production of polyphenols and development of various enzyme activities in cut-injured sweet potato root tissue. PLANT PHYSIOL. 60: 563-566.

1315. TENAJA, S.R.; SACHAR, R.C. 1976. Enzyme synthesis by conserved messengers in genninating wheat embryos. PHYTOCHEM. 15: 1589-1594.

1316. TAO, K.L.; KHAN, A.A. 1975. Occurence of sorne enzymes in starchy endospenn and honnonal regulation of isoperoxidases in aleurone of wheat. PLANT PHYSIOL. 56: 797-800.

1317. TAO, K.L.; KHAN, A.A. 1976. Changes in isoperoxidases during treatment of donnant pear embryo. PLANT PHYSIOL. 57: 1-4.

cold

1318. TAYLOR, 0.0.; OOELLGAST, G.J. 1979. Quantitation of peroxidase­antibody binding to membrane fragments using column chromatography. ANAL. B/OCHEM. 98: 53-59.

1319. TENOVUO, 1.; KNUUTTILA, M.L.E. 1977. Antibacterial effect of salivary peroxidases on a cariogenic strain of Streptococcus mutans. J. DENT. RES. 56: 1608-16133.

1320. THEVENOT, c.; GASPAR, T.; LEWAK, S.; COME, D. 1977. Peroxidases in relation to removal of donnancy and gennination of apple embryos. PHYSIOL. PLANT. 40: 82-86.

1321. THOMAS, D.L.; BRIGHT, J.E. 1973. Electrophoretic analysis of effects of in vitro heating on proteins and enzymes from donnant peanuts (Arachis hypogaea). CAN. J. BOT. 51: 1191-1196.

1322. THOMAS, D.L.; NEUCERE, N.J. 1974. A comparative investigation of peroxidases from genninating peanuts (Arachis hypogaea) : electrophoresis. AMER. J. BOT. 61: 457-463.

1323. THOMAS, E.L.; AUNE, T.M. 1978. Cofactor role of iodide in peroxidase antimicrobial action against Escherichia coli. ANTIMJCROB. AGENTS CHEMOTHER. 13: 1006-1010.

Page 252: peroxidases ( peroksida )

REFERENCES 241

1324. THOMAS, E.L.; AUNE, T.M. 1978. Oxidation of Escherichia coli sulfhydryl components by the peroxidase - hydrogen - peroxidase - iodide antimicrobial system. ANTIMICROB. AGENTS CHEMOTHER. 13: 1031-1035.

1325. THOMAS, J.A.; MORRIS, R.; HAGER, L.P. 1970. Chloroperoxidase. VII. Classical peroxidatic, catalic, and halogenating fonns of the enzymes. J. BIOL. CHEM. 245: 3129-3134.

1326. THOMAS, P.; DELINCEE, H. 1979. Effect ofgamma irradiation on peroxidase isoenzymes during suberization of wounded potato tubers. PHYTOCHEM.

·18: 917-921.

1326a. THOMAS, R.L.; JEN, J.J. 1980. Preparation of an homogenous tomato fruit peroxidase. PREP. BIOCHEM. 10: 581-596.

1327. THORPE, T.A.; GASPAR, T. formation in tobacco caHus.

1978. Changes in isoperoxidases during shoot IN VITRO 14: 522-528.

1328. THORPE, TA; TRAN THAN VAN, M.; GASPAR, T. 1978. Isoperoxidases in epidennal layers of tobacco and changes during organ fonnation in vitro. PHYSIOL. PLANT. 44: 388-394.

1329. TINGEY, D.T.; FITES, R.C.; WICKLIFF, C. 1975. Activity changes in selected enzymes from soybean leaves following ozone exposure. PHYSIOL. PLANT. 33: 316-320.

1330. TINGEY, D.T.; FITES, R.C.; WICKLIFF, C. 1976. Differentiai foliar sensitivity of soybean cultivars to ozone associated with differential enzyme activities. PHYSIOL. PLANT. 37: 69-72.

1331. TIRIMANNA, A.S.L. 1972. Starch gel electrophoresis of the isozymes of the tea leaf. J. CHROMATOGR. 65: 587-588.

peroxidase

1332. TODD, M.M.; VIGIL, EL. 1972. Cytochemical localization of peroxidase activity in Saccharomyces cerevisiae. J. HISTOCHEM. CYTOCHEM. 20: 344-349.

1333. TORRES, A.M.; BERGH, B.O. 1978. Isozymes as indicators of outcrossing among 'Pinkerton' seedlings. CALIF. AVOCADO SOc. YRBK. 62: 103-110.

1334. TORRES, A.M.; BERGH, B.O. 1978. Isozymes of 'Duke' and its derivatives. CALIF. AVOCADO SOc. YRBK. 62: 111-117.

1335. TORRES, A.M.; BERGH, B.O. 1980. Fruit and leaf isozymes as genetic markers in avocado. J. AGRIC. SOc. HORT. SCI. 105: 614-619.

1336. TORREY, J.c.; FOSKET, D.E.; HEPLER, P.K. 1971. Xylem formation: a paradigm of cytodifferentiation in higher plants. AMER. SCI. 59: 338-352.

1337. TOUGARD, c.; TIXIER-VIDAL, A.; AVRAMEAS, S. 1979. Comparison between peroxidase-conjugated antigen or antibody and peroxidase-anti­peroxidase complex in a post-embedding procedure. J. HISTOCHEM. CYTOCHEM. 27: 1630-1633.

Page 253: peroxidases ( peroksida )

242 PEROXIDASES 197011980

1338. TRAVERS, F.; DOUZOU, P. 1972. Etude du complexe transitoire ferri­peroxydase-acide dihydrofumarique aux basses températures. C.R. ACAD. Sc. PARIS 274: 1403-1405.

1339. TRESSEL, P.; KOSMAN, D.J. 1980. O,O-Dityrosine in native and horseradish peroxidase-activated galactose oxidase. BIOCHEM. BIOPHYS. RES. COMM. 92: 781-786.

1340. TRIPATHI, R.K; VERMA, M.N.; GUPTA, V.K and isoenzymes in relation to resistance in INDIAN J. EXP. BIOL. 12: 591-592.

1974. Peroxidase activity potatoes against rotting.

1341. TRIPATHI, R.K; VOHRA, K; BENIWAL, S.P.S. 1975. Changes in phenoloxidase and peroxidase activities and peroxidase isoenzymes in yellow mosaic virus infected mung bean (Phaseolus aureus L.). INDIAN J. EXP. BIOL. 13: 513-514.

1342. TRIPPI, V.S.; GUZMAN, C. 1970. Composition and enzymatic actIVIty ln

Phaseolus vulgaris during germination and its relation to the formative effects of 6-N-benzyladenine on leaves. PHYTON 27: 113-124.

1343. TRIPPI, V.S.; TRAN THANH VAN, M. 1971. Changes in the pattern of sorne isoenzymes of the corolla' after pollination in Phalaenopsis amabilis Blume. PLANT PHYSIOL. 48: 506-508.

1344. TRIPPI, V.S.; ZADEK, H.E. 1970. Composition des peroxydases dans les différentes parties d'une plante fleurie de tabac. C.R. ACAD. Sc. PARIS 271: 1872-1875.

1345. TROST, T.H.; WEIL. H.R.; PULLMANN, H.; STEIGLEDER, G.K 1980. A new immunoenzyme tracer for immunohistology: peroxidase-Iabeled protein. A. Its application for determination of antinuclear antibodies. KUN. WOCHENSCHRIFT 58: 475-478.

1346. TRUCHET, G. 1972. Mise en évidence de l'activité peroxydasique dans les différentes zones des nodules radiculaires de Pois (Pisum salivum L.). Localisation de la leghémoghobine. C.R. ACAD. Sc. PARIS 274: 1290-1293.

1347. TRUCHET, G.; COULOMB, P. 1971. Localisation de la phosphatase acide et de la peroxydase dans les cellules de nodules radiculaires de Pois (Pisum sativum). Relation entre la cellule hôte et la bactérie. C.R. ACAD. Sc. PARIS 272: 1499-1502.

1348. TRUELOVE, B.; RODRIGUEZ-KABANA, R.; JONES, L.R. in the peroxidase activity of subcellular fractions from hypocotyls. CAN. J. BOT. 53: 852-860.

1975. Changes aging Phaseolus

1349. TSAY, R.C. ; TAYLOR, I.E.P. 1978. Isoenzyme complexes as indicators of genetic diversity in white spruce, Picea glauca, in Southern Ontario and the Yukon Territory. Formic, glutamic, and lactic dehydrogenase and cationic peroxidases. CAN. J. BOT. 56: 80-90.

Page 254: peroxidases ( peroksida )

REFERENCES 243

1351. TURNER, P. T.; HARRIS, A.B. 1974. Ultrastructure of exogenous peroxidase in cerebral cortex. BRAIN RES. 74: 305-326.

1352. TUTSCHEK, R. mage/lanicum.

1979. Characterization of a peroxidase PHYTOCHEM. 18: 1437-1439.

from SphaKnum

1353. TYSON, H. 1970. Peroxidase activity in Linum u.l'ilalissimum L. APPL. GENET. 40: 176-184.

THEOR.

1354. TYSON, H. 1973. Cytoplasmic etfects on activity of individual anionic isoenzymes of peroxidases in crosses between two genotypes of flax (Linum usilalissimum). BlOCHEM. GENET. 10: 13-21.

1355. TYSON, H.; BLOOMBERG, R. THEOR. APPL. GENET. 41:

1971. Peroxidase 136-141.

isoenzymes in Linum.

1356. TYSON, H.; FIELDES, M.A. 1972. Estimates of relative amounts ofperoxidase inhibitors in 2 flax (Linum usilalissimum) genotypes and their reciprocai F; hybrids. Z. PFLANZENPHYSIOL. 66: 385-396.

1357. TYSON, H.; TAYLOR, S.A.; FIELDES, M.A. 1978. Segregation of the environmentally induced relative mobility shifts in flax genotroph peroxidase isozymes. HEREDITY 40: 281-290.

1358. UGAROVA, N.N.; BROVKO, L.Y.; ROZHKOVA, G.D.; BEREZIN, I.V. 1977. Influence of chemical modification on the thermal stability of horseradish peroxidase. BIOKHIM. 42: 943-949.

1359. UGAROVA, N.N.; LEBEDEVA, O.V.; KURILINA, T.A.; BEREZIN, I.V. 1977. Influence of nuc1eophiles on the kinetics of oxidation reactions catalyzed by peroxidase. BIOKHIM. 42: 1236-1242.

1360. UGAROVA, N.N.; BROVKO, L.Y.; ROZHKOVA, G.D.; BEREZIN, LV. 1977. Influence of chemical modification on the thermal stability of horseradish peroxidase. BIOKHIM. 42: 943-949.

1361. UGAROVA, N.N.; ROZHKOVA, G.D.; BEREZIN, LV. 1978. Influence of chemical modification of !:-NH, groups of lysine residues in horseradish peroxidase on thermostability or the enzyme. Temperature dependence of thermal inactivation constants of native and modified peroxidase. BIOKHIM. 43: 1086-1091.

1362. UGAROVA, N.N.; ROZHKOVA, G.D.; VASIL'EVA, T.E.; BEREZIN, LV. 1978. Chemical modification on the !:-N~ groups of lysine residues in horseradish peroxidase. Accessibility of these groups to various modifying agents. BIOKHIM. 43: 629-632.

1363. URITANI, 1. 1971. Protein PHYTOPATH. 9: 211-234.

changes in diseased plants. ANN. REV.

l363a. URITANI, L 1978. The biochemistry of host response to infection. In 'PROGRESS IN PHYTOCHEMISTRY'. Reinhold, L.; Harbome, J.B.; Swain, T. (Eds). Pergamon Press, New York, pp. 29-63.

Page 255: peroxidases ( peroksida )

244 PEROXIDASES 1970/1980

1364. URS, N. V.R.; DUNLEAVY, J.M. 1974. Bactericidal activity of horseradish peroxidase on Xanthomonas phaseo/i var. sojensis. PHYTOPATHOL. 64: 542-545.

1365. URS, N.V.R.; DUNLEAVY, J.M. of soybean to bacterial pustule.

1974. Function of peroxidase in resistance CROP SCI. 14: 740-744.

1366. URS, N.V.R.; DUNLEAVY, J.M. 1975. Enhancement ofbactericidal activity of a peroxidase system by phenolic compounds. PHYTOPATHOL. 65: 686-690.

1366a. URS, N.V.R.; HILL, J.H. 1978. Inactivation of southem bean mosaic virus by a horseradish peroxidase-hydrogen peroxide system. PHYTOPATHOL. Z. 91: 365-368.

1367. VACCA, L.L.; ABRAHAMS, S.J.; NAFICHI, N.E. 1980. A modified peroxidase-antiperoxidase procedure for improved localization of tissue antigens : localization of substance P in rat spinal cord. J. HISTOCHEM. CYTOCHEM. 28: 297-307.

1368. VACCA, L.L.; HEWETT, D.; WOODSON, G. 1979. A comparison of methods using diaminobenzidine (DAB) to localize peroxidase in erythrocytes, neutrophils, and peroxidase anti-peroxidase complex. STAIN TECHNOL. 53: 331-336.

1369. VAMOS-VIGYAZO, L.; FARKAS, J.; BABOS-SZEBENYI, E. 1980. A study into sorne properties ofperoxidase in vegetables. ACTA ALIMENT. 9: 11-21.

1370. VANCE, e.R.; ANDERSON, J.O.; SHERWOOD, R.T. 1976. Soluble and cell wall peroxidases in Reed canary grass in relation to disease resistance and localized lignin formation. PLANT PHYSIOL. 57: 920-922.

1371. VANCE, e.P.; SHERWOOD, R.T. 1976. Regulation of lignin formation in Reed canary grass in relation to disease resistance. PLANT PHYSIOL. 57: 915-919.

1372. VAN DER MAST, e.A. 1970. The influence of membrane-bound peroxidases on the degradation of IAA by the specifie IAA degrading protein complexes in homogenates of pea roots. ACTA BOT. NEERL. 19: 727-736.

1373. VAN HAERINGEN, N.J.; ENSINK, F.T.E.; GLASIUS, E. 1979. The peroxidase-thiocyanate-hydrogen peroxide system in tear fluid and saliva of dilTerent species. EXP. EYE RES. 28: 343-348.

1374. VAN HOOF, P.; GASPAR, T. de racines excisées de maïs 277: 933-936.

1973. Contrôle auxinique des isoperoxydases en culture stérile. e.R. ACAD. se. PARIS

1375. VAN HOOF, P.; GASPAR, T. 1976. Peroxidase and isoperoxidase changes in relation to root initiation of Asparagus cultured in vitro. SCIENTIA HORTIe. 4: 27-31.

Page 256: peroxidases ( peroksida )

245 REFERENCES

1376. VAN HUYSTEE, R.B. 1976. A study of peroxidase synthesis by means of double labening and affinity chromatrography. CAN. J. BOT. 54: 876-880.

1377. VAN HUYSTEE, R.B. 1976. Immunological studies on proteins released by a peanut (Arachis hypogaea L.) suspension culture. BOT. GAZ. 137: 325-329.

1378. VAN HUYSTEE, R.B. 1977. Porphyrin and peroxidase synthesis in cultured peanut cens. CAN. J. BOT. 55: 1340-1344.

1380. VAN HUYSTEE, R.B. 1977. Re1ationship of the heme moiety of peroxidase and the free heme pool in cultured peanut cens. Z. PFLANZENPHYSIOL. 84: 427-433.

1381. VAN HUYSTEE, R.B. 1978. Peroxidase synthesis in and membranes from cultured peanut cens. PHYTOCHEM. 17: 191-193.

1381a. VAN HUYSTEE, R.B.; CAIRNS, W.L. 1980. Appraisal ofstudies on induction of peroxidase and associated porphyrin metabolism. BOT. REV. 46: 429-446.

1382. VAN HUYSTEE, R.B.; TURCON, G. 1973. Rapid release of peroxidase by peanut cens in suspension culture. CAN. J. BOT. 51: 1169-1176.

1383. VAN LELYVELD, L.J. 1975. Ascorbic acid content and enzyme activities during maturation of the mango fruit and their association with bacterial black spot. AGROPLANTAE 7: 51-54.

1384. VAN LELYVELD, L.J. 1979. Peroxidase activity and isoenzymes in abscised and normal mango (Mangifèra indica L.) fruits. Z. PFLANZENPHYSIOL. 89: 453-456.

1385. VAN LELYVELD, L.J.; BESTER, A.l.J. 1978. Isolation of a peroxidase enzyme inhibitor from leaves of Phytophthora root rot infected avocado trees. PHYTOPATHOL. Z. 92: 262-265.

1386. VAN LELYVELD, L.J.; BESTER, A.l.J. 1978. A Phytophthora - induced inhibitor of peroxidase activity in avocado Ieaves. PHYTOPATHOL. Z. 93: 69-79.

1387. VAN LELYVELD, L.J.; BESTER, A.l.J. 1979. Peroxidase activity and isoenzymes in the leaves and bark of avocado trees afTected with rough bark of Phytophthora root rot. Z. PFLANZENPHYSIOL. 91: 127-134.

1388. VAN LELYVELD, L.J.; BOZALlK, S.1. 1979. Reliability of the acetone powder enzyme extraction method for peroxidase activity determination in pineapple leaves and roots. AGROCHEMOPHYSICA Il: 5-6.

1389. VAN LELYVELD, L.J.; BRODRICK, H.T. 1975. Enzymic responses of avocado leaves to Phytophthora I-oot rot. AGROPLANTAE 7: 13-16.

1390. VAN LELYVELD,( Ll.; BRODRICH, H.T.; ESTERHUIZEN, E.W. 1975. Rough lemon tree decline. Peroxidase activity, isoenzymes and respiration rate of the leaves. AGROPLANTAE 7: 71-74.

Page 257: peroxidases ( peroksida )

246 PEROXIDASES 1970/1980

1391. VAN LELYVELD, Ll.; BRODRICK, H.T.; ESTERHUIZEN, E.W. 1975. The effect of carbowax 4000 on the activity of peroxidase and polyphenol oxidase enzyme extracts from citrus leaves. AGROPLANTAE 7: 75-78.

1392. VAN LELYVELD, L.J.; PRETORIUS, W.J. 1973. Assay methods for determining enzymic activity of ex-amylase, indole-3-acetic acid oxidase, polyphenol oxidase, peroxidase and ascorbic acid oxidase in a crude extract from avocado tree bark. AGROCHEMOPHYSICA 5: 29-34.

1393. VAN LOON, L.e. 1971. Tobacco polyphenoloxidases: a specifie staining method indicating non-identity with peroxidases. PHYTOCHEM. 10: 503-507.

1394. VAN LOON, L.e. 1976. Systemic acquired resistance, peroxidase actlvlty and lesion size in tobacco reacting hypersensitively to tobacco mosaic virus. PHYSIOL. PLANT PATHOL. 8: 231-242.

1395. VAN LOON, L.e.; GEELEN, J.L.M. 1971. The relation ofpolyphenoloxidase and peroxidase to symptom expression in tobacco var. 'Samsun NN' after infection with tobacco mosaic virus. ACTA PHYTOPATHOL. ACAD. SCI. HUNG. 6: 9-20.

1396. VAN ZYL, A.; LOUW, A. 1979. Inhibition of peroxidase activity by sorne non-steroidal anti-inflammatory drugs. BIOCHEM. PHARMACOL. 28: 2753-2760.

1397. VAROQUAUX, P.; CLOCHARD, A.; SARRIS, J.; AVISSE, c.; MORFAUX, J.N. 1975. Détermination automatique de l'inactivation thermique et de la régénération des enzymes. Application à la peroxydase .du pois. LEBENSM. WISS. TECHNOL. 8: 60-63.

1398. VASSEUR, J.; LEGRAND, B. 1972. Répartition des protéines, des acides nucléiques et des activités enzymatiques: auxines-oxydases, peroxydases et catalases dans les feuilles d'endive (Cichorium intybus L.). REV. GEN. BOT. 79: 309-317.

1399. VEECH, J.A. 1976. cotton seedlings.

Localization of peroxidase in Rhizoctonia solani-infected PHYTOPATHOL. 66: 1072-1076.

1400. VEGETTI, G.; CONTI, G.G.; PESCI, P. 1975. Changes in phenylalanine ammonialyase, peroxidase and polyphenoloxidase during development of local necrotic lesions in pinto bean leaves infected with alfalfa mosaic virus. PHYTOPATHOL. Z. 84: 153-171.

1401. VENERE, blight.

R.J. 1980. PLANT SCI.

Role of peroxidase LETT. 20: 47-56.

in cotton resistant to bacterial

1402. VENKATACHALAM, MA; SOLTANI, M.H.; FAHIMI, H.D. 1970. Fine structural localization of peroxidase activity in the epithelium of large intestine of rat. J. CELL BIOL. 46: 168-173.

1403. VERMA, D.P.S.; VAN HUYSTEE, R.B. 1970. Cellular differentiation and peroxidase isozymes in œIl culture of pean ut cotyledons. CAN. J. BOT. 48: 429-431.

Page 258: peroxidases ( peroksida )

REFERENCES 247

1404. VERMA, D.P.S.; VAN HUYSTEE, R.B. 1970. Relationship between peroxidase, catalase, and protein synthesis during cellular development in cell cultures of peanut. CAN. J. BIOCHEM. 48: 444-449.

1405. VETTER, J. 1972. Auxin-induced changes in the growth, peroxidase- and ribonuclease activity of maize-seedlings. ANN. UNIV. SCI. BUDAPEST. SEcno BIOLOGICA 14: 73-81.

1406. VETTER, J. 1972. The influence of zinc and auxin on the growth, ribonuclease-, peroxidase activity and respiration intensity of tobacco callus tissue cultures. BOT. KÔZL. 59: 225-232.

1407. VETTER, R.S. 1973. Comparison of peroxidase and RNase actlvltles young and old tobacco caHus tissue. BOT. KÔZL. 60: 221-224.

of

1408. VICKERY, R.S. 105-106.

1978. Peroxidases do not move in phloem. PLANTA 138:

1409. VIDIGAL, CCC; FAUONI-ALARIO, A; DURAN, N.; ZINNER, K.; SHIMIZU, Y.; CILENTO, G. 1979. ElectronicaHy excited species in the peroxidase catalyzed oxidation of indoleacetic acid. EfTect upon DNA and RNA PHOTOCHEM. PHOTOBIOL. 30: 195-199.

1410. VIDIGAL, CCC; ZINNER, K.; DURAN, N.; BECHARA, E.J.H.; CILENTO, G. 1975. Generation of electronic energy in the peroxidase catalyzed oxidation of indole-3-acetic acid. BIOCHEM. BIOPHYS. RES. COMM. 65: 138-145.

1411. VIDIGAL-MARTINELLI, C; ZINNER, K.; KACHAR, B.; DURAN, N.; CILENTO, G. 1979. Emission from singlet oxygen during the peroxidase catalyzed oxidation of malonaldehyde. FEBS LETT. 108: 266-268.

1412. VIRION, A; POMMIER, J.; NUNEZ, J. 1979. Dissociation ofthyroglobulin iodination and hormone synthesis catalyzed by peroxidases. EUR. J. BIOCHEM. 12: 549-554.

1413. VORA, A.B. 1978. Catalase and peroxidase activities in the apical organs of brunker oat at various stages of development under two photoperiodic conditions. INDIAN J. PL. PHYSIOL. 21: 213-215.

1414. VORA, AB.; VYAS, AV. 1975. A study ofcatalase and peroxidase activities during development of oat. INDIAN J. PL. PHYSIOL. 18: 5-7.

1415. WABER, J.; WILLIAMS, B.J.; DUBIN, J.; SIEGEL, S.M. 1975. Changes induced in peroxidase activity under simulated hypo-gravity. PHYSIOL. PLANT. 34: 18-21.

1416. WAHID, M. 1980. EfTect of gamma irradiation and storage on the catalase and peroxidase activities of mushrooms. LEBENSM. WISSENSCH. TECHNOL. 13: 291-292.

1417. WANG, S.C; PINCKARD, J.A 1973. cotton boll and its relation to PHYTOPATHOL. 63: 1095-1099.

Peroxidase activity in the developing decay by Diplodia gossypina.

Page 259: peroxidases ( peroksida )

248 PEROXIDASES 1970/1980

1418. WARDALE. D.A. 1973. EtTectof phenolic compounds in Lycopersicon cscl/lcl/llIl1l on the synthesis of ethylene. PHYTOCHEM. 12: 1523- [530.

1419. WATANABE, epithelium.

K. 1980. Localization of peroxidase achvlty in tracheal ANN. OTOL. RHINOL. LARYNGOL. 89: 241-248.

1420. WEBSTER. B.T.; DUNLAP, T.W.; CRAIG, M.E. 1976. Ultrastructural studies of abscission in Phaseolus: localization of peroxidase. AMER. J. BOT. 63: 759-770.

1421. WEIR. E.E.: PRETLOW. T.G.; PITTS, A.; WILLIAMS, E.E. 1974. A more sensitive and specific histochemical peroxidase stain for the localization of cellular antigen by the enzyme-antibody conjugate method. J. HISTOCHEM. CYTOCHEM. 22: 1135-1/40.

1422. WEISSMANN, G.: BLOOMGARDEN, D.; KAPLAN, R.; COHEN, c.; HOFFSTEIN, S.; COLLINS, T.; GOTLIEB, A.; NAGLE, D. 1975. A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes into lysosomes of deficient cells. PROC. NAT. ACAD. SCI. USA 72: 88-92.

1423. WELINDER, K.G. 1973. Amino acid sequence studies of horseradish peroxidase. Tryptic glycopeptide containing two histidine residues and a disulfide bridge. FEBS LETT. 30: 243-245.

1424. WELINDER, K.G. 1976. Covalent structure of the glycoprotein horseradish peroxidase. FEBS LETT. 72: 19-23.

1424a. WELINDER, K.G. 1979. Amino acid sequence studies of horse radish peroxidase. Amino and carboxyl terrnini, cyanogen bromide and tryptic fragments, the complete sequence, and sorne structural characteristics of horseradish peroxidase c. EUR. J. BIOCHEM. 96: 483-502.

1425. WELINDER, K.G.; MAZZA, G. 1975. Similarities and ditTerences of five peroxidases from tumip and horseradish. Peptide mapping studies of glycoproteins. EUR. J. BIOCHEM. 57: 415-424.

1426. WELINDER, K.G.; SMILLlE, horseradish peroxidase. Il. 50: 63-90.

L.B. 1972. Amino acid sequence studies of Therrnolytic peptides. CAN. J. BIOCHEM.

1427. WELINDER, K.G.; SMILLlE, L.B.; SCHONBAUM, G.R. 1972. Amino acid sequence studies of horseradish peroxidase. 1. Tryptic peptides. CAN. J. BIOCHEM. 50: 44-62.

1427a. WELLBURN, A.R.; CAPRON, T.M.; CHAN, H.-S.; HORSMAN, D.O. 1976. Biochemical etTects of atmospheric pollutants on plants. In 'EFFECTS OF AIR POLLUTANTS ON PLANTS', SOc. EXP. BIOL. SEMINAR SERIES 1. Mansfield, T.A. (Ed.). Cambridge University Press, Cambridge, pp. 105-1/4.

1428. WERNER, D.J.; SINK Jr., K.c. 1977. Identification of Poinsettia cultivars by electrophoretic analysis of proteins and peroxidases. J. HERED. 68: 35-40.

Page 260: peroxidases ( peroksida )

REFERENCES 249

1429. WESTON, G.D.; FARRIMOND, J.A.; ELLIOTT, M.C. 1978. Effects of 2,4­dichloro-phenoxyacetic acid, indolyl-3yl-acetic acid and kinetin on activity of auxin-destroying enzymes of sycamore cell suspension cultures. EXPERIENTIA 34: 468-469.

1430. WESTSTEUN, E.A. 1976. Peroxidase activity in leaves of Nicotiana tabacum var. Xanthi nc. before and after infection with tobacco mosaic virus. PHYSIOL. PLANT PATHOL. 8: 63-71.

1433. WEVER, R.; HAMERS, M.N.; WEENING, R.S.; ROSS, D. 1980. Characterization of the peroxidase in human eosinophils. EUR. J. BIOCHEM. 108: 491-496.

1434. WHITMORE, F. W. 1971. Effect of indoleacetic acid and hydroxyproline on isoenzymes of peroxidase in wheat coleoptiles. PLANT PHYSIOL. 47: 169-171.

1435. WHITMORE, F.W. 1976. Binding of ferulic acid to cell walls by peroxidases of Pinus elliottii. PHYTOCHEM. 15: 375-378.

1436. WHITMORE, F.W. 1978. Lignin-protein complex catalyzed by peroxidase. PLANT SCI. LETT. 13: 241-245.

1436a. WHITMORE, F.W. 1978. Lignin-carbohydrate complex formed in isolated cell walls of calius. PHYTOCHEM. 17: 421-425.

1437. WILLIAMS, P.G.; STEWART, P.R. 1976. The intramitochondrial location ofcytochrome C peroxidase in wild-type and petite Saccharomyces cerevisiae. ARCH. MICROBIOL. 107: 63-70.

1438. WILLIAMS, R.J.P.; WRIGHT, P.E.; MAZZA, G.; RICARD, J.R. 1975. Proton magnetic resonance studies ofperoxidases from tumip and horseradish. BIOCHIM. BIOPHYS. ACTA 412: 127-147.

1439. WILSKI, A.; GIEBEL, J. 1972. The destruction of indoleacetic acid in roots of potatoes susceptible and resistant to Heterodera rostochiensis. BULL. ACAD. POL. SCI. 19: 815-820.

1440. WILSON, J.M.; WONG, E. 1976. Peroxidase cataIyzed oxygenation of 4,2',4'­trihydroxychalcone. PHYTOCHEM. 15: 1333-1341.

1441. WILSON, M.T.; RANSON, R.J.; MASIAKOWSKI, P.; CZARNECKA, E.; BRUNORI, M. 1977. A kinetic study of the pH-dependent properties of the ferric undicapeptide of cytochrome c (microperoxidase). EUR. J. BIOCHEM. 77: 193-199.

1442. WISE, 8.; MORRISON, M. 1971. Localization ofisozyme forms ofperoxidase in the cotton plant. PHYTOCHEM. 10: 2335-2360.

1443. WITTE, D.L.; BROWN, L.F.; FELD, R.D. 1978. Effects of bilirubin on detection of hydrogen peroxide by use of peroxidase. CLIN. CHEM. 24: 1778-1782.

,-'- ­

Page 261: peroxidases ( peroksida )

250 PEROXIDASES 1970/1980

1444. WITTENBACH, VA; BU KOVAC, M.J. 1975. Cherry fruit abscission : Peroxidase activity in the abscission zone in relation to separation. J. AMER. SOe. HORT. SCI. 100: 387-391.

1445. WOCHOK, Z.S.; BURLESON, B: 1974. Isoperoxidase activity and induction in cultured tissues of wild carrot: a comparison of proembryos and embryos. PHYSIOL. PLANT. 31: 73-75.

1446. WOESSNER, J.F.; RYAN, J.N. 1980. Effect of oestradiol on the postpartum rat uterus - peroxidase activity and collagen breakdown. J. ENDûCRINOL. 85: 387-392.

1447. WOLTER, KE.; GORDON, J.e. 1975. Peroxidases as indicators of growth and differentiation in aspen caHus cultures. PHYSIOL. PLANT. 33: 219-223.

1448. WONG, E.; WILSON, J.M. 1972. The oxidation of chalcones by peroxidase. HOPPE-SEYLERS Z. PHYSIOL. CHEM. 353: 132.

1449. WONG, E~; WILSON, J.M. 1976. Products of the peroxidase-catalyzed oxidation of 4,2',4'-trihydroxychalcone. PHYTOCHEM. 15: 1325-1332.

1450. WOOD, KR. 1971. Analytical isoelectric focusing of isoperoxidases from plants infected with cucumber mosaic virus (strain W.). PHYTOCHEM. 10: 2383-2384.

1451. WOOD, KR.; BARBARA, D.J. 1971. Virus multiplication and peroxidase activity in leaves of cucumber (Cucumis sativus L.) cultivars systematicaHy infected with the W strain of cucumber mosaic virus. PHYSIOL. PLANT PATH. 1: 73-81.

1452. WOOD, R.L.; LEGG, P.G. 1970. Peroxidase activity in rat liver microbodies after aminotriazole inhibition. J. CELL BIOL. 45: 576-585.

1453. WRAY, P.H.; GORDON, J.e. 1975. Effects of photoperiod on growth and peroxidase in three hybrid poplars. CAN. J. FOR. RES. 5: 735-738.

1454. YAMADA, H.; MAKINO, R.; YAMAZAKI, 1. 1975. Effects of2,4-substituents of deuteroheme upon redox potentials of horseradish peroxidases. ARCH. BIOCHEM. BIOPHYS. 169: 344-353.

1455. YAMADA, H.; YAMAZAKI, 1. 1974. Proton balance in conversions between live oxidation-reduction states ofhorseradish peroxidase. ARCH. BIOCHEM. BIOPHYS. 165: 728-738.

1456. YAMADA, H.; YAMAZAKI, 1. 1975. Heme-Iinked protonation of HCN, CO, NO and 0, complexes of reduced horseradish peroxidases. ARCH. BIOCHEM. BIO»HYS. 171: 737-744.

1457. YAMAGUCHI, T.; YAMASHITA, Y.; ABE, T. 1980. Desmutagenic activity of peroxidase on autoxidized linolenic acid. AGR. BIOL. CHEM. 44: 959-962.

Page 262: peroxidases ( peroksida )

REFERENCES 251

1458. YAMAMOTO, H.; TANI, T.; NAITO, N. 1975. Protein synthesis Iinked with resistance of oat [eaves to crown rust fungus. ANN. PHYTOPATHOL. SOC. IAP. 42: 583-590.

1459. YAMAZAKI, 1. 1974. Peroxidase. ln 'MOLECULAR MECHANISMS OF OXYGEN ACTIVATION'. Hayaishi, O. (Ed.). Academie Press, New York - London, pp. 535-558.

1460. YAMAZAKI, 1.; ARAISO, T.; HAYASHI, Y.; YAMADA, H.; MAKINO, R. 1978. Analysis of acid-base properties of peroxidase and myoglobin.

. ln 'ADVANCES IN BIOPHYSICS, VOL. Il, NEWER APPROACHES TO HEME PROTEINS'. Kotani, M. (Ed.). Iapan Scientific Societies Press, Tokyo; University Park Press, Baltimore, pp. 249-284.

1460a. YAMAZAKI, 1.; NAKAJlMA, R.; MIYOSHI, K.; MAKINO. R.; TAMURA, M. 1973. The functional relationship between horseradish peroxidase and other hemoproteins.· ln 'OXIDASES AND RELATED REDOX SYSTEMS'. King, T.E.; Mason, H.S.; Morisson, M. (Eds). Proc. 2nd Int. Symp., University Park Press, Baltimore, pp. 407-420.

1461. YAMAZAKI, H.; YAMAZAKI, 1. 1973. The reaction between indole-3­acetic acid and horseradish peroxidase. ARCH. BIOCHEM. BIOPHYS. 154: 147-159.

1462. YAMAZAKI, 1.; YOKOTA, K.N. 1973. Oxidation states of peroxidase. MOLEC. CELL. BIOCHEM. 2: 39-52.

1463. YAMAZAKI, 1.; YOKOTA, K.; NAKAJlMA, R.; YAMAZAKI, H. 1972. The manifold of peroxidase function. ln 'STRUCTURE AND FUNCTION OF OXIDATION-REDUCTION ENZYMES'. Akeson, A; Ahrenberg, A (Eds). Pergamon Press, Oxford - New York, pp. 321-328.

1464. YANG, S.F. 1974. The biochemistry ofethylene : Biogenesis and metabolism. ln 'RECENT ADVANCES IN PHYTOCHEMISTRY, VOL. VII'. Runeckles, V.c.; Sondheimer, E.; WaLton, D.C. (Eds). Academie Press, New York, pp. 131-178.

1465. YAROPOLOV, AI.; TARASEVICH, M.R.; VARFOLOMEEV, S.D. L978. ELectrochemicaL properties of peroxidase. BIOELECTROCHEM. BIOENERG. 5: 18-24.

1466. YAROPOLOV, A.L; VARFOLOMEEV, S.D.; BEREZIN, LV. 1976. Bioelectrocatalysis activation of a cathode oxygen reduction in the peroxidase­mediator carbon electrode system. FEBS LETT. 71: 306-308.

1467. YEH, R.; HEMPHILL Jr., D.; SELL, H.M. 1970. Peroxidase-catalysed formation of indole-3-carbaldehyde and 4-hydroxyquinoline from indole-3­acetaldehyde. BIOCHEM. 9: 4229-4232.

1468. YEH, R.; HEMPHILL Ir., D.; SELL, H.M. 1971. The effects of sodium bisulfite, manganous chloride and 2,4-dichlorophenol on peroxidase-catalyzed oxidation of indole-3-acetaldehyde. CAN. I. BIOCHEM. 49: 162-165.

Page 263: peroxidases ( peroksida )

252 PEROXIDASES 1970/1980

1469. YEN, S.T.; SADANAGA, K. 1977. Inheritance of leaf peroxidases in oats. CAN. J. GENET. CYTOL. 19: 303-312.

1470. YEN, S.T.; SADANAGA, K. 1977. genes controlling leaf peroxidases 19: 395-403.

Nullisomic and monosomic analyses of in oats. CAN. J. GENET. CYTOL.

1471. YOKOYAMA, M.; NISHIYAMA, F.; KAWA( N.; HIRANO, H. 1980. The staining of Golgi membranes with Ricinus communis agglutination horseradish peroxidase conjugate in mice tissue cells. EXP. CELL. RES. 125: 47-54. ;>

1472. YOKOTA, K.N.; YAMAZAKI, 1. 1977. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. BIOCHEM. 16; 1913-1920.

1473. YONEDA, Y. 1978. Studies on interspecific hybrid in Pharbitis. IV. analysis of peroxidase isozymes in P. ni! and P. purpurea hybrid. GENET. 53: 35-40.

Genetic JAP. J.

1474. YONEDA, Y.; ENDO, T. 1970. Peroxidase isozymes and their indoleacetate oxidase activity in the Japanese morning glory, Pharbitis ni!. PLANT CELL PHYSIOL. II: 503-506.

1474a. YONETANI, T.; YAMAMOTO, H. 1973. Optical and electron paramagnetic resonance properties of the nitric oxide compounds ofcytochrome c peroxidase and horseradish peroxidase. In 'OXIDASES AND RELATED REDOX SYSTEMS'. King, T.E.; Mason, H.S; Morrison, M. (Eds). Proc. 2nd Int. Symp., University Park Press, Baltimore, pp. 279-298.

1475. YOSHIDA, c.; MORITA, Y. 1970. Studies on phyto-peroxidase. XXIII. Spectrophotometric and fluorospectrophotometric studies on denaturation of Japanese-radish peroxidase by urea and guanidine hydrochloride. MEMOIRS RESEARCH INST. FOOD SCI. KYOTO 31: 1-9.

1476. YOUNG, M.; STEELINK, C. 1973. Peroxidase catalyzed oxidation ofnaturally­occurring phenols and hardwood lignins. PHYTOCHEM. 12: 2851-2861.

1477. YOUNG, O.; BEEVERS, H. castor bean endosperm.

1976. Mixed function oxidases from germinating PHYTOCHEM. 15: 379-385.

1478. YUNG, K.-H.; NORTHCOTE, D.H. 1975. walls of mesophyll cells of tobacco leaves.

Sorne enzymes present in the BIOCHEM. J. 151: 141-144.

1479. YUNG, K.-H.; WONG, Y.S.; CHOY, Y.M. 1979. Thermal activation of peroxidase from tobacco leaf mesophyll cell walls. INT. J. PEPTIDE PROTEIN RES. 14: 5-11.

1480. ZAAR, K. 1979. Peroxidase activity in root hairs of cress (Lepidillm sativum L.). Cytochemical localization and radioactive labelling of wall bound peroxidase. PROTOPLASMA 99: 263-274.

Page 264: peroxidases ( peroksida )

REFERENCES 253

1481. ZADEH, H.E.; TRIPPI, V. 1971. Activité peroxydasique et composition des peroxydases des fragments de hampe florale de Tabac au cours de l'organogénèse florale in vitro. C.R. ACAD. SC. PARIS 272: 564-567.

1482. ZALEWSKA, J.; SANIEWSKI, M. 1970. Influence of morphactin IT 3456 on geotropism and activity of enzymes connected with IAA oxidation in pea seedlings. Z. NAUK. UNIV. MIKOLAJA KOPERNIKA W TORUN BIOLOGIA 13: 267.

1483. ZELENEVA, LV.; KHAVKIN, E.E. 1980. Rearrangement of enzyme patterns in maize caHus and suspension cultures. Is it relevant to the changes in the growing ceHs of the intact plant? PLANTA 148: 108-115.

1484. ZIMMERMANN, H.J.; ROSENSTOCK, G. 1976. Proteingehalt, Proteinmuster, Peroxydase- und Malatdehydrogenase. Isoenzymmuster wahrend der Entwicklung und Lagerung der Knol1en von Solanum luberosum L. BIOCHEM. PHYSIOL. 169: 321-336.

1485. ZIMMERMANN, H.J.; ROSENSTOCK, G. 1976. Proteingehalt, Proteinmuster, Peroxydase- und Malatdehydrogenase. Isoenzymmuster beim Speicherparenchym von Solanum tuberosum L. nach Verwendung. BIOCHEM. PHYSIOL. PFLANZEN 169: 487-499.

1486. ZINNER, K.; DURAN, N.; VIDIGAL, c.c.c.; SHIMIZU, Y.; CILENTO, G. 1976. Chemienergized aromatic aldehyde from the peroxidase catalyzed oxidation of pyruvates: excited vanillin from vanylpyruvate. ARCH. BIOCHEM. BIOPHYS. 173: 58-65.

1487. ZMRHAL, Z.; MACHACKOVA, L 1978. Isolation and characterjzation of wheat peroxidase isoenzymes BI. PHYTOCHEM. 17: 1517-1520.

1488. ZOPPI, F.; FENILI, D. 1980. Drug interferences in reactions for detecting hydrogen peroxide by means of peroxidase. CLIN. CHEM. 26: 1229-1230.

Page 265: peroxidases ( peroksida )

1

. 1

1

1

Page 266: peroxidases ( peroksida )

AUTHORINDEX

ABE, T. : 1457. ABELES, F.B. : 1,2. ABON, C. : 258. ABRAHAMS, S.J. : 1367. ABRAMOWITZ, J. : 3.

~ :ACKERMAN, GA : 4. ADAMS, Jr. W.R. : 5. ADAMS, PA : 6. AHERN, T.J. : 7. AHFORS, C.E. : 163. AHLUWALIA, S. : 519, 519a. AHMED, S. : 7a. AHUJA, B.S. : 8. AHUJA, M.R. : 9. AKlYAMA, M : 1205. AKSENOVA, V.A : 1126. AKULOVA, E.A. : 919. AL-AZZAWI, M.J. : 10,513. ALBALA, A. : 957. ALBUZIO, A. : Il. ALCAREZ, C. : 186. ALESHIN, E.P. : 887. ALEXANDER, M.B. : 313. ALEXANDER, N.M. : 12, 702. ALEXANDRESCU, V. : 13, 14, 15,506. ALEXEEVA, V.J. : 1298. ALFSEN, A. : 16. ALGHISI, P. : 17. ALI, A. : 18. ALI, M.H. : 19. ALIBERT, E. : 20. ALLAN, G.G. : 7. ALLARD, R.W. : 234, 523, 832, 833. ALLDRIDGE, NA : 468. ALMGARD, G. : 21, 22, 23, 24, 25. AMIN, J.V. : 1232. ANDERSON, J.O. : 1371. ANDERSON, L.C : 26. ANDERSON, ·W.A. : 27, 28, 175, 227, 316.

Page 267: peroxidases ( peroksida )

256 PEROXIDASES 1970/1980

ANDREEVA, VA : 29. ANSTINE. W. : 30. ANTAKLY, T.W. : 31,970. ANTONINI, E. : 16, \032. 1033. 1034. ANTOSZEWSKI, R. : 267. 268,440, 1134 AR, N.P. : 636. ARAISO, T. : 31a, 32, 33. 345, 1460. ARAKAWA, H. : 34. ARCENEAUX, D. : 273. ARCHER, J.M. : 1117. ARMSTRONG, A : 937. ARMSTRONG, D. : 35, 1291. ARNISSON, P.G. : 36, 37, 38, 39, 40. ARUTYUNYAN, AM. : 810. ARYA, H.C. : 1060, 1060a, 1060b, lO73a, lO73b. ASADA, K. : 41. ASADA, Y. : 967. ASAKUA, T. : 1311. ASTHANA, J.S. : 1254. ATACK, AV. : 1154, 1155. ATAULLAKHANOV, F.l. : 379. ATSUMI, S. : 42. AUDERSET, G. : 282, 479. AUGUSTO, O. : 228. AULIKKI, M.S. : 43. AUSSEL, C. : 326. AUSTIN, J.H. : 1291. AUNE, T.M. : 44, 1323, 1324. AVER'YANOV, AA : 45. AVISSE, C. : 1397. AVRAMEAS, S. ; 46, 160, 1057, 1337. AWASTHI, Y.G. : 47. AZEN, EA : 48.

BABBLE, G.R. : 1213. BABOSZEBENYI, E. : 1369. BACON, D.R. : 666. BADEN, D.G. : 49, 50. BAG, A. : 912 BAILLAUD, L. : 140. BAINTON, D.F. : 145. BAJAJ, S. : 51, 52. BAJAJ, Y.P.S. ; 51, 52. BAKARDJIEVA, N.T. ; 52a, 54, 54a, 54b, 54c, 55, 56, 57, 58, 58a, 59, 308,460,461. BAKER, B. : 524.

Page 268: peroxidases ( peroksida )

257 AUTHORINDEX

BAKER, B.L. : 524 BALA, S. : 1299. BALABAEV, N.K. : 379. BALASIMHA, D. : 60, 61, 62, 63, 64, 65, 66, 1070, 1071, 1072. BALAZS, E. : 419. BALDWIN, DA : 6. BALLAL, S. K. : 1191. BANDURSKI, R.S. : 237. BANERJEE, R.K. : 204. BANERJI, A. : 67 BANERJI, D. : 1143 BANGERTH, F. : Ina. BANKSTON, P.W. : 1042 BAR-AKIVA, A. : 1140. BARBARA, D.J. : 68, 1451. BARBAS, H. : 867. BARBOTIN, J.N. : 69. BARDSLEY, W.G. : 70, 217, 1209. BARKER, C.W. : 73. BARKER, W.G. : 985. BARNA, J. : 71. BARNETT, N.M. : 72,261. BARTLlNG, Q.J. : 73. BARZ, W. : 74,97, 573. BASHOUR, N. : 384, 390. BASSIRI, A. : 75, 75a. BASTIN, M. : 76, 77, 78, 79. BATCHELOR, A.O. : 246. BATES, D.C. : 80, 198. BATES, L.S. : 980. BATRA, G.K. : 81. BAULT, A. : 82. BAUMANN, G. : 565. BAUN, L.c. : 936. BAVER, N. : 147. BAXTER, R. : 279. BAYSE, G.S. : 83, 84, 85, 907, 908, 909. BAZIN, M. : 646. BEAL, E.A. : 1049. BEARD, M.E. : 957. BECHARA, EJ.H. : 86, 228, 960, 1410. BECK, G.E. : 515a, 784. BECKMAN, C.H. : 910. BEDNAR, T.W. : 87, 88. BEEVERS, H. : 1477. BELDING, M.E. : 89. BEMILLER, J.N. : 90. BENADA, J. : 91.

Page 269: peroxidases ( peroksida )

258 PEROXIDASES 1970/1980

BENDALL, D.S. : 1076. BENEDICT, W.G. : 92, 93. BENES, K. : 94, 502. BENITO, C : 95. BENIWAL, S.P.S. : 1341. BERA, A. K. : 206. BEREZIN, I.W. : 96, 730, 731, 732, 1358, 1359, 1361, 1362, 1466. BERGH, B.O. : 1333, 1334, 1335. BERLIN, J. : 97. BERNHARD, W. : 31. BERTAUX, B. : 333. BERVILLE, A. : 434. BESFORD, R.T. : 98. BESTER, A.I.J. : 1385, 1386, 1387. BEUTLER, E. : 47, 1167. BEWLEY, J.L. : 1274. BHARGAVA, K.S. : 99. BHARTI, S. : 99a. BHATIA, CR. : 882, 883. BHATTACHARYA, N.C : 100, 101,323,930,931,932. BHATTARCHARYA, S. : 100, 102, 103,714,911. BIDLACK, W.R. : 104. BIELER, L.Z. : 183. BIELSKI, B.H.J. : 105, 106, 107. BIEMPICA, L. : 957. BILLETT, E.E. : 1238. BIRECKA, H.: 108, 109, 110, 111,112,113,114,115,116,188. BIRKNER, M. : 482. BISWAL, V.C : n 93. BISWAS, B.B. : 1080a. BJORKSTEN, F. : 117, 118. BLAAS, J. : 156, 157. BLAICH, R. : 119. BLANC, B. : 1037. BLIGNY-FORTUNE, D. : 120, 569, 570. BLOOM, G.D. : 121, 185. BLOOMBERG, R. : 527, 1355. BLOOMGARDEN, D. : 1422. BLUM, H. : 1104. BLUME, D.E. : 122. BLUME, K.G. : 164, 1167. BLUTHNER, W.D. : 578. BLYUMENFELD, L.A. : 810. BOGDAN, S. : 123. BOISARD, J. : 1025. BOLL, W.G. : 36, 37, 38, 39, 40. BOLLER, Th. : 124. BONNER, W.D. : 1103, 1104.

Page 270: peroxidases ( peroksida )

259AUTHOR INDEX

BONFANTE-FASOLO, P. : 124a. BONISOLLl, F. : 125. BONZON, M. : 479. BOORSMA, D.M. : 126. BOOP, M. : 51,52, 126a, S03, S04, S05, S06, 807. BORCHERT, R. : 127, 129, J30. BORODENKO, L.1. : 10/3. BORYS, M.W. : 1294. BOS, A. : 131. BOSMAN, ET. : 132. BOTTGER, M. : [33. BOUCHET, M. : 133, 134, 135, 135a, 136,338,435,436,437,438,439,452674,851,852. BOUDET, A.M. : 20. BOUILLENNE, C. : 137. BOVERIS, A. : 138, 1103. BOWLING, A.c. : 139. BOXUS, P. : 1063. BOYER, N. : 140, 141, 142, 143, 144. BOZALIK, S.J. : 1388. BOZDECH, M.J. : 145. BRABER, J.M. : 146. BRAD, 1. : 146a, 254, 914, 1043, J223. BRADER, J.M. : 146. BRATTON, B.O. : 147, 148. BRAVINDER-BREE, S. : 1262. BREDEMEIJER, G.M.M. : 149, [50, 151, 152, 153, 154, 155, 156, 157. BREDEROO, P. : 989. BRENNAN, T. : 158. BRETON-GORIUS, J. : 159, 825. BRETTON, R. : 160. BREWBAKER, J.L. : 160a, 1010. BRIBER, K.A. : 108. BRIGHT, J.E. : 1321. BRIGNAC, Jr. P.J. : 273. BRINKMANN, F.G. : 161. BRITTAIN, M.G. : 162. BROCK-LE-HURST, E. : 362. BRODERSEN, R. : 163. BRODRICK, H.T. : 1389, 1390, 1391. ! BRONNIKOVA, T.V. : 379. BROOKS, J.L. : 696, 697. BROSS, R.J. : 164, 1167 BROUET, A. : 123. BROYKO, L.K. : 1358. BROWN, A.H.D. : 73, 165. BROWN, L.F. : 1443. BROWN, R.H. : 166 BROWNING, A. : 1062.

Page 271: peroxidases ( peroksida )

260 PEROXIDASES 1970/1980

BRULFERT, J. : 167. BRUNNER, H. : 168. BRUNORI, M. : 1032, /033, 1123, 1441. BRYANT, S.D. : 169. BRYGIER, J. : 170. BRZOZOWSKA-HANOWER, J. : 171. BUDILOVA, E.V. : ln. BUDU, C.E. : 838. BUFLER, G. : Ina. BUGBEE, W.M. : 173. BUIS, R. : 174, 1031. BU KOVAK, M.J. : 1046, 1444. BUNT, A.H. : 194. BURG, S. : 653. BURKE, R.E. : 522. BURLESTON, B. : 1445. BURNETT, C. : 27, 175. BURR, B. : 939. BURUIANA, L.M. : 176. BUSINELLI, M. : 1307. BUTTON, J. : 177.

CABANNE, F.R. : 178. CABRILLAT, H. : 179. CACCO, G. : Il, 1251. CACHITA-COSMA, D. : 180, 181. CAIRNS, E. : 182. CAIRNS, W.L. : 182, 1381a. CALVAN, M. : 1273. CALVO, R. : 842. CAMERON, P.V. : 243. CAMMER, W. : 183. CANNON, A.M. : 184. CANNON, M.S. : 184. CAPONETTI, J.D. : 905. CAPRON, T.M. : 1427a. CARDENAS, F. : 764. CARLSON, J.A. : 632. CARLSON, P.S. : 75, 75a. CARLSOO, B. : 121, 185. CARPENA, O. : 186. CARSON, KA : 867. CARTER, D.P. : 187. CARUBELLI, R. : 1350.

Page 272: peroxidases ( peroksida )

AUTHORINDEX 261

CARUSO, J.L. : 19, CASADEI DE BAPTISTA, R. : 86, 228. CASHORE, W.J. : 163. CASTILLO, F. : 187a. CATALFAMO, J. L. : 108, 109, 110, 1Il, 188. CATEDRAL, F. : 189, 1181. CATESSON, A.M. : 190, 190a, 191, 192, 193,265,266. CAUBERGS, R. : 292. CAVALIERI, A.J. : 461a. CAVALIERI, E.L. : 1119. CAVATORTA, P. : 378. CECCHINI, J.P. : 871, \028. CECH, F.e. : 591. CERNOHORSKA, J. : 352. CEULEMANS, E. : 452. CHABIN, A : 646. CHADWICK, AV. : 255 CHAMPAULT, A. : 646. CHAN, H.S. : 1427a. CHAN, K.Y. : 194. CHAN, P.e. : 106. CHANCE, B. : 195. CHANDRA, G.R. : 196, 197. CHANG, e.K. : 32. CHANG, J.Y. : 197a. CHANT, S.R. : 80, 198. CHAPELLE, B. : 141. CHAPPET, A : 199, 200, 201, 202, 203, 335, 484. CHASKES, M.J. : 112. CHATTERJEE, D.K. : 204. CHATTOPADHYAY, N.e. : 206. CHATTOPADHYAY, S. : 73,205. CHAVAN, P.D. : 221. CHAUDHARY, S.S. : 723. CHAUHAN, J.S. : 207. CHAVIN, W. : 3. CHEIGNON, M. : 208. CHEN, S.L. : 209. CHERIAN, R. : 809. CHERNOFF, S. : J080. CHERRY, J.P. : 210, 211. CHERSI, A. : 1187. CHERTAL, K. : 809. CHETAL, S. : 212. CHI, E.Y. : 537. CHIANCONE. E. : 16. CHIBBAR, R.N. : 213.214,215,933. CHIGRIN, V.V. : 216.

Page 273: peroxidases ( peroksida )

262 PEROXIDASES 1970/1980

CHILDS, R.E. : 217, 1209. CHIN, e.Z. : 218. CHIPKO, B.R. : 246. CHIRKOVA, T.V. : 219. CHMIELNICKA, J. : 220. CHOUDHARY, S.S. : 221.· CHOUREY, P.S. : 222. CHOY, Y.M. : 223, 1479. CHRISTIE, K.N. : 224, 225. CHU, M. : 225a. CHUNG, J. : 226. CHUNG, K. : 761. CHUNG, A. : 227. CHYLINSKA, K.M. : 684. CILENTO, G. : 86, 228, 350 860 960 1409, 1410, 1411, 1486. CIOPRAGA, J. : 229. CLAIRBONE, A. : 230, 231, 232. CLAIRE, A.: 140. CLAPHAM, D. : 22, 23. CLARK, H.D. : 197. CLARK, MA : 4. CLARKE, J. : 233. CLARKSON, R.B. : 591. CLEGG, M.T. : 234. CLELAND, R. : 424, 425. CLEMENTI, F. : 235. CLOCHARD, A. : 1397. CLYNE, D.H. : 236. COHEN, e. : 1422. COHEN, J.D. : 237. COHEN, Y. : 238. COHEN: ZA : 593, 1269, 1270. COLD, M.H. : 703. COLILLA, W. : 90. COLLIER, G.S. : 6. COLLIER, H.B. : 239. COLLNGS, J.R. : 240. COLLINS, N. : 166. COLLINS, T. : 1422 COLOTELO, N. : 1182. COMBATT1, N.e. : 222 COME, D. : 1320. COMSTOCK, DA : 106. CONKLIN, M.E. : 241, 1238a. CONSTABEL, F. : 242. CONTIN, G.G. : 1400. COOKE, e.T. : 243. COOMBES, AJ. : 244.

Page 274: peroxidases ( peroksida )

AUTHOR INDEX 263

COPES, D.L. : 245. CORBETT, M.D. : 49, 50, 246. CORIN, R.E. : 247. COSMIN, O. : 914. COTRAN, R.S. : 248, Il 16. COTTON, M.L. : 249, 250. COUDERC, H. : 342. COULOMB, P. : 251, 1347. COULSON, A.F.M. : 252. COUPE, M. : 253. COURDUROUX, J.c. : 447. COVOR, A. : 254. COX, C.D. : 247. CRAIG, M.E: : 1420. CRAKER, L.E.·: 2, 255. CRAMER-KNIJNENBURG, G. : 132. CRITCHLOW, J.E. : 256, 257, 257a. CRONENBERGER, L. : 258. CROWOEN, R.K. : 139. CSERESNYES, Z. : 506. CUNNINGHAM, B.A. : 259, 630, 733, 760, 761, 1138. CURTIS, C.R. : 260, 261, 262, 263, SOI. CZANINSKI, Y. : 192, 193,264,265,266,466. CZAPSKI, K. : 267, 268. CZARNECKA, E. : 1441.

DABROWSKA, T. : 1055. DAEMS, W.T. : 269. DA GRACA, J.U. : 269a. DALY, J.M. : 189, 270,271, 271a, 271b, 1180, 1181. DANNER, D.J. : 272, 273, 909. DARBYSHlRE, B. : 274, 275, 276. DARIMONT, E. : 277,278,279,280,281,282,283,434,437,577, 1015, 1016, 1017. DASGUPTA, P. : 102,714. DASHEK, W.V. : 284. DASS, H.C. : 285. DATTA, A.G. : 204. DAUPHIN, B. : 646. DAUSSANT, J. : 286, 287, 1124a, 1234. D'AUZAC, J. : 253. DAVIDSON, B. : 288, 937. DAVIES, D.D. : 1137. DAVIES, D.M. : 289. DAVIES, M.E. : 290. DAVIS, C. : 958.

Page 275: peroxidases ( peroksida )

264 PEROXIDASES 1970/1980

DAVIS, L. : 973. DAVYDOV, R.M. : 810. DAVYDOVA, MA : 609. DEAL, CL. . 384, 385. DECHATELE~ R. :8TI. DEDECUE, CJ. : 130. DEEN, J.L.W. : 98. DEGN, H. : 291, 975, 975a. DE GREEF, J.A. : 292. DEGROOT, Ll. : 922. DEIMANN, W. : 293. DEJAEGERE, R. : 1139. DE JONG, D.W. : 294, 295. DEKOCK, P.c. : 296, 297. DELAIGUE, M. : 646. DELFIACCO, M. : 1114. DELINCEE, H. : 298 299 300, 301, 302, 303, 304, 305, 1068a, 1326. DELLACORTE, L. : 1188. DELRIO, I.A. : 306, 307. DEMIREVSKA-KEPOVA, K. : 55, 56, 57,308. DEMOREST, D.M. : 309, 1264, 1265. DEMORROW, J.M. : 547, 548. DENCHEVA, A.V. : 310, 311, 682. DENDSAY, J.P.S. : 312. DENNA, D.W. : 313. DENNY, P. : 553. DE OLMOS, J.S. : 314. DEPREST, B. : 1118. DE ROPP, J.S. : 724a. DE RYCKER, J. : 315, 520. DESARLO, F. : 1188. DESCHAMPS-MUDRY, M. : 200. DE SOMBRE, E.R. : 316, 317, 780, 781, 782. DESSER, R.K. : 318. DEVAY, M. : 699. DEVI, G. : 319. DEVILLERS, E.A. : 877. DEWOLF, M. : 320. DEZSI, L. : 321, 322. DHALIWAL, G. : 323. DHAWAN, A.K. : 324. DICKS, J. W. : 325. DIETRICK, W. : 320. DIJKMANS, H. : 77. DIMITRIJEVIC, L. : 326. DINELLO, R.K. : 327. DIXON, L. : 35. DJAVADI-OHANIANCE, L. : 328.

j.- •

i:

Page 276: peroxidases ( peroksida )

265 AUTHORINDEX

DOELLGAST, G.l. : 1318. DOLARA, P. : 1188. DOLMAN, D. : 329. DOLPHIN, D. : 327. DOMBROVSKlI, VA : 732. DONNELLAN, B. : 971. DO QUY HAl, : 330, 508. DORRIS, M.L. : 1080. DOUBEK, D.L. : 505. DOUGHERTY, H.W. : 710. DOUMENJOU, N. : 331. DOUSCHKOVA, P.1. : 310. DOUZOU, P. : 331a, 1338. DOYLE, M.P. : 332. DRAWERT, F. : 303, 304. DRESLER, S. : 1263. DREYFUS, B. : 825. DROBYSHEVA, N.1. : 1011. DROUET, A. : 1303. DUBERTRET, L. : 333. DUBIN, l. : 1415. DUBOIS, J. : 747, 748. DUBOUCHET, J. : 201, 202, 203, 334, 335, 336, 423a, 483, 484, 1058. DUBUCQ, M. : 337, 338, 440,441, 442, 674. DUDEN, R. : 339. DUFFUS, C.M. : 340. DUFFY, G. : 341. DUFFY, M.J. : 341. DUMITRESCU, M. : 342. DUMITRU, I.F. : 605. DUNFORD, H.B. : 31a, 32, 225a, 249, 250, 256, 257, 257a, 329, 343, 344, 345, 346,

347, 347a, 531,563,624,625,628,629,633,920, 920a, 928, 1069, 1120, 1121, 1122, 1268, 1275, 1276.

DUNLAP, T.W. : 1420. DUNLEAVY, J.M. : 348, 1364, 1365. 1366. DURAN, N. : 86, 228, 349, 350, 860, 960, 1409, 1410, 1411, 1486. DURAND, B. : 646, 776. DURAND, R. : 646. DURZAN, D.J. : 1073. DUTTA, S. : 67. DUVAL, J.c.c. : 351. DVORAK, M. : 352. DYM, M. : 1014. DZlEWANOWSKA, K. : 353.

Page 277: peroxidases ( peroksida )

266 PEROXIDASES 1970/1980

EARL, J.W. : 354. EDELSTEIN, L.M. : 971, 997. EDREVA, A.M. : 355, 1127. EGAN, R.W. : 710. EGUCHI, H. : 652a. EHRENBERG, A. : 817. ELKINAWY, M. : 356. ELLIOTT, M.e. : 1429. EL-METHANY, A. : 356a. ELSTNER, E.F. : 357,489. EMANOVILOV, E. : 57. ENDERS, N.T. : 164. ENOO, T. : 358, 984, 1474. ENDRESS, A.G. : 359. ENSINK, F. T.E. : 1373. EPSTEIN, D. : 997. EPSTEIN, E. : 360. EPSTEIN, N. : 361, 1162. ERECINSKA, M. : 362. ERICKSON, S.S. : 284. ERMAN, J.E. : 252, 363. ERNEST, L.e. : 364. ESEN, A. : 365. ESQUERRE-TUGAYE, M.T. : 850. ESSNER, E. : 366, 367. ESTERBAUER, H. : 368, 369, 482. ESTERHUIZEN, E.W. : 1390, 1391. EURELL, T.E. : 184. EVANS, J.J. : 370, 371. EVANS, M.L. : 372, 373. EVANS, W.H. : 318. EVANS, R.e. : 425c. EVETT, M. : 1122

FACCIOLl, G. : 374. FAHIMI, H.D. : 293, 375, 376, 377, 558, 559, 1116, 1402. FALCIONI, G. : 1123. FAUONI, A. : 228, 349, 860, 1409. FALLOT, J. : 427. FARKAS, G.L. : 322, 729a. FARKAS, J. : 1369. FARRIMOND, J.A. : 1429. FATRAI, Z. : 1220. FAVILLA, R. : 378. FEDAK, G. : 378a.

Page 278: peroxidases ( peroksida )

AUTHOR INDEX

FEDKINA, V.R. : 379. FEILLET, P. : 619, 686, 688. FEINBERG, J.H. : 188. FEINGOLD, M. : 380. FEJER, O. : 699. FELBERG, N.T. : 381. FELD, R.D. : 1443. FELDER, M.R. : 382. FEL'DMAN, D.P. : 96. FENIL[, D.: 1488. FERET, P.P. : 383, 848. FERRARI, G. : 1251. FERRI, M.V. : 383a, 494. FEUCHT, W. : 1166. FEUNG, C.S. : 522. FIBIGER, H. : 1266. FIELDES, MA : 384, 385, 386, 387, 388, 389, 390, 1356, 1357. FIELDING, J.L. : 391,392, 513. FINK, B. : 393. FIORETTI, E. : 1123. FITES, R.C. : 1329, 1330. FLECHTER, RA : 18, 620, 621. FLOYD, RA : 1086. FLÜCKIGER, W. : 394, 395. FLÜCKIGER-KELLER, H. : 395. FLURKEY, W.H. : 396, 397. FOBES, J.F. : 1105, 1106, 1107. FONG, K.L. : 783. FONTAINIERE, B. : 179. FORLANI, L. : 1034. FORRENCE, L.E. : 2. FOSKET, D.E. : 1336. FOSSE, M. : 333. FOWLER, J.L. : 398, 894. FRANCALANCI, R. : J 188. FRENKEL, C. : 158, 218, 399, 400, 402, 404, 499. FRETZ, TA : 712, 713. FRETZDORFF, B. : 405. FREY, G. : 573. FRIC, F. : 406, 407, 408, 409. FRICKER, A. : 339, 995. FRIDOVICH, I. : 230, 231, 232, 532, 881. FRIEDEN, E. : 594. FRIEDHOFF, J.M. : 530. FRIEND, J. : 410. FRlES, D. : 411, 412, 413, 438, 439, 443. FRY, S.c. : 414,415. FRYDMAN, B. : 416. FRYSMAN, R.B. : 416.

267

,,.

Page 279: peroxidases ( peroksida )

268 PEROXIDASES 1970/1980

FUCHS, W.H. : 409, 859. FUJITA. H. : 417, 663. FUJITA, S. : 418. FU KAt K. : 972. FUKUNAGA. T. : 972. FURAI, K. : 972. FUSHIKI, H. : 926.

GABORJANYI, R. : 419. GALE, M.D. : 420. GALLATI, H. : 421, 421a. GALLIANI, G. : 422. GALLIARD, T. : 423. GALLOIS, T. : 423a, 484. GALSTON, A.W. : 5, 113, 116, 665, 753, 754, 955, 956. GAMLIN, P. : 1090. GANCEVA, K. : 787. GARAY, R.V. : 782. GARBER, E.D. : 1081. GARCIA-RODRIGUEZ, M.J. : 120. GARDINER, M.G. : 424, 425. GARG, O.P. : 1204. GARRAWAY, M.O. : Ill, 114, 425a, 425b, 425c. GARRETT, J.R. : 426. GARR1S0N, L.B. : 666, 667. GAS, C. : 427. GASPAR, Th. : 133, 134, 135, 135a, 136, 137, 141, 142, 143, 144, 180, 181, 280,

281,282,283,338413,428,429,430,431,432,433,434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 577, 674, 749, 938, 1015, 1016, 1017, 1063, 1133, 1320, 1327, 1328, 1374, 1375.

GASYNA, Z. : 453. GAUTHIER, M.F. : 687. GEBICKI, J.M. : 107. GEELEN, J.L.M. : 1395. GEIGER, J.P. : 454, 455. GELINAS, DA : 456. GEMANT, A. : 457, 457a, GENTILE, I.A. : 458. GENTINETTA, E. : 1248, 1249. GEORGE, W.L.Jr. : 874. GEORGESCU, C.M. : 459. GEORGIEV, G.H. : 58,460,461. GEORGIEV, G.K. : 461. GETTYS, K.L. : 461a.

Page 280: peroxidases ( peroksida )

AUTHORINDEX 269

GEWITZ, H.S. : 462. GEYER, G. : 695. GHAZY, AM. : 650, 651. GHOSH, B. : 1185. GHOSH, J.K. : 462a. GIACOMETTI, G. : 1033. GIBSON, D.D. : 783. GIBSON, D.M. : 463,464, 767. GIBSON, Q.H. : 950. GICHNER, T. : 1302. GIEBEL, J. : 465, 1439. GILES, A.B. : 1238. GIRAUD, G. : 466. GLASIUS, E. : 1373. GOFF, c.w. : 467, 809 GOLDSTEIN, J. : 112. GOMEZ, M. : 306, 307. GONATAS, NA : 526. GONATAS, T.O. : 526. GONZALEZ-ALONZO, L.M. : 843. GOPINATHAN, K.P. : 319. GORDON, AR. : 468. GORDON, G.J. : 549. GORDON, J.c. : 469, 1447, 1453. GORDON, W.R. : 470. GOREN, R. : 442. GORENFLOT, R. : 342. GORIN, N. : 125, 471. GORZ, H.J. : 618. GOTLIEB, A : 1422. GOUJON, M. : 454, 455. GOVE, J.P. : 472, 473. GOWER, E.C. : 867. GREEN, R.C. : 474. GREGORY, L.E. : 196, 197. GREIMEL, A. : 475, 476, 477, 478. GREPPIN, H. : 135a, 187a, 282, 444, 445, 479, 658,659,660,661,749. 1015, 1016,

1017, 1018, 1019, 1020, 1021, 1022, 1023,1024, 1025, 1026. GRIFFIN, B.W. : 480, 481. GRILL, D. : 369, 482. GRISEBACH, : 507. GRISON, R. : 483, 484, 485, 1058. GROB, K. : 486. GROOME, N.P. : 487. GROSS, G.G. : 487a, 488, 488a, 489. GROSSER, C. : 1253. GROVER, Y.P. : 490. GRZELINSKA, A : 491.

Page 281: peroxidases ( peroksida )

PEROXIDASES 1970/1980 270

GUARNA, A. : 1188. GUHAMUKHERJEE, S. : 613, 1194, 1195, 1196, 1197, 1198. GUIBERT, B. : 46. GUPTA, B.D. : 913. GUPTA, V.K. : 9, 492, lOCH, 1340. GURUMURTl, K. : 213,214, 215, 493, 933. GURUPRASAD, K.N. : 723. GUST1N, M.K. : 962. GUZMAN, C.A. : 383a, 494, 495, 1342.

HAARD, N.F. : 402, 496, 497, 498, 499, 500, 923, 1074. HABECK, H. : 50\. HABER, A. : 106. HADACOVA, V. : 502. HADDON, L. : 503. HADLER, W.A. : 1216. HAGER, A. : 504. HAGER, L.P. : 505, 563a, 1325. HAG1MA, 1. : 13, 14, 506. HAG1WARA, T. : 604a. HAHLBROCK, K. : 507. HAl, D.Q. : 330, 508. HA1SMAN, D.R. : 509. HA1SS1G, B.E. : 510. HALDMANN, M. : 511. HALL, A. : 296. HALL, H.G. : 512. HALL, J.L. : 10,391,392,513, 5J4, 515, 593. HALL, T.C. : 515a, 784. HALLlWELL, B. : 315,516,517,518,519, 519a, 520. HALPER1N, W. : 521, 878, 879. HAM, E.A. : 710. HAMADA, G. : 971. HAMA KER, J.M. : 1245. HAMBR/CK, J.L. : 523. HAMERS, M.N. : 1433. HAM/LL, D.E. : 1239. HAM/LTON, R.H. : 522. HANCHEY, P. : 524. HANCOCK, J.f. : 461a. HANOWER, P. : 171, 524. HARGIS, J.H. : 505. HARKIN, J.M. : 525. HARPER, c.G. : 526 HARRIS, A.B. : 1351.

Page 282: peroxidases ( peroksida )

271AUTHOR INDEX

HARRIS, J.W. : 1191. HART, G.E. : 1164. HART, MA : 527. HARTE, C. : 1179. HARTENSTEIN, R. : 528, 529. HARTMANN, C. : 123, 1303. HASCHKE, R.H. : 194, 530. !.

HASEGAWA, Y. : 160a. HASINOFF, B.B. : 531. HASKINS, FA : 628. HASSAN, H.M. : 532. HAUN, M. : 228. HAWKINS, RA : 1027. HAYASHI, T. : 42. HAYASHI, Y. : 533, 534, 535, 1460. HAYWARD, D.M. : 284. HEGARTY, E. : 867. HEIDEMA, ET. : 471. HEINTZE, K. : 339. HEIPERTZ, R. : 1039. HELLIN, E. : 186. HEMPHILL, D.Jr. : 1467, 1468 HENDERSON, J.H.M. : 470, 536. HENDERSON, W.R. : 537, 538, 539, 540, 634.

. HENDRIKS, T. : 541. HENRIKSON, A. : 1003. HENRY, E. W. : 147, 148, 543, 544, 545 546, 547, 548, 549, 550, 551, 552, 553, 554. HENRY, Y. : 555. HEPLER, P.K. : 556, 1336. HERSZKOWICZ. 1. : 495. HERZOG, V. : 377, 557, 558, 559, 560 561, 562. HESS, C.E. : 404. HEUPEL, A.L. : 357. HEWETT, D. : 1368. HEWSON, W.D. : 346, 347, 563, 563a. HEYNE, E.G. : 259. HIDAKA, H. : 922. HIGUCHI, T. : 564, 926. HILDERSON, H.J. : 320. HILGENBERG, W. : 565. HILL, J.H. : 1366a. HILL, J.M. : 566 HIMMELHOCH, S.R. : 318. HIRAI, K. : 567. HIRANO, H. : 1471. HIROMI, K. : 900. HIRSCH, A.M. : 120, 568, 569, 570. HISLOP, E.C. : 571.

Page 283: peroxidases ( peroksida )

272 PEROXIDASES 1970/1980

HOBNER, G. : 1253. HOBSON, G.E. : 572. HOEK. F.J. : 1143a. HOESEL, W. : 573. HOESS, R.H. : 574. HOFFEREK, K. : 575, 576. HOFFMANN, M.E. : 729b, 860. HOFFSTEIN, S. : 1422. HOFINGER, M. : 281, 577. HOHLER,B. : 578. HONlG, D.H. : 1068. HORN BROOK, K.R. : 783. HORSMAN, D.O.: 579, 580, 1427a. HORVATH, M.M. : 581. HOSHINO, Y. : 1184. HOWELL, R.K. : 262, 263. HOYLE, M.C. : 472, 473, 582 583, 584, 585, 586, 587. HRADILIK, J. : 588. HRYCAY, E.G. : 589, 590. HUANG, F.H. : 591. HUAULT, C. : 592. HUBBARD, A.L. : 593. HUBER, CT. : 594. HUBERMAN, M. : 442. HUBNER, G. : 1253. HUDEK, J. : 1277. HUISINGH, D. : 597. HUMES, J.L. : 710. HURDUC, N. : 254. HUSSEY, R.S. : 595, 596, 597.

IDA, 5. : 598, 599, 903. IIZUKA, T.c. : 678. IMAIZUMI, K. : 1206. IMASEKl, H. : 600, 1190. IMBERT, M.P. : 601, 602, 603. INKSON, R.H.E. : 296. INNOCNETI, A.M. : 604. INOUYE, J. : 604a. INSLER, V. : 380. IN1JBUSHI, T. : 899. IORDACHESCU, D. : 605. 15H11, H. : 1205. 15H11, T. : 716.

Page 284: peroxidases ( peroksida )

AUTHORINDEX

ISHIMARU, A. : 606. ISHIMURA, Y. : 678. IVANOVA, MA : 172. IVANOVA, N.N.: 607,6081011,1012. IVANOVA, T.M. : 609,610. IWASA, S. : 652a. IWASAKl, K. ; 716. IYANAGI, T. : 1156.

JACOBS, A.A. : 611. JACOBS, M. : 180, 181, 938. JACOBSEN, J.V. : 30. JAEGER-WUNDERER, M. : 612. JAGANNATH, D.R. ; 883. JAIN, A. : 1254. JAIN, S.K. : 1225, 1226. JAIN, S.M. : 613. JAISMAL, V. : 613a, 1115. JAMALE, B.B. : 614. JAMES, G.T.: 1291. JANKAY, P. : 615. JANKELEVICH, B.B. : 947. JANSE, C. ; 489. JANSSEN, M.G.H. : 616. JANUSKA, M. : 318. JASANI, B. ; 617 JAYASA, N.K. ; 636. JAYNES, TA : 618. JEANJEAN, M.F. ; 619. JELLINCK, P.H. : 620,621,622,668, 794, 795. JEN, J.1. : 396, 397, 1326a. JENNINGS, A.C. : 623. JENSEN, T.E. : 550, 554. JERINA, D.M. : 271b. JEVNlKAR, J.J. ; 744. JOASSIN, L. : 135. JOB, C. : 851. JOB, D. : 200, 225a, 624, 625, 626, 627, 628, 629, 1059. 1101. JOHAM, H.E. : 895. JOHN, K.V. ; 940. JOHNSON, L.B. : 630, 631. JOHNSON, MA : 632. JONARD, R. : 1043a. JONAS, D.E. : 1220.

273

i

Page 285: peroxidases ( peroksida )

274 PEROXIDASES 1970/1980

JONES, D.G. : 243. JONES, L.R. : 1348. JONES, P. : 289, 626, 633. JONG, E.C. : 538, 634, 635. JORDAN, W. : 551. JOSEFSSON, J.O. : 779. JOSEPH, K.V. : 636. JOSH1, G.c. : 1299. JOSH1, G.V. : 614. JOSH1, M.G. : 1075. JOSH1, M.M. : 1299. JOSH1, R.D. : 99. JOUBERT, AJ. : 637. JUDEL, G.K. : 638, 639. JULAVEANU, A : 13. JULIANO, B.O. : 936, 986. JUNG, GA : 700. JUNGHANS, P. : 1253. JUNIPER, B.E. : 1117a. JUO, P.S. : 640.

KACHAR, B. : 1411 KACPERSKA-PALACZ, A : 641. KAOOUM, AM. : 1138. KAHL, G. : 642. KAHLEM, G. : 643, 644, 645, 646. KA LINER, M. : 539. KALYANARAMAN, V.S. : 647,648. KAMBOJ, R.K. : 649. KAMEL, M. Y. : 650, 651. KAMINSKI, C. : 652. KAMISAKA, S. : 1142. KANAZAWA, K. : 652a. KANG, B.G. : 653. KANG, C.H. : 941. KANG, Y.H. : 28,316. KANG, Y.J. : 654. KAOSIRI, T. : 655. KAPLAN, R. : 1422. KAPLOW, L.S. : 656. KAR, M. : 657. KARADGE, BA : 221. KARATAGLIS, S. : 1304. KAREGE, F. : 658, 659, 660, 661, 1026.

Page 286: peroxidases ( peroksida )

AUTHOR INDEX 275

KARNOVSKY, M.J. : 1014, 1296. 1297. KATAOKA. K. : 662,663. KATO, M. : 664. KATO, Y. : 1309. KATOH. T. : 1205. KATOMSKI, PA : 1119. KAUR, N.P. : 101,930,931. KAUR, S.P. : 816a. KAUR-SAWHNEY, R. : 665, 754. KAVANAGH, J. : 70. KAWAI, N. : 1471. KAWARDA, A. : 1300. KAY, E. : 1208, 1293. KEEN, N.T. : 996. KEENAN, EJ. : 666, 667. KEEPING. H.S. : 668. KEFELI, V. : 669. KELLER. T. : 670, 671,672. KELLY, G.J. : 673. KEMP, E.D. : 667, KENDE, H. : 124. KENNEDY, I.R. : 354. KHAN, A.A. : 439, 443, 451, 674, 1316, 1317. KHAN, M.I. : 675. KHANDUJA, S.D. : 691, 692. KHAVKIN, E.E. : 676, 1483. KHAZOVA, I.V. : 219. KHUDTAKOVA, G.M. : 607. KIDD, A. : 426. KIELISZEWSKA-ROKICKA, B. : 677. KIHARA, H. : 678. KIM, S.S. : 679, 680. KIMURA, H. : 1266. KIMURA, S. : 681. KINDL, H. : 681a. KING, C.M. : 87, 88. KIRAN, U. : 8. KITAMURA, 1. : 598, 599, 903. KITAOKA, S. : 1207. KLEBANOFF, S.J. : 89, 537, 538, 634, 635, 1122a. KLEIN, D. : 592. KLISURSKA, D.Y. : 310, 311, 682. KLUSAK, H. : 91, 683. KNAB, R. : 565. KNAPP, A.G. : 867. KNUUTTILA, M.L.E. : 1319. KNYPL, J.S. : 684. KOBREHEL, R. : 619, 685, 686, 687, 688.

Page 287: peroxidases ( peroksida )

276 PEROXIDASES 1970/1980

KOBYL'SKAYA, G.Y. : 689. KOCH, H. : 475, 476, 477, 478. KOCHBA, J. : 360, 690, 1252. KOCHHAR, S. : 691,692. KOCHHAR, Y.K. : 691, 692, 932. KOENIGS, J.W. : 693, 694. KOHLER, B. : 695. KOKKINAKIS, D.M. : 696, 697. KOLEK, J. : 1056. KOMARYNSKY, M. : 1188. KONZE, J.R. : 697a. KOSMAN, D.J. : 1339. KOSSATZ, Y.c. : 698. KOSULINA, L.G. : 1050. KOYACS, 1 : 699. KOYACS, K. : 330, 508. KOYALEYA, L.U. : 689. KOZHANOYA,O.N. : 1126. KRASNUK, M. : 700. KRAUT, J. : 1051. KREMER, D.F. : 263. KREMER, M.L. : 701. KRENZ, J. : 465. KRINSKY, M.M. : 702. KRISNANGKURA, K. : 703 KRISPER, J. : 704. KROBER, H. : 982. KRÜGER, G. : 705. KRUGER, J. E. : 706, 707, 720, 721. KRUSBERG, L.R. : 595. KRZYWANSKI, Z. : 1294. KU, H.S. : 708, 709. KUEHL, FA : 710. KUHLMANN, W.D. : 711. KUHN, C.W. : 81. KUHNS, Ll. : 712, 713. KUMAR, A. : 613a. KUMAR, D. : 714. KUMAR, S.A. : 647, 648, 1157. KUMLIEN, A. : 121, 185, 715. KUNISHI, A.T. : 763. KURAOKA, T. : 716. KURILlNA, TA : 1359. KUTACEK, M. : 669. KUYPERS, H.G. : 717. KWIEK, S. : 718.

Page 288: peroxidases ( peroksida )

277 AUTHOR INDEX

LABERGE. D.E. : 706,707.719.720. 721. LACROIX. Ll. : 886. LAOONIN, V.F. : 722. LADYGINA, M.E. : 1127. LAGROU. A : 320. LAIGNELET, B. : 688. LALORAA, M.M. : 99a, 723, 855, 856, 857. LAM, TH. : 723a. LAMAISON, J.L. : 724. LA MAR, G.N. : 724a. LAMBERT, N.J. : 962. LAMOND, M. : 144. LAMPORT, D.T.A : 725, 768, 769. LANDEGREN, V. : 24. LANE, F.E. : 169. LANE, N.J. : 726. LANGOWSKA, K. : 462. LANGRY, K.C : 724a. LANIR, A : 727, 1162. LATZKO, F. : 673. LAU, O.L. : 728. LAUREMA, S. : 729. LAVANCHY, P. : 1038. LAVARENNE, A : 140. LAVEE, S. : 690, 729b, 1215. LAZAR, G. : 729a. LEAL, A : 307. LEATHER, G.R. : 2, 255. LEBEDEVA, O.V. : 730,731,732, 1359, 1360. LEE, K.C : 733, 760, 761, 1273. LEE, R.F. : 631. LEE, TT : 734,735,736, 737, 738, 739, 740, 741, 742, 743, 744. LEFF, P. : 70. LEGG, P.G. : 1452. LEGRAND, B. : 745,746,747,748,749,750, 1017, 1398. LEIGH, J.S. : 751. LENHOFF, H.M. : 943. LENNA, D. : 17. LEON, A. : 186. LEPP, N.W. : 244 LESCURE, AM. : 752, 952. LESHEM, Y. : 753, 754. LESLlE, B.A. : 1061. LEV, S.L.K. : 755. LEVER, W.F. : 971. LEVIN, S. : 380. LEVINGS, CS. : 756.

Page 289: peroxidases ( peroksida )

278 PEROXIDASES 1970/1980

LEW, J.Y. : 757, 1208. LEWAK, S.T. : 353, 758. 1135, 1320. LEWIS, D.H. : 184. LHOSTE, A.M. : 759. LIANG, G.H. ; 259, 733. 760. 761. LIANG, Y. T. : 761. LlBERMAN-MAXE, M. ; 762. LlEBERMAN, M. : 763 .. LlEM, H.H. : 764. LlUEGREN, D.R. : 765. LlNDBECK, G. : 284. LlNSMAIER-BEDNAR, E.M. : 87, 88. LORET, C : 171. LlPETZ, J. : 766. LIS, E.K. : 1134. LITT, M. : 248. LIU, E.H.. 463, 464, 766a, ;67. 768. 769. LlVSHITZ, NA : 1199. LO, S. : 1173. LOBARZEWSKI, J. : 770, 771, 772. LOCKHART, B.E. : 773. LOEBENSTEIN, G. : 1267. LOEMOSZEWSLA-ROKICKA, B. : 774. LOEPFE, E. : 393. LOEWENBERG, J.R. : 209. LOH, J.W.C : 775. LOH, P. : 362. LOPEZ-GORGE, J. ; 306, 307. LOUIS, J.P. : 646, 776. LOUW, A. : 1396. LOW, L.E. : 611. LOY, J.B. : 777. LU, A.T. : 778. LUCK, CD. : 667. LUDDEN, P. : 271. 271a. LUNDQUISI, 1. : 779. LYLE, B.J. : 667. LYSOV, Y.P.: 1199. LYTTLE, CR. ; 317, 780, 781, 782, 976.

Page 290: peroxidases ( peroksida )

AUTHOR INDEX 279

MA, M. : 959. MAC CAY, P.B. : 783. MACCECCHINJ, M.L. : 783a. MACCLURE, J.W. : 122. MAC COWN, B.H. : 515a, 784. MAC COWN, D.D. : 784. MAC CREIGHT, W.H. : 785. MACDONALD, T. : 786. MACHACKOVA, 1. : 787, 788, 1487. MACHEIX, J.1. : 1043a. MACIEJEWSKA-POTAPCZYKOWA, W. : 789, 790. MACKEEVER, P.E. : 791. MACKO, V. : 792. MACLACHLAN, T. : 868. MACMILLAN, e. : 793. MACNABB, T. : 794,795. MACNICOL, PX : 796, 797. MACPHIE, J.L. : 798. MACRIS, B.J. : 799. MADER, M. : 800, 801, 802, 803, 804, 805, 806, 807, 808, 942. MAEDA, M. : 34, 904. MAGE, M. : 318. MAGEE, W.E. : 809. MAGONOW, S.N. : 810. MAGRO, P. : 17. MA1ER, R. : 811. MAILLARD, F. : 812. MAISKY, V. : 717. MAHADEVAN, S. : 647, 648. MAKINO, R. : 813, 814, 815, 816, 1454, 1460, 1460a. MALDONADO, BA : 813a. MALHOTRA, S.K. : 1247. MALHOTRA, S.S. : 1247. MALIK, e. P. : 324, 816a. MALOOF, F. : 288, 937. MALTEMPO, M.M. : 751,817. MANES, M.E. : 818. MANIGAULT, P. : 287, Il 24a. MANTLE, D. : 289. MAPSON, L.W. : 819, 820, 821. MARAITE, H. : 822. MARANI, E. : 823. MARAVOLO, N.e. : 1250. MARCHESINI, A. : 1187. MARCU, Z. : 146a, 254, 914, 1223. MARCUS, A. : 824. MARCUS, Z. : 1043. MARIE, J.P. : 825.

Page 291: peroxidases ( peroksida )

----

280 PEROXIDASES 1970/1980

MARIGO, G. : 331. MARIGOLIASH, E. : 941. MARINESCU, M. : 229. MARKAKIS, P. : 799. MARKLUND, S. : 826, 827, 828. MARKOTAI, J. : 1129, 1130. MARKS, M.E. : 162. MARKWALDER, H.U. : 828a. MARR, e.D. : 829. MARRA, C.M. : 667. MARRUCCHINI, e. : 1307. MARSALEK, L. : 830, 831. MARSHALL, D.R. : 832, 833. MARSHALL, M. : 498. MARTE, M. : 890. MARTH, E.H : 332. MARTIN, e. : 178. MARTIN, J.e. : 505. MARTIN, S.M. : 880. MARTINEZ, J. : I043a. MARTINO, E. : 138. MARTY, F. : 834. MARTYUCHENKO, S.A. : 835. MARUYAMA, T. : 836. MASIAKOWSKI, P. : 1441. MASON, D.Y. : 837. MASSEYEFF, R. : 326. MATEESCU, MA : 838, 1163. MATHUR, S.N. : 1115. MATHYS, W. : 839. MATILE, Ph. : 486, 840. MATKOVICS, B. : 330, 508, 1220. MATKOVICS, 1. : 330, 508. MATO, M.e. : 841, 842, 843. MATSUNO, H. : 844. MATTA, A. : 458. MATTHEW, lA. : 423. MATTHEWS, P. : 845. MATTOO, A.K. : 846, 847. MAUCHAMP, J. : 1084. MAYBERRY, J.S. : 848. MAYBERRY, M. : 940. MAZAU, D. : 849, 850. MAZZA, G. : 555, 851, 852, 853, 854, 1102, 1425, 1438. McGALDRIE, T. : 1278. McGEER, E.G. : 1266. McLEESTER, R.e. : 515a. MECHAM, D.K. : 371.

i·~ ...

Page 292: peroxidases ( peroksida )

281 AUTHORINDEX

MEIXALF, D.G. : 7. MEERABAI, A. : 1297a. MEGHA, B.M. : 855, 856, 857. MEHTA, S.L. : 1075, 1230. MENDEZ, J. : 843, 1029. MENDGEN, K. : 858, 859. MENEGHINI, R. : 860. MENNES, A.M. : 861,862,863,979. MENZEL, D. : 864, 865. MEREDITH, W.O.S. : 721. MERRETT, M.J. : 166. MERZLYAR, M.N. : 45. MESULAM, M.M. : 866, 867. METZLER, M. : 868. MEUDT, W.J. : 869, 870. MEYER, H.E. : 522. MEYER, Y. : 804, 805. MIA, AJ. : 1073. MIASSOD, R. : 871, 1028. MICHAELS, AW. : 83. MICHELSON, A.M. : 1057. MICHOT, J.L. : 872. MIGLER, R. : 873. MIKILA, J.J. : 43. MILDVAN, AS. : 492. MILEWSKA, E. : 789. MILLER, A. : 115. MILLER, F. : 560, 561, 562. MILLER, GA : 874. MILLER, R.L. : 1282. MILLER, R.W. : 875, 876, 1233. MILLS, R.R. : 284. MILNE, D.L. : 877. MINEYEV, A.P. : 1199. MINOCHA, S.c. : 521,878,879. MISAWA, M. : 880. MISHRA, D. : 657, 998. MISRA, H.P. : 881. MITRA, R. : 882, 883. MITSUI, T. : 884. MIYOSHI, K. : 1460a. MLODZIANOWSKI, F. : 1044, 1246. MOCHAN, E. : 885, 944. MODESTO, R.R. : 236. MODI, V. V. : 846. MOHR, P. : 1091, 1092. MOLLENHAUER, H.H. : 184. MOLNAR, J.M. : 886.

Page 293: peroxidases ( peroksida )

PEROXIDASES 1"970/1980 282

MOLOKOV, L.G. : 887. MONAKHOVA, O.F. : 1050. MONGET, D. : 888. MONTALBINI, P. : 889, 890. MONTIES, B. : 192, 8903. MOORE, A.L. : 1103, 1104. MOORE, R.M. : 259, 733. MOORE, T.S. : 891. MOREAU, J.N. : 1397. MOREAU,M. : 193,266, 335, 336, 483, 1058. MORELL, D.S. : 893. MORFAUX, J.N. : 1397. MORGAN, P.W. : 398, 894, 895. MORIKAWA, T. : 896, MOSER, H.L.A. : 1068. MORISHIMA, 1. : 897, 898, 899, 900, 966, MORITA, H. : 876. MORITA, Y. : 598, 599, 901, 902, 903, 904, 1315, 1475. MOROT-GAUDRY, J.F. : 335,336. MORRIS, G. : 905. MORRIS, R. : 1325. MORRISON, M. : 83, 84, 85, 272, 906, 907, 908, 909, 1442. MORTON, T.C. : 540. MOSS, M.B. : 867. MUCCHIELLl, A. . 326. MUELLER, W.C. : 910. MUFSON, E.J. : 867. MUJER, C.V. : 9103. MUKHERlEE, S. : 102, 103, 911. MUKHERlI, S. : 912, 913, 999. MULLER, W.H. : 615. MULLER-EBERHARD, V. : 764. MULLIGAM, R.M. : 529. MUMFORD, L.M. : 963. MUMMA, R.O. : 522. MUNCH, P. : 806. MURESAN, T. : 914. MURPHY, C.F. : 756. MURPHY, M.J. : 915,916,917,918. MURR, D.P. : 728. MUSSELL, H.W. : 9183, 1283, 1284. MUSTACCHI, P. : 145. MYRZAEVA, S.V. : 919.

Page 294: peroxidases ( peroksida )

i

283AUTHOR INDEX

NADEZHDIN, A. : 920, 920a. NAOOLNY, L. : 921. h:~ NAFICHI, N.E. : 1367. ~::.:::

NAGAO, M. : 1149. NAGASAKA, A. : 922. NAGLE, D. : 1422. NAGLE, N.E. : 923. NAINAWATEE, H.S. : 212, 649. NAIK, M.S. : 1153. NAITO, N. : 1458. NAKAGAWA, H. : 969. NAKAI, Y. : 663. NAKAJlMA, R. : 924, 925, 1460a, 1463. NAKAMURA, C. : 288. NAKAMURA, Y. : 926. NAKANISHI, S. : 927. NAKANO, Y. : 1207. NAKATANI, H. : 900, 928. NANDA, J.S. : 207. NANDA, K.K. : 100, 101,213,214,215,323,493,930,931,932,933, 1157. NANDI, B. : 206. NANDRIS, D. : 455. NASINEC, V. : 788. NASSIF-MAKKI, H. : 242. NATARELLA, N. : 934,935. NAVASERO, E.P. : 936. NEARY, J.T. : 288, 937. NEGRUTlU, I.: 180, 181,938. NELSON, E.C. : 939, 940, 941. NEMCSOK, J. : 581. NESSEL, A. : 807, 942. NEUCERE, N.J. : 1322. NEUHAUSSER, E.F. : 529. NEUKOM, H. : 828a. NEUMANN, H. : 360 NEWCOMB, A.M. : 622. NEWCOMB, W. : 653. NEWELL, PA : 329. NGO, T.T. : 943. NICHOL, A.W. : 893. NICHOLlS, P. : 885. NICHOLLS, P. : 944. NICOLAE, S. : 15. NICULESCU, S. : 229, 605. NIEDERMEYER, W. : 945. NIEMTUR, S.T. : 946. NIKAIDO, H. : 599. NIKOLAEVA, M.G. : 947. NIKOLOV, S. : 948.

Page 295: peroxidases ( peroksida )

284 PEROXIDASES 1970/1980

NIR. 1. : 949. NISH1YAMA. F. : 1471. NOBLE. R.W. : 950. NOGUCHI, M. : 1210. 121 J. 1212. NORMAN, T. : 25. NORRIS. S.H. : 236. NORTHCOTE. D.H. : 503. 1478. NORTON. W.T. : 183. NOUGAREDE. A. : 951. 952. NOVACKY. A. : 953, 954. NOVAK. J.F. : 955, 956. NOVIKOFF, A.B. : 957, 958, 959. NOVIKOFF, P.M. : 958, 959. NOVITSKI, M. : 164. NUMEZ, J. : 872, 1412.

O'BRIEN, C.R. : 960. O'BRIEN, J.S. : 1039. O'BRIEN, P.J. : 474, 589, 590, 960, 961, 1035, 1308. O'BRIEN, T.P. : 1241. OBST, Y.R. : 525. OCHIAI, H. : 1205. OCKERSE, R. : 962, 963, 964. O'CONNOR, M.N. : 548. ODAJIMA, T. : 965. ODOARDI, M. : 987, 1248, 1249. OERTLI, J.J. : 395. OGAWA, S. : 897, 898, 899, 900, 966. OGISO, K. : 1301. O'HEOCHA, C. : 915, 916, 917, 918. OHGUCHI, T. : 967. OHKAWA, K.I. : 31, 970. OHLSSON, P.J. : 220, 751, 817, 828, 968, 1002, 1003, 1004. OHRMAN, B..: 1005. OHTAKl, S. : 969. OKA, H.I. : 984. OKUN, M.R. : 971, 997,1132. OKUNO, Y. : 972. OLIVEIRA, O.M. : 86, 228. OLSEN, J.L. : 973. OLSEN, L.F. : 974, 975, 975a. OLSEN, R.L. : 976. OLSON, A. : 976a. OLTEANU, G. : 459. OMRAN, R.G. : 977.

k>l',':....

Page 296: peroxidases ( peroksida )

285 AUTHORINDEX

ONG, H. T. : 978. OOSTROM, H. : 863, 979. OPARA, A. : 828. ORTEGA, E.I. : 980. OSBORNE, D.J. : 981,1108,1109,1110,1154,1155. OSHINO, N. : 362. OSSELTON, J.e. : 823, 1111. OSTY, J. : 872. OR, N. : 971. ORY, R.L. : 210, 211. OVCHARENKO, GA : 607, 1012. OZEL, M. : 982.

PADMA, A. : 983. PAl, e. : 984. PALFI, G. : 322. PALMER, e.E. : 985. PALMIANO, E.P. : 986. PALMIERI, S. : 987. PANDEY, R.L. : 490, PANTEL, S. : 988. PAPADIMITRIOU, J.M. : 989, 1117. PARISH, R.W. : 990, 991, 992, 993, 994. PARK, K.H. : 995. PARTRIDGE, J.E. : 996. PARUPS, E.V. : 875. PASMAN, A.J. : 1143a. PATEL, e.S. : 536. PATEL, R.P. : 997, 1132. PATEL, V. : 273. PATRA, H.K. : 998. PATRIARCA, P.e. : 998a. PAUL, A.K. : 999. PAUL, B.B. : 611,1000,1001. PAUL, K.G. : 220, 751, 817,828,968, 1002, 1003, 1004, 1005, 1006. PAULSEN, G.M. : 733. PAULUS, K. : 339. PAWAR, V.S. : 1007. PAYNE, M.G. : 1079. PEDERSEN, M. : 1009. PEIRCE, L.e. : 1010. PElVE, Y.V. : 608, 1011, 1012, 1013. PELLINIEMI, L.J. : 1014. PENEL, CI. : 135a, 282, 444, 445, 479, 658, 659, 660, 661, 749,1015, 1016, 1017,

1018, 1019, 1021, 1022, 1023, 1024, 1025, 1026.

Page 297: peroxidases ( peroksida )

286 PEROXIDASES 1970/1980

PENNEY, G.O. : 1027. PENON, P. : 871, 1028. PEREIRA, J.R. : 1029. PERESSE, M. : 193, 423a, 266, 484. PEREZ DE LA VEGA, M. : 95. PERL, M. : 1096, 1097. PERLEY, J.E. : 785. PESCE, AY. : 236. PESCI, P. : 1400. PETCULESCU, : 176. PETER, R.. : 553. PETERSSON, L. : 817. PETZOLD, H. : 982. PFE1L, E. : 705. PFLUG, W. : 1029a. PHAN, C.T. : 1030. PHELPS, C. : 1032, 1033, 1034. PHILLlPS, D.R. : 423. PHlPPS, DA : 244. PHIPPS, J. : 174, 1034. PIATT, J. : 1035. PICKERING, J.W. : 1036, 1054. PIEFKE, J. : 462. PILET, P.E. : 485, 742, 812, 1037, 1038. PILZ, H. : 1039. PINCKARD, JA : 1417. PINCUS, S.H. : 1040. PINGEL, U. : 1041. PINO, R.M. : 1042. PIRRWITZ, J. : 1092. PIRVU, T. : 146a, 1043. PITTS, A : 1421. PLACHY, C. : 1176. PLAPINGER, R.E. : 1184. POËSSEL, J.L. : 1043a. POH-FlTZPATRICK, M.B. : 764. POLEVOl, V.V. : 689. POLlTYCKA, B. : 1044. POLLAK, V.E. : 236. POMMIER, J. : 1412. POOVAIAH, B.W. : 1045, 1046, 1047, 1048. POPOV, D. : 13. PORTSMOUTH, D. : 1049. POTAPOV, N.G. : 1050. POTTY, V.P. : 636. POU LOS, T.L. : 1051. POURRAT, A : 724. POURRAT, H. : 724. POUX, N. : 1052, 1053.

Page 298: peroxidases ( peroksida )

287 AUTHOR INDEX

POWELL, B.L. : 1036, 1054. PRASAD, R. : 1200. PRASAD, S. : 1247. PRATT, H.K. : 708, 709. PRATT, J.M. : 6. PRETLOW, T.G. : 162, 1421. PRETORIUS, W.J. : 1392. PRONINA, N.B. : 722. PRZYBYLSKA, J. : 1055. PSENAKOVA, T. : 1056. PUCHALSKI, J. : 1144, 1145. PUFF, C. : 704. PUGET, K. : 1057, PUGIN, A. : 336, 423a, 1058. PUJARNISCLE, S. : 253. PULITI, R. : 1188. PULLMAN, H. : 1345. PUPPO, A. : 1059. PUROHIT, S.D. : 1060, 1060a, 1060b, lO73a, 1073b. PUTNEY, J.W. : 1061. PUXEDDU, P. : 1114.

QUAIL, P. : 1062. QUALSET, C.O. : 1226. QUINANA, N. : 957, 958, 959. QUOIRIN, M. : 1063.

RAA, J. : 356, 1064, 1065, 1066, 1067. RACKIS, J.J. : 1068. RADOLA, B.J. : 298, 299, 300, 301, 302, 303, 304, 1068a, 1131. RAHlMTULA, A.D. : 961. RAJHATHY, T. : 378a. RAKADJIEVA, D.L : 58a. RALSTON, J. : 1069. RAM, C. : 59, 60, 61, 62, 1070, 1071, 1072. RAMAIAH, P.K. : 1073. RAMAKRISHNAN, T. : 319. RAMAWAT, K.G. : 1060, 1060a, 1060b, lO73a, 1073b. RAMAZANOVA, L.K. : 1298. RAMSEY, E.E. : 667. RAMIREZ, DA : 910a.

Page 299: peroxidases ( peroksida )

288 PEROXIDASES 1970/1980

RANADIVE. A.S. : 1074. RANJEVA. R. : 20. RANSON, RJ. : 1441. RAO. S.S. : 1189. RAO, V.R. : 1075. RAPPAPORT, L. : 1075a. RASMUSSEN, L.F. : 163, 1045, 1046, 1047. RATHMELL, W.G. : 1076, 1077, 1078. RAUF, A. : 1078a. RAUTELA, G.S. : /079. RAWITCH, A.B. : 1080. RAY, CG. : 89. RAY, K. : 1080a. RAY, P.M. : 373 RAYCHEBA, J. : 250. REBAGAY, G.R. : 1203. RECHTORIS, C : 1284. REDDY, G.M. : 983. REDDY, K.B.S.M. : 1279. REDDY, M.M. ; 1081, 1082, 1083. REGARD, E. : 1084. REID, R. : 940. REIGH, D.L. : 35, 1085, 1086, 1087, 1088. REIMANN, L. : 1089. REINER, A. : J090. RENNERBERG, R. : 1091, 1092. RENNERT, A. : 789. RENNKE, H.G. : 1093. RENWICK, J.A.A. : 792. RETHORE, J.L. : 427. RETIG, N. : 1094, 1095. REUVENI, R. : 1096, 1097. REYNOLDS, T. : 1098. RHODES, J.M. : 1099. RICARD, J.R. : 627, 628, 629, 852, 871, 1028, 1059, 1101, 1102,1438. RICE, R.M. : 556. RICH, P.R. : 1103, 1104. RICHARD, L.B. : 547, 548, 552. RICK, CM. : 1105, 1106, 1107. RIDGE, 1. : 981, 1108, 1109, 1110. RIETVELD, W.J. : 823, 1111. RIGAUD, J. : 1059. RINOONE, B. : 421a, 422. RINEHART, R. : 35. RITZERT, R.W. : 1113. RIVA, A. : 1114. RIZVI, S.J.H. : 1115. ROBBINS, D. : 1116. ROBERTSON, B. : 1067.

Page 300: peroxidases ( peroksida )

AUTHORINDEX 289

ROBERTSON, JA : 1117. ROBINS, R.J. : 1117a. ROCK, G.L. : 743. RODRIGUEZ-KABANA, R. : 1348. ROE, C.H. : 674. ROELS, F. : 1118. ROGAN, E.G. : 1119. ROMAN, R. : 1120, 1121, 1122. ROMER, D. : 459. ROOS, D. : 131,269. ROSEN, H.·: 1122a. ROSENSTOCK, G. : 1484, 1485. ROSHCHUPKlNA, T.G. : 607. ROSS, AF. : 1221, 1222. ROSS, D. : 1433. ROTH, R.W. : 1119. ROTTLlO, G. : 1123. ROUGE, P. : 1124. ROUSSAUX, J. : 287, 1124a. ROUTLEY, D.G. : 587. ROZHKOVA, G.D. : 1358, 1361, 1362. RUBERY, P.H. : 1125. RUBIN, BA : 45,172,609,1126,1127,1128. RUCHEL, R. : 175. RUCKER, W. : 1129, 1130, 1131. RUCKPAUL, K. : 1092. RUDICH, J. : 1095. RUDIN, Y. : 328, 783a. RULE, AJ. : 1132. RUNKOVA, L.V. : 1133, 1134. RUSSO, J.F. :147. RYAN, J.N. : 1446. RYCHTER, A : 158, 758, 1135. RZUCIDLO, L. : 718.

SACHAR, R.C. : 312, 1315. SACHER, JA : 1136, 1137. SACKSTON, W.E. : 238. SADANAGA, K. : 1469, 1470. SADANANDAM, A : 1297a. SAE, S.W. : 1138. SAFONOV, V. : 1139. SAFONOVA, M. : 1139. SAGI, F. : 419. SAGIV, J. : 1140.

Page 301: peroxidases ( peroksida )

290 PEROXIDASES 1970/1980

SAHULKA, J : 1141. SAIGO, S. : 678. SAlTO, K. : 1235. SAKURAI, N. : 1142. SALAMINI, F. ; 987, 1248, 1249. SALVATERRA, P.M. ; 1235. SAMMONS, R. : 837. SAMSHERY, R. ; 1143. SANDERS, G.T.B. : 1143a. SANIEWSKI, M. ; 1144, 1145, 1482. SANO, H. : 1146, 1147, 1148, 1149. SANO, T. : 900. SANTIMONE, M. ; 1150, 1151, 1152. SANTOS, S. : 164. SARDHAMBAL, R.V. : 1153. SARGENT, J.A. : 981, 1154, 1155. SARKISSIAN, M.U. : 1164. SARMA, TA ; 8. SARRIS, J. ; 1397. SASSER, J.N. ; 596, 597. SAULESCU, N.N. : 14. SAUTICH, MA : 216. SAVAGE, N. : 240. SAWADA, Y. : 1156. SAWANO, F. ; 417. SAWHNEY, N. ; 1157. SAWHNEY, S.S. : 1157. SBARRA, A.J. : 611, 1000, 1001. SCALLA, R. : 178. SCANDALIOS, J.G. : 30, 1158, 1159. SCANNERINI, S. : 124a. SCARPONI, L. : 1307. SCHAEFER, H. : 1160. SCHAEVERBEKE, J. : 208. SCHAFER, P. : 1161. SCHAFER, W. : 305. SCHATZ, G. : 328, 783a. SCHAUMBORG-LEVER, G. : 1132. SCHE1D, B. : 957. SCHEJTER, A. : 361, 727, 1[62. SCHELL, H.D. ; 838, 1163. SCHELLER, F. : 1091, 1092. SCHERTZ, K.F. : 1164. SCHIPPER, Jr. A.L. : 510, 1165. SCHLEGEL, R. : 578. SCHLOSS, P. : 808. SCHMID, P.P.S. ; 1166. SCHMIDT, G.M. ; 164, 1167. SCHMIDT, H. : 1168.

Page 302: peroxidases ( peroksida )

AUTHOR INDEX 291

SCHMIDT-ULLRICH, B.: 1132. SCHNEIDER, E.A. : 1169 SCHNEIDER, J. : 1170 SCHOKNECHT, J. : 809. SCHONBAUM, G.R. : 492, 1089, 1172, 1173, 1427. SCHOPFER, P. : 1174, II 74a, 1175, 1176. SCHREIBER, W. : 1177, 1178. SCHROEDER, W.A. : 197a. SCHULTZ, J. : 381. SCHULZ, H. : II 78a. SCHUPPER, H. : 51 1. SCHWACHHOFER, K. : 136,283.. SCHWAGER, H. : 672. SCHWARZL, E. : 368. SCHWENZER-RODRIGUEZ, N. : 1179. SCHWIND, F. : 135. SCOTT, K.M. : 1027. SEEVERS, P.M. : 271, 271a, 1180, 1181. SEIDLOVA, F. : 94. SEKHON, A.S. : 1182. SELIGMAN, A.M. : 949, 1183, 1184. SELL, H.M. : 1467, 1468. SELS, A.A. : 170. SELVARAJ, RJ. : 1000, 1001. SEMANCIK, J.S. : 773. SEMENOVA, MA : 172. SEN, S.P. : 103, 462a, 1184a. SENGUPTA, B. : 1184a. SENGUPTA, D.N. : 462a, 1184a. SENGUPTA, T. : 1185. SEQUEIRA, L. : 921, 1077, 1078, 1186. SEQUI, P. : 1187. SERY, T. : 511. SESSA, D.J. : 1068. SEVERSON, Jr. J.G. : 775. SEVHONKIAN, S. : 1038. SEVIER, E.D. : 1187a. SEXTON, R. : 514, 515. SGARAGLI, G. : 1188. SHAILA, M.S. : 319. SHANKARLINGAM, T. : 1189. SHANNON, L.M. : 233, 757, 1187a, 1190, 1208, 1293. SHANNON, M.C. : 1191. SHANNON, S. : 1192. SHANNON, Jr. W.A. : 1184. SHAPIRO, B.L. : 26. SHARMA, R. : 1193, 1194, 1195, 1196, 1197, 1198. SHARMA, S.c. : 499. SHARMA, V.K. : 490.

Page 303: peroxidases ( peroksida )

292 PEROXIDASES 1970/1980

SHARONOV, Y.A. : 810, 1199. SHARONOVA, NA : 1199. SHAW, C.R. : 1200. SHAW, G. : 1278. SHEEN, S.J. : 1201, 1202, 1203. SHEID, B. : 957. SHELTON, E. : 318. SHEORAN, T.S. : 1204. SHERI F, M. : 356a. SHERWOOD, R.T. : 1370, 1371. SHIBATA, H. : 1205. SHIBATA, K. : 1142. SHIGA, 1. : 1206. SHIGEOKA, S. : 1207. SHIH, J.H.C. : 1208. SHIH, L.M. : 116, 754. SHIMIZU, Y : 1409, 1486. SHIN, W.Y. : 959. SHINDLER, J.S. : 1209. SHINSHI, H. : 1210, 1211, 1212. SHIRINSKAYA, M.G. : 1012. SHIRO, Y. : 966. SHIV-PRAKASH, : 1153. SHUMAKER, K.M. : 1213. SHUSTERMAN, D. : 163. SHUTOVA, E.A. : 216. SIEGEL, B.Z. : 1214, 1215, 1273. SIEGEL, S.M. : 1214, 1215, 1273, 1415. SIES, H. : 562. SILVEIRA, S.R. : 1216. SILVERTEIN, R.M. : 505. SIMOLA, L.K. : 1217, 1218, 1219. SIMON, L.M. : 1220. SIMONS, T.J. : 1221, 1222. SINDILE, N. : 1223. SINGH, D. : 1227, 1228, 1229. SINGH, J.P. : 1153, 1224. SINGH, M.P. : 1230. SINGH, R.S. : 1225, 1226, 1227, 1228, 1229. SINGH, T.G. : 1189. SINGH, Y.D. : 99a. SINGHAL, N.e. : 1230. SINI(, Jr. K.e. : 934, 935, 1428. SIRCAR, S.M. : 1185. SIRJU, G. : 1231. SIRKAR, S. : 1232. SIROIS, J.e.L. : 876, 1233. SITZMAN, E.V. : 941. SKAKOUN, A. : 1234.

Page 304: peroxidases ( peroksida )

AUTHORINDEX 293

SLEMMON, J.R. : 1235. SMAOUI, A. : 1236. SMILLIE, L.B. : 1426, 1427. SMINIA, T. : 161. SMITH, D. : 446. SMITH, E.C. : 679, 680, 755, 1036, l054, 1085, 1087, 1088, 1161. SMITH, G.W. : 188. SMITH, H. : 1237. SMITH, H.H. : 222, 241, 574, 786, 1238, 1238a, 1239 SMITH, K.M. : 724a, 1240. SMITH, M.D. : 809. SMITH, M.H. : 1241. SMITH, P.1. : 1242. SMITH, R.L. : 1243, 1244. SNYDER, E.B. : 1245. SOBKOWIAK, A. : 1246. SOKOLOVSKA, YA : 219. SOLHEIM, B. : 1067. SOLOMOS, T. : 1247. SOLTANI, M.H. : 1402. SOOBACK, M. : 288. SOOST, R.K. : 365. SOPANEN, T. : 1218, 1219. SOPORY, S.K. : 613, 1194, 1195, 1196, 1197, 1198. SORENSON, J.c. : 1159. SORESSI, G.P. : 987, 1248, 1249. SPAETH, S.c. : 1250. SPENCER, D. : 420. SPENCER, M. : 1247. SPETTOLI, P. : Il, 1251. SPICER, S.S. : 791, 1282. SPIEGEL-ROY, P. : 177, 690, 1252. SPIKES, J.D. : 654. SPISUPALUCK, S. : 972. SPRINZ, H. : 1253. SPROOL, J. : 795. SRIDHAR, R. : 1253a. SRIVASTAVA, G.P. : 99. SRIVASTAVA, H.S. : 1254. SRIVASTAVA, K. : 47. SRIVASTAVA, O.P. : 1255, 1256, 1257, 1258, 1259. STAEHELlN, A. : 187. STAFFORD, HA : 1260, 1261, 1262, 1263. STAHMANN, MA : 309, 571, 1082, 1083, 1264, 1265. STAINES, WA : 1266. STARK, J.M. : 617. STARRATT, A.N. : 744. STASINOS, S. : 1279. STECHER, K.J. : 870.

Page 305: peroxidases ( peroksida )

PEROXIDASES 1970/1980 294

STEELINK, C : 1476. STE1GLEDER, G.K. : 1345. STEIN, A. : 1267. STEINER, H. : 347, 1268. STEINMAN, RM. : 1269, 1270. STEPHAN, D. : 1271. STEPHENS, G.J. : 1272. STEVENS, H.C': 1273. STEWART, P.R. : 1437. STEWART, R.R.C : 1274. STIEBER, A. : 526. STIGBRAND, T. : 220, 1006. STILLMAN, J.S. : 347a, 1275, 1276. STILLMAN, M.J. : 1275, 1276. STOESSL, A. : 743, 744. STONIER, T. : 480, 1277, 1278, 1279, 1280, 1281. STOPPANI, A.O.M. : 138. STOTZKY, G. : 640. STOWARD, P.J. : 224,225, 1282. STOWELL, CP. : 574. STRAND, L.L. : 1283, 1284. STRAUS, W. : 1285, 1286, 1287, 1288, 1289, 1290. STRAUSS, R.R. : 611, 1001. STRAUVEN, TA : 1295. STREEFIŒRK, J.G. : 126, 989, 1292. STREET, H.E. : 623. STR1CKLAND, E. : 1293. STROINSKl, A. : 1294. STROUT, H.V. : 288, 937. STRUM, J.M. : 1295, 1296, 1297. STUART, M. : 1086. STUBER, CW. : 756. SUAREZ, S.J. : 359. SUBHASH, K. : 1297a. SUDERSHAN, : 8. SUGAI, N, : 970. SUKHORZHEVSKA1A, T.B. : 676. SULEIMANOU, \.G. : 1298. SUMPTER, NA : 1164. SUTER1, B.D. : 1299. SUZUK1, Y. : \300, 1301. SVACHULOVA, J. : 1302. SWAMY, G.K. : 1297a. SWAN, GA : 1242. SVRKOTA, B. : 1303. SYMEONIDIS, L. : 1304. SYONO, K. : 1305. SYREN, E. : 1306. SZWEYKOWSKA, A. : 1170, 1246.

Page 306: peroxidases ( peroksida )

AUTHOR INDEX

TAFURI, F. : 1307. TAKAHASHI, M. : 41. TAKANAKA, K. : /308. TAKEO, T. : 1309. TALWAR, S. : 613. TAMURA, M. : /310, 1311, 1312, 1460a. TAMURA, Y. : 1313. TANAKA, S. : 31, 970. TANAKA, Y. : 1314. TANEJA, S.R. : 1315. TANI, T. : 1458. TAO, K.L. : 1316, 1317. TARASEVICH, M.R. : 1465. TAUROO, A. : 1080. TAVASSOL/, M. : 764. TAYLOR, D.D. : 1318. TAYLOR, D.M. : 895. TAYLOR, I.E.P. : J349. TAYLOR,O.C. : 359. TAYLOR, S.A. : 1357. TEISSERE, M. : 871, 1028. TENOVUO, J. : 1319. TEPPAZ-MISSON, C. : 447. TERNYNCK, T. : 160. TERRANOVA, WA : 556. TESTA-RIVA, F. : 1114. TEWARI, M.N. : 59, 60, 61, 62, 63, 64, 65, 66, 1070, 1071, 1072. THEVENOT, C. : 1320. THIRUPATHAIAH, V. : 1189. THOMPSON, K.R. : 1239. THOMAS, D.L. : 69, 1321, 1322. THOMAS, E.L. : 44, 1323, 1324. THOMAS, JA : J325. THOMAS, P. : 1326. THOMAS, R.L. : 1326a. THORNTON, J.D.. 410. THORPE, TA : /34,446, 448, 1327, 1328. THURLOW, M.D. : 329. TING, P.L. : 481. T1NGEY, D.T. : 1329, 1330. T1RIMANA, A.S.L. : 1331. T1XIER-VIDAL, A. : 1337. TOBIN, c.L. : 500. TODD, M.M. : 1332. TOKUMASUS, : 664. TOMARO, M.L. : 416. TOMASZEWSKI, M. : 1134. TONO, T. :418. TORRES, A.M. : 1333, 1334, 1335.

; .

295 1

..

Page 307: peroxidases ( peroksida )

296 PEROXIDASES 1970/1980

TORREY, J.c. : 1336. TOUGARD, C. : 1337. TOURAINE, R. : 333. TOWERS, G.J.N. : 1137. TOWILL, L.R. : 209. TRANTALIS, J. : 28. TRAN THAN VAN, M. : 445, 448, 1328, 1345. TRAVERS, F. : 1338. THEHERNE, J.E. : 726. TRESSEL, P. : 1339. TREURNIET, F.E. : 863, 979 TRIPATHI, R.K. : 570, 1340, 1341. TRIPPI, V.S. : 167,494, 1342, 1343, 1344, 1481. TROJANOWSKI, J. : 772. TRONSMO, A. : 1067. TROST, T.H. : 1345. TRUCHET, G. : 1346, 1347. TRUELOVE, B. : 1348. TSAY, R.C. : 1349. TSEKOS, 1. : 1304. TSIKOV, D. : 948. TSUJI, A. : 34. TU RCON, G. : 1382. TURCU, A. : 1163. TURIN, BA : 1113. TURNER, P.T. : 1351. TUTSCHEK, R. : 1352. TYSON, H. : 384, 385, 386, 387, 388, 389, 390, 527, 1353, 1354, 1355, 1356, 1357.

UDA, H. : 836. UEMOTO, S.c. : 652a. UGAROVA, N.N. : 29,96, 730, 731, 732, 1358,1359, 1360, 1361, 1362. ULIASZ, M. : 641. UNGEMACH, J. : 808. UNLUER, 0 : 78, 79. URBAN, P. : 110. URBANEK, H. : 790. URITANI, 1. : 844, 1190, 1314, 1363, 1363a. URS, N.V.R. : 348, 1364, 1365, 1366, 1366a.

Page 308: peroxidases ( peroksida )

1

AUTHORINDEX 297

VACCA, L.L. : 1367, 1368. VACKOVA, K. : 669. ~~~t~VALDüVINOS, J.G. : 363, 554. VAMOSVIGYAZO, L. : 1369. VAN BERGEN-HENEGOUW, J. : 132. VANBERKEL, T.J.C : 269. VANCE, CP. : 1370, 1371. VANDERMAST, CA. : 1372. VANDERMEULEN, J. : 1118. VAN DER PLOEG, M. : 1292. VANDERRHEE, H.T. : 269. VANDESTOUWE, R. : 1277. VAN DE WALLE, CM. : 1061. VANDUIJN, P. : 989. VAN HAERINGEN, N.J. : 1373. VAN HOOF, P. : 441,449, 1374, 1375. VAN HOOF, R. : 292. VAN HUYSTEE, R.B. : 182, 698, 813a, 1255, 1256, 1257, 1258, 1259, 1271, 1376,

1377, 1378, 1379, 1380, 1381, 1381a, 1382, 1403, 1404. VANINGEN, E.M. : 11p. VAN LELYVELD, U. : 269a, 637, 877, 1383, 1384, 1385, 1386, 1387, 1388, 1389,

1390, 1391, 1392. VAN LOON, L.C : 1393, 1394, 1395. VAN ZYL, A. : 1396. VARDI, A. : 177. VARFOLOMEEV, S.D. : 1465, 1466. VARNER, J.E. : 30. VAROQUAUX, P. : 1397. VASILEVA, A.V. : 610. VASIL'EVA, T.E. : 1362. VASSEUR, J. : 750, 1398. VAUGHAN, D. : 297. VEECH, J.A. : 1399. VEGETTI, G. : 1400. VELAN, B. : 51 \. VELEMINSKY, J. : 1302. VENERE, R.J. : 140\. VENKATACHALAM, MA : 1093, 1402. VENNESLAND, B. : 642. VER BEEK, R. : 413, 450, 451. VERMA, D.P.S. : 1403, 1404. VERMA, M.N. : 1340. VERNANT, J.P. : 825.

. VERWOERD, N. : 1111. VEST, G. : 1047. VETTER, J. : 1405, 1406, 1407. VICKERY, R.S. : 847, 1408.

Page 309: peroxidases ( peroksida )

298 PEROXIDASES 1970/1980

VlDIGAL, c.c.c. : 228, 350, 1409, 1410, 1486. VlDIGAL-MARTINELLl, C. : 1411. VIGIL, E.L. : 1332. VILLIERS, EA : 877. VIRION, A. : 1412.

, VIRON, A. : 711. VOHRA, K. : 1341. VORA, A.B. : 1413, 1414. VORONKOV, L.A. : 1128. VORONOVA, VA : 29. VYAS, A.V. : 1414.

WABER, J. : 964, 1415. WAHID, M. : 1416. WAIGHT, R.D. : 70. WAKS, M. : 16. WALTERS, M.N.1. : 1117. WANG, S.c. : 1417. WARDALE, DA : 820, 821, 1418. WATANABE, T. : 1419. WEAVER, EA : 1239. WEAVER, G.M. : 285. WEBSTER, B.T. : 1420. WEENING, R.S. : 1433. WEIL, H.R. : 1345. WEIR, E.E. : 1421. WEISSMANN, G. : 1422. WEISZ, H. : 988. WELlNDER, K.G. : 853, 854, 1423, 1424, 1424a, 1425, 1426, 1427. WELLBURN, A.R. : 579, 580, 1427a. WELSH, H. : 553. WENDER, S.H. : 679, 680, 755, 1036, 1054, 1087, 1088, 1161. WENNBERG, R.P. : 163. WERNER, D.J. : 1428. WESTON, G.D. : 1429. WETTSTEIJN, E.A. : 1430. WEVER, R. : 131, 1433. WHEELER, H. : 953, 954. WHITAKER, D.R. : 778. WHITMORE, F.W. : 1434, 1435, 1436, 1436a. WICKLlFF, C. : 1329, 1330. WIEBE, H.H. : 1048. WIEGAND, N.K. : 1104. WIGHTMAN, F. : 1169.

Page 310: peroxidases ( peroksida )

AUTHOR INDEX . 299

WILLIAMS, B.J. : 1415. WILLIAMS, E.E. : 1421. WILLIAMS, H. : 845. WILLIAMS, P.G. : 1437. WILLIAMS, R.J.P. : 1102, 1438. WILSKI, A. : 465, 1439. WILSON, J.M. : 1440, 1448, 1449. WILSON, L.A. : 601, 602, 603, 1231. WILSON, M.T. : 1441. WISE,B. : 1442. WISSE, E. : 1118. WITHAM, F.H. : 700. WITTE, D.L : 1443. WITTENBACH, VA : 1444. WOCHOR, Z.S. : 1445. WOESSNER, J.F. : 1446. WOJCŒCHOWSKI, J. : 1294. WOLFE, R. : 499. WOLFFGANG, H. : 576. WOLTER, K.E. : 1447. WONG, E. : 1440, 1448, 1449. WONG, Y.S. : 223, 1479. WOOD, J.L. : 226. WOOD, K.R. : 68, 1272, 1450, 1451. WOOD, R.L : 1452. WOODSON, G. : 1368. WOOLTORTON, L.S.c. . 1099. WORLEY, J.F. : 196, 197. WOZNY, A. : 1044. WRAY, P.H. : 1453. WRIGHT, P.E. : 1438. WRIGHT, R.D. : 70. WYLER, R. : 393. WYNDALE, R. : 452. WYMAN, J. : 16. WYSZOMIRSKA, J. : 718

YAKOVLEV, B.V. : 887. YAMADA, H. : 533,813, 1454, 1455, 1456, 1460. YAMAGUSHI, T. : 1457. YAMASHITA, Y. : 1457. YAMAMOTO, H.. 1458, 1474a. YAMAZAKI, H. : 1461, 1463. YAMAZAKI, I. : 33, 533, 534, 535, 606, 681, 813, 814, 815, 816,924,925,965,969,

1156, 1312,1454, 1455, 1456, 1459, 1460, 1460a, 1461, 1462, 1463, 1472.

Page 311: peroxidases ( peroksida )

300 PEROXIDASES 1970/1980

YANEZ. J. : 307. YANG, H.M. : 1277, 1280, 1281. YANG. S.F.. 708. 709, 728, 1464. YAROPOLOV, A.1. : 1465, 1466. YASUNAGA, T. : 900 YEH. R. : 1467, 1468. YEN. S.T. : 1469, 1470. YOKOTA. K.N. : 1462, 1463, 1472. YOKOYAMA, M. : 836, 1471. YONEDA, Y. : 1473, 1474. YONETANI, T. : 252, 363, 1311, 1474a. YONEZAWA, T. : 899,900. YOSHIDA, C. : 902, 903, 904, 1475. YOUNG, L.W. : 397. YOUNG, M. : 1476. YOUNG, 0 : 1477. YOUSSEF, A.A. : 356a. YUNG, K.H.. 223, 1478, 1479.

ZAAR, K. : 1480. ZADEK, H.E. : 1344, 1481. ZALEWSKA, J. : 790, 1482. ZARSKA-MACIEJEWSKA, B. : 758. ZEBA, B. : 1059. ZELENEVA, I.V. : 1483. ZENTMYER, GA : 655. ZHIVOPISTSEVA, I.V. : 1128. ZHIZNEVSKAYA, G.Y. : 1013. ZHURKlN, V.B. : 1199. ZIMMERMANN, H.J. : 1484, 1485. ZIMNIAK-PRZYBYLSKA, Z. : 1055. ZINNER, K. : 228, 350, 1409, 1410, 1411, 1486. ZMRHAL, Z. : 787, 788, 1487. ZOBEL, R.W. : 1107. ZOHM, H. : 339. ZOPPI, F. : 1488. ZOTTER, M. : 369. ZRYD, J.P. : 812.

Page 312: peroxidases ( peroksida )
Page 313: peroxidases ( peroksida )
Page 314: peroxidases ( peroksida )

ORGANISMIC INDEX

Abelmoschus esculentus : 8 16a Abies sp. : 58a, 525, 640 Acacia koa : 10 10 Acer pseud"oplatanus : 191,265,623,670,672,752,812,951,952, 1218, 1429 Acer saccharum : 525 Achyranthes : 1060b Actinidia sp. : 569, 570 Aegilops sp. : 786, 1304 Agropyron elongatum : 685 Agrostis tenuis : 839 Allium sp. : 467, 604, 1047, 1065 Alnus incana : 670 Amaryllis sp. : 1065 Amomum aromaticum : 998 Anagallis arvensis : 167 Ananas sp. : 877, 1388 Anthyllis vulneria : 342 Antirrhinum sp. : 1179 Arabidopsis thaliana : 181,938 Arachis hypogaea : 182,210,211,698, 813a, 998,1255,1256,1257, 1258,1259,1271,

1282, 1321, 1322, 1376, 1377, 1378, 1380, 1381, 1382, 1403, 1404 Argyranthemum : 704 Armoracia (see Cochlearia)

Asparagus officinalis : 444, 445, 449, 499, 1375 Atriplex halimus : 1236 Atropa belladona : 1217, 1219 Avena sp. : 21,22, 25, 234, 373,405,425,470, 523, 536, 756, 785, 832, 833,953,

954, 1080a, 1225, 1226, 1243, 1244, 1413, 1414, 1458, 1469, 1470

Page 315: peroxidases ( peroksida )

PEROXIDASES 1970/1980304

Begonia evansiana : 1149 Beta vulgaris : 135, 173,242,325,433,435,441,459,990,991,992, 1079, 1251 Betula alleghaniensis : 473, 582, 586, 587 Boerhaavia diffusa : 998 Brassica japonica : 664 Brassica napus : 330, 555, 624, 626, 627,628,629,641,851,852,853,854,1102,1425,1438 Brassica sp. : 652a, 1064, 1066, 1126, 1223, 1273 Brassicoraphanus : 664 Bryonia dioica : 140, 141, 142, 143, 144 Bryophyllum daigremontianum : 1124

Calamagrostis villosa : 1178a, 1178b Capsicum annuum : 330 Capsicum sp. : 1097 Chamaecyparis lawsoniana : 98 Chenopodium sp. : 71, 374,998, 1236 Chrysanthemum : 704 Cieer arietinum : 1078a, 1448, 1449 Cichorium intybus : 745,746,749,750,927, 1017, 1398 Citrullus sp. : 330, 1408 Citrus sp. : 177, 186, 330,360,365,418,442,690, 716, 1140, 1143, 1252, 1390, 1391

/ Coccini indica : 613a Cochlearia armorica (= Armoracia lapathifolia) : 33, 182, 200, 220, 233, 236, 357, 486,

488, 489, 555, 605, 757, 768, 769, 817, 828, 1006, 1187a, 1423, /424, 1425, 1426, 1427, 1438

Cocos nucifera : 636, 910a CofJea arabica : 480 Coleus blumei : 364, 556, 652 Cordia : 1073a Crotolaria striata : 998 Cucumis mela : 822, 849, 850 Cucumi,\' sativus : 68, 99a, 123,330,356,615,789. 790,874,977, 1052. 1095, 1142.

1192,1303,1451,1452 Cucurbita maxima: 777, 1408 Cucurbita pepo : 251,313,330,352,777. 1024, 1025. \062 Cynara scolymlls : 650 Cyperlls rotllndlls 1060a

Page 316: peroxidases ( peroksida )

ORGANISMIC INDEX 305

Dactyli.r Klomerata : 1053 Datura sp. : 241, 286, 287, 383a, 494, 647, 648, 1124a, 1234, 1238a

Daucus carota . 115, 180, 521, 684, 1284, 1445

Deschampsia ./lexuosa : 1178a, 1178b Diamhus caryophyllus : 190a, 191, 192, 193, 266, 423a, 483, 484, 784

Dionaea muscipula : 1Il 7a Dioscorea composita : 1224

Eleusine corocana : 9518 Euphorbia characias : 834

Fagara coco: 495

FeslUca sp. : 330 Forsythia : 448a Fragaria grandif/ora : 440, 1134

Fraxinus americana : 670 Fraxinus pennsylvanica : 525

Gibasis schiedicana : 1098

Gisekia : 1073b Gladiolus sp. : 1065

Glycine max. : 18, 72, 81, 261, 263, 397,649,733,891,996, 1059, 1068, 1274, 1299, 1329, 1330, 1365

Gossypium hirsutum : 398, 894, 895, 910, 918a, 1232, 1283, 1284, 1399, 1401, 1417, 1442

Page 317: peroxidases ( peroksida )

306 PEROXIDASES 1970/1980

Helianthus annuus : 238, 330, 638, 639, 1083, 1278, 1280 Helianthus tuberosus : 76,77, 78, 79, 120,427,433,447,521,568,878,879 Hevea brasiliensis : J71, 253, 454, 455 Hibiscus sp. : 330, 998 Hordeum sp. : 21, 24, 25, 30, 53, 54, 58a, 59, 91, 122, 212, 244, 330, 340, 378a,

382, 406, 407, 450, 571, 575, 576, 683, 719, 720, 721, 722, 729, 883, 998, 1055, 1193, 1213, 1294, 1302

Hyacinthus orientalis : 1144 Hydrangea macrophylla : 886

Impatiens balsamina : 137,323,930, 1157 Ipomoea balalas : 108, 110, 115,498,600,601,602,603,844, 1190, 1231, 1314 Ipomoea fistulosa : 213

Lacluca saliva : 913 Lens culinaris (=Vicia lens) : 135a, 136,277,278,279,280,281,282,283,335,336,

337, 372, 411, 412, 413, 428, 432, 438, 439, 441, 443, 450, 451, 577, 674,842,843,871,1015, 1016, 1017, 1028, 1038, 1058, 1307

Lepidium salivum : 477, 478, 1480 Lilium longiflorum : 284 Linum usitatissimum : 384, 385, 386, 387, 388 389, 390, 510, 527, 1353, 1354, 1355,

1356, 1357 Lilchi chinensis : 637 Lupinus sp. : 93, 861, 862, 1050 Lycoper.l'icon esculentum : II, 13, 19, 92, 94, 148, 158, l72a, 216, 274, 330, 331,

356a, 359, 370, 399,458,468, 491, 572, 596, 696, 697, 708, 819, 820, 821, 847, 978, 987, 1010, 1094, 1105, 1106, 1107, 1248, 1249, 1297a, 1326a, 1418

Page 318: peroxidases ( peroksida )

ORGANISMIC INDEX 307

Mangijèra indica : 205, 846, 1383, 1384 MattMola incana : 1133 Medicago sativa : 330, 700, 811 MelUotus alba : 618 Melilotus officinalis : 330 Mercurialis annua : 643, 644, 645, 646, 776 Mnium sp. : 58a Musa sp. : 496, 500, 923

Nicotiana alata : 150, 151, 152, 153, 154, 155, 156, 157 Nicotiana glutinosa : 198 Nicotiana plumbaginifolia : 998 Nicotiana sp. : 1237 Nicotiana tabacum : 5, 9, 29, 75a, 88, 108, 109, 115, 116, 124, 134, 149, 174, 222,

223, 294, 295, 419, 445, 448, 521, 543, 544, 545, 546, 550, 552, 553, 554, 574, 596, 597, 665, 679, 680, 734, 735, 736, 737, 738, 739, 753, 754, 755, 759, 800, 801, 802, 803, 804, 805, 806,807, 808, 870, 921, 942, 948, 976a, 1031, 1036, 1054, 1077, 1078, 1081, 1087, 1088, 1113, 1127, 1129, 1130, 1131, 1161, 1201, 1202, 1203, 1210, 1211, 1212, 1221, 1222, 1239, 1267, 1305, 1327, 1328, 1344, 1393, 1394, 1395, 1406, 1407, 1430, 1478, 1479, 1481

Nicotiana xanthi : 178 Nuphar luteum : 172

Dryza sp. : 206, 207, 212, 358, 462a, 598, 599, 604a, 657, 887, 912. 936. 983. 984. 986,998,999, 1007, 1153, 1184a, 1185, 1253a

i

Page 319: peroxidases ( peroksida )

308 PEROXIDASES 1970/1980

Panicum mi/iaceum : 330 Papaver somniferum : 14 Parthenocissus tricuspidata : 522 Pelargonium sp. : 436, 521, 1048 Pennisetum typhoideum : 998 Persea americana : 158, 269a, 1333, 1334, 1335, 1385, 1386, 1387, 1389, 1392 Petunia sp. : 934, 935 Phalaenopsis amabilis : 1343 Phalaris arundinacea : 1370, 1371 Pharbilis ni! : 955, 1277, 1281, 1473, 1474 Phaseolus aureus : 8,62, 196, 197,312,404,728, 1103, 1143, 1204, 1341 Phaseolus mungo : 214,215,493,933 Phaseolus radiatus : 61, 1070, 10711 Phaseolus vulgaris : 36, 37, 38, 39, 40, 75, 146, 168, 260, 262, 285, 292, 330, 359,

501, 503, 514, 515, 581, 597, 775, 845, 858, 859, 880, 889, 890, 911, 956, 1045, 1076, 1220, 1342, 1348, 1400, 1420

Picea abies : 369, 482, 525, 672 Picea excelsa : 53 Picea glauca : 383, 525, 1349 Picea sp. : 923 Pinus banksiana : 1073 Pinus elliottü : 1435, 1436a Pinus nigra : 53, 58a, 670 Pinus palustris : 1245 Pinus radiala : 446 Pisum salivum : 21, 53, 54, 54a, 55, 56, 57, 58a, 59, 82, 113, [39, 147, 169, 188,

237, 258, 267, 268, 274, 275, 276, 297, 306, 307, 330, 373, 391, 392, 424, 441, 463, 547, 548, 549, 551, 588, 606, 6[6, 697a, 722, 796, 797, 841, 863, 919, 962, 963, 964, 979, 981, 1078a, 1082, 1108, 1109, 1110, 1139,1143,1146, J 148, 1154, 1155, 1247, 1301, 1346, 1347, 1372, 1397, 1482

Pinus sp. : 640, 670, 677, 774, 946, 1178a Pinus strobus : 525, 670 Pinus ~ylveslris : 43, 670, 946 Pinus laeda : 1245 Poinseuia : 1428 Populus deltoides : 469, 525 Populus niKra : 101,931,932 Populus sp. : 191,677,774, 1453 Populus lremuloides : 510, 525, 1165, 1447

Page 320: peroxidases ( peroksida )

1ORGANISMIC INDEX 309

Prunus avium : 1046 Prunus persica : 396, 1043a Prunus sp. : 444, 445, 1063, 1166, 1444

Pseudotsuga sp. : 640, 672

Pseudotsuga menziesii : 245, 632, 670 Pyrus communis : 158, 399, 400, 402, 1317

Pyrus malus: 125,353,471,525, 729b, 758, 947, 1135, 1320

Pyrus sp. : 1074

Quercus sp.: 670, 848

Raphanus sativus : 221, 592, 664, 902, 903, 904, 967, 998

Ricinus communis : 330, 1471, 1477

Robinia pseudoacacia : 591 Rosa: 712, 713

Rumex acetosa : 839

Saccharum o.fficinarum : 99 Salix sp. : 510, 5 15a Salix tetrasperma : 100

Salvia splendens : 1133 Secale cereale: 330, 405, 578, 1075, 1298

Sedum album: 187a Sifene alba : 747, 748

Sifene cucubalus : 839 Sifybum marianum : 475

Sinapis alba : 52, 573, 1174, 1174a, 1176

Page 321: peroxidases ( peroksida )

310 PEROXIDASES 1970/1980

Solalllllll IIIl.'lolIgl.'na : 330. 651 SolallulIl /uhl.'rosulIl : 127, 129, 130, 161, 218, 296,410,423,465,985, 1137, 1272,

1284, 1326, 1340, 1439, 1484, 1485 Sonlll.'ra/ia alha : 614 SOI·hlls aucuparia : 525 Sorghlllll sp. : 330, 761, 765, 998, 1138, J164, 1262, 1263 Sparlina al/ernf/lora : 461 a Spartina paœns : 461 a Spinacia sp. : 41, 305, 339, 414, 415, 444, 445, 479, 658, 659, 660, 661, 982, 1017,

1018, 1019, 1020, 1021, 1022, 1023, 1026, 1189 Syringa l'ulgaris : 525

Tabernaemomana coronaria : 998 Tagetes pa/ula : 1415 Taraxacum officinale : 675 Taxus cuspidata : 525 Thea sinensis : 1309, 1331 Theobroma cacao : 655 Thlaspi alpestre : 839 Tradescantia sp. : 1041, 1065 Trigonella foenum graecum : 60, 63, 64, 65, 66, 856, 857 Triticale sp. : 259, 760, 1075 Triticum aeslÎvum : 14, 15,21,23,95, 133, 146a, 189, 191, 199,201,203,264,270,

271, 271a, 330, 371, 394, 405, 409, 452, 506, 526, 578, 630, 631, 662, 683, 685, 686, 687, 699, 705, 706, 787, 788, 792, 835, 882, 998, 1043, 1180,1181,1227,1228,1229,1230,1241,1315,1316,1434,1487

Trilicum durum : 619,687, 1075 Tulipa sp.: 1145

Vlmus mOn/ana : 670

Page 322: peroxidases ( peroksida )

ORGANISMIC INDEX 311

Vaccinium corymbosum : 399 Vaccinium myrtil/us : 1178a, 1178b

Vaccinium vitis-idaea : 1178a, 1178b Vicia faba : 502, 610, 1078a, 1141

Vicia sativa : 330 Vicia vil/osa : 330 Vigna mungo : 1115

Vigna sinensis : 773 Vigna sp. : 1279 Vitis sp. : 71, 691, 692

Xanthium pennsylvanicum : 209

Xanthium strumarium : 793

Zea mays : 10,17,53, 58a, 90, III, 114, 160a, 165,237,254,311,321,330.373, 395, 405, 425a, 425b, 434, 441, 485, 541, 613, 676, 682, 689, 742, 811,

830,831,914,949,980,993,994,998,1010,1056,1139, 1194, 1195, 1196, 1197, 1198, 1254, 1374, 1405, 1483

Page 323: peroxidases ( peroksida )
Page 324: peroxidases ( peroksida )

SUBJECT INDEX

Abscisic acid (elTect ot): 411, 412, 413, 439,716,855,1316.

Abscission : 2, 255, 442, 514a, 515, 543, 544, 545, 546, 550, 553, 554, 1045, 1046, 1097, 1384, 1420, 1444.

Acetylcholine: 1015, 1019, 1195.

Aging : 35, 112, 146, 149, 158, 167, 221, 457a, 471, 614, 642, 657, 659, 729a, 998, 1100, 1136, 1137, 1231, 1274, 1343, 1348, 1390, 1407.

Aigae : 7, 166,466, 563a, 864, 865, 915, 916, 917, 918, 1009, 1029, 1207, 1214.

Amino acid composition and sequence 680, 851, 853, 854, 902, 1423, 1424, 1425, 1426, 1427.

Anaerobiosis : 219, 328.

Anti-peroxidase : 132, 164, 187,236,490,837,972, 1006, 1167, 1235, 1270.

Apical dominance : 18.

Apo-peroxidase : 233, 327, 654, 680, 702, 709, 802, 853, 854, 902, 1034, 1093, 1293, 1362, 1423, 1424, 1424a, 1425, 1427.

Ascorbate peroxidase : 54a, 54b, 54c, 673, 1207.

Assay: 229, 239, 358, 377, 391, 421, 487, 558, 779, 838, 888, 943, 988, 1000, 1392.

Auxin (effect ot) : 42,66, 108, 115,222,267,268,278,281,309,337,360,372,428, 442, 450, 551, 588, 675, 689, 737, 748, 753, 754, 756, 812, 821, 871, 934,963,1071,1113,1155, 1219, 1405, 1406, 1429, 1434.

Auxin protectors : 213,427,436,456,480,497,684,744,934,955, 1041, 1142, 1233, 1277, 1278, 1279, 1280, 1281, 1305.

Page 325: peroxidases ( peroksida )

1

314 PEROXIDASES 1970/1980

Bacteria : 530, 1029a, 1037, 1324.

Bactericidal function : 48, 380, 634, 635, 865, 1001, 1122a, 1319, 1323, 1324, 1364, 1366, 1373.

Biosynthesis : 171, 267, 268, 532, 674, 757, 783a, 805, 824, 956, 1108, 1190, 1198, 1271, 1315, 1376, 1378, 1380, 1381, 1382, 1404, 1458.

- inhibitors : 76, 78, 114, 323, 581,954, 1108, 1190, 1198, 1381, 1382.

Bromoperoxidases 7, 50, 563a, 1009.

Browning: 637, 688, 1166.

Bryophytes : 460, 565, 612, 1044, 1170, 1246, 1250, 1352

Bud formation: 448, 569, 745, 750, 800, 806, 927, 938, 1327, 1328, 1398.

Calcium: 52a, 56, 133,352,454,530,619,966, 1016, 1024, 1061, 1424a.

Cal1us : 75, 75a, 181, 242, 448, 676, 690, 734, 735, 736, 737, 738, 739, 800, 806, 807,938,942,951, 1087, 1161, 1327, 1328, 1406, 1447.

Cancer: 240,316, 317,341,666, 1027.

Cel1 cultures: 36, 37, 38, 39,40, 74, 265, 414, 415, 623,676, 679, 680, 698, 747, 748,809,812, 813a, 880, 951, 952, 1036, 1054, 1112, 1113, 1210, 1211, 1212, 1217, 1218, 1219, 1255, 1256, 1257, 1376, 1377, 1378, 1380, 1381, 1382, 1403, 1404, 1429, 1483.

Cereal seeds : 212, 340,371,405, 598 599, 706, 707, 719, 720, 721, 729, 760, 761, 936,986, 1067, 1075, 1185, 1187, 1230, 1294, 1316.

Characterization : 7,4/, 247, 276, 319, 334, 345, 370, 385, 463, 528, 598, 605, 609, 610, 619, 650, 679, 68/, 682, 696, 828, 851, 873, 880, 901, 903, 904, 915, 923, 942, 980, 1006, 1080, 1103, 1128, 1138, 1146, 1209, 1211, 1240, 1259, 1352, 1369, 1459 1463.

Chemical studies : 6, 228, 308, 344, 361, 379, 461 a, 492, 533, 606a, 606b, 628, 731, 732, 813, 814, 815, 816, 872, 920, 925, 950, 968, 969, 1104, 1156, 1173, 1205, 1311, 1454, 1455, 1460, 1460a, 1462, 1474a.

Page 326: peroxidases ( peroksida )

SUBJECT INDEX 315

Chemical treatments : 52a, 54c, 122, 135, 136, 180, 181,215,3[0,324,549,775,877, 912,953, 1129, 1192, 1219, 1302.

Chemiluminescence : 34,45,291,511, 1057.

Chloroperoxidase : 246, 505, 1325.

Chloroplasts : 609,613,919, 1128.

Cold tolerance : 641, 700, 1194.

Coleoptile : 425, 470, 1431.

Compound J : 31a, 32, 106, 225a, 249, 289, 346, 347, 531, 534, 535, 563, 625, 626, 629,633,681,813,897,920,960,1004,1069,1120,1121, 1150, 1268, 1275, 1276.

Compound JI : 249, 256, 257, 331a, 347, 531, 534, 535, 897, 920, 920a, 960, 1121, 1122, 1276.

Compound JII : 33la, 429, 1033, 1312.

Crown-gall and other tumors : 9, 137, 260, 287, 524, 956, 1060, 1073a, 1073b, 1083, 1124a, 1125.

Cyanide : 250,347, 815.

Cytochemical.techniques : 10, 28, 31, 159, 179, 224, 225, 367, 376, 393, 487, 559, 561, 567, 711, 764, 779, 791, 866, 867, 884, 949, 958, 970, 989, 1014, 1090, 1118, [183, 1184, 1216, 1282, 1285, 1286, 1287, 1289, 1290, 1292, 1337, 1368, 1421.

Cytochrome c : 434,885,944, 1151, 1441.

Cytochrome c peroxidase : 170,252,328,362,363, 783a, 885, 941, 945. 1437.

Cytochrome P-450 : 354, 589, 590, 705, 961, 1091, 1092.

Cytokinins (effect of) : 38, 39, 40, 61, 66, 99a, 197, 278, 281, 337, 412, 439, 450, 521,588,734,737,739,749, 1129, 1170, 1193, 1316.

Page 327: peroxidases ( peroksida )

316 PEROXIDASES 1970/1980

2,4-D (effect of) : 38, 39, 40, 60, 180, 181,394,722,736,748,1005, 1113, 1253, 1429.

Development : 146,209,356,396,463,468,469, 572, 643, 720,847, 848,998, 1075, 1158,1220,1414.

Differentiation : 51, 52, 127, 128, 161,311,445,448, 462a, 503, 528, 569,612,644, 658, 800, 806, 878, 879, 927, 938, 1149, 1158, 1327, 1328, 1336, 1403, 1416, 1447, 1484.

Dormancy : 447, 452, 506, 691, 758, 936, 1047, 1317, 1320.

Dwarfism : 874, 1227.

Electrophoresis : 21, 130, 175,358,597,623,664,767,768,803,818,881,883,931, 1017, 1200, 1234, 1291, 1393.

Embryos : 443, 599, 758,947,959, 1135, 1317, 1320, 1445.

Endoplasmic reticu1um : 188, 191,265,320,467,515,544,952,959, 1024, 1381, 1420, 1480.

Ethylene (effect of) : 1,2, 5, 108, 110, 115, 188,218, 271a, 337, 364,442,498,499, 544, 545, 548, 550, 551, 552, 553, 554, 588, 600, 692, 716, 857, 894, 981,1030,1095,1109,1110,1155,1192.

- synthesis : 172a, 398, 571, 653, 697a, 708, 728, 762a, 763, 773, 788, 819, 820, 821, 1418, 1464.

Extraction: 294, 440,510,586,712, 723a, 738, 796, 813a, 937,1017,1171,1309, 1380, 1388, 1391.

Fern: 762.

Flowering : 444, 445, 448, 479, 658, 659, 1018, 1019, 1020, 1022, 1184a, 1328.

Fruit development and ripening : 125, 158, 396, 399, 400, 402, 471, 496, 500, 637, 705,708,720,721,846,847,923, 1068, 1075, 1383, 1384.

Page 328: peroxidases ( peroksida )

SUBJECT INDEX 317

Gene expression: 11,95, 157, l60a, 271, 271a, 420,578,685,686,786,984, 1007, 1107, 1164, 1180, 1237, l238a, 1315, 1470.

Genetics 13, 22, 23, 24, 25, 53, 58, 154, 165, 177, 211, 241,245, 254, 356a, 365, 378a, 382, 383, 383a, 384, 385, 386, 387, 388, 459, 460, 461, 494, 574, 652a, 761, 793, 797, 830 832, 874, 914, 934, 935, 939, 948, 983, 984, 1055, 1107, 1201, 1203,1223, 1226, 1237, 1238, 1245, 1254, 1304, 1333, 1334, 1335, 1354, 1355, 1356, 1357, 1428, 1469, 1470.

Geographical distribution: 254, 523,1105,1107, 1178a, 1178b,1213, 1225, 1349.

Gennination : 9, 30,43, 212, 312, 443, 452, 506, 649, 706, 986, 999, 1073, 1080a, 1185, 1187, 1204, 1227, 1228, 1229, 1247, 1294, 1320, 1322, 1342, 1477.

Gibberellins (efTect of) : 113,188,310,415,551,716,735,737,962,963,964,1022, 1071, 1133, 1157, 1316.

Glutathione peroxidase : 474, 516, 783.

Glycoprotein : 162,233,276,757, 1089, 1187a, 1376, 1424, 1425.

Golgi apparatus: 20, 1JO, 161, 191,265,467,515,1480.

Gradient in plants: 144,201,296,390,485,502,638,658, 1141, 1328.

Gravity (efTect of) : 504,524, 1415.

Growth 82, 149, 199, 202, 203, 208, 311, 321, 372, 373, 394, 424, 432, 433, 439, 450, 451, 502, 549, 615, 652, 761, 855, 947, 1015, 1071, 1072, 1088, 1142, 1154, 1155, 1192, 1405, 1406, 1416, 1447, 1453, 1483.

Growth retardants (efTect of) : 133,428,451,964, 1050, 1133,1141.

Halides 12, 85, 117, 118, 204, 246, 541, 593, 611, 627, 668, 715, 759, 906, 907, 908,909, 1035, 1040, 1062, 1084, 1120, 1122, 1268, 1323, 1324, 1412.

Herbicides: 122, 123, 1303, 1307.

Honnonal interaction: 18,66, 126a, 168,312,364,439,443,450,665,716,737,947, 1075a.

Honnones (animais) : 3, 26, 27, 67, 103, 175,227,240,316,341,621,622,666,667, 668, 780, 781, 782, 868, 1295, 1446.

Hybrids : 146a, 378a, 388, 830, 914, 1081, 1356, 1453, 1473.

Page 329: peroxidases ( peroksida )

318 PEROX1DASES 1970/1980

Hydrogen peroxide metabolism 158, 1220.

- formation: 138,357,488, 488a, 489, 517, 518,694,808, 1103, 1308.

Hydroxylation : 271b, 519a, 581, 606, 765,997, 1008, 1009, 1242.

Hydroxyproline : 283, 769, 850, 981, 1109, 1110, 1434.

IAA catabolism : 58a, 126a, 137, 168, 214, 237, 238, 244, 255, 274, 275, 336, 353, 356, 364, 373, 398, 399, 400, 406, 407, 411, 432, 436, 438, 458, 583, 587, 602, 612, 616, 632, 697, 742, 743, 773, 775, 789, 790, 812, 855, 856, 857, 861, 862, 895, 977, 987, 1018, 1041, 1050, 1056, 1064, 1141, 1149, 1169, 1231, 1372, 1398, 1429, 1439.

IAA oxidase isoforms : 169, 258, 269a, 470, 473, 584, 585, 677,734, 735, 736, 774, 818,931,962,1018,1038, 1080a, 1141, 1210, 1211, 1255, 1256, 1257,1474.

- localization : 91, 94, 134.

IAA oxidation : 90, 200,429, 430, 431, 437, 440, 456, 497, 522, 582, 601, 603, 697, 740, 741, 744, 752, 785, 787, 841, 842, 843, 852, 869, 875, 924, 933, 1066,1101,1134,1142,1148,1300,1371,1410,1461.

Immobilized peroxidases : 69, 73, 96, 1163.

Immunochemical studies : 46, 56, 57, 58, 182,286,287,645, 1124a, 1285, 1286, 1377.

Infection (reaction to) : 72, 81, Ill, 114, 173, 189, 205, 206,238, 260, 261, 266, 269a, 322, 335, 336, 407, 408, 409, 410, 423a, 425a, 425b, 454, 455, 458, 465, 482, 483, 484, 491, 498, 571, 595, 611, 617, 630, 631, 636, 655, 683, 792, 822, 835, 844, 849, 850, 858, 859, 889, 890, 918a, 967, 1058, 1060a, J060b, 1082, 1097, 1126, 1127, 1153, 1165, 1180,1181, 1186, 1189,1224, 1253a, 1264, 1265, 1340, 1363, 1363a, 1364, 1366, 1366a, 1383, 1385, 1386, 1387, 1389, 1390, 1399, 1417, 1430, 1458.

Inflammation (animais) : 333, 710.

Inheritance : 756, 831, 1244, 1245, 1469.

Inhibitors 137, 197a, 288, 342, 464,476, 477, 478, 601, 619, 684, 744, 749, 826, 827, 1029, 1285, 1287, 1356, 1386, 1396.

Iodide peroxidase 85, 915, 922.

Ion deficiency 306.

Page 330: peroxidases ( peroksida )

SUBJECT INDEX 319

Ionie treatments (effect of) : 54, 54a, 54b, 55, 58a, 59, 141, 143, 186,244,308, 729b, 733,1013,1115,1468.

Irritation: 140, 141, 142, 143, 144, 148.

Isoelectric focusing : 258, 261, 298, 299, 300, 30 l, 302, 303, 584, 585, 803, 980, 1039, 1130, 1131, 1132.

Isoperoxidase patterns: 52, 53, 75, 75a, 116,125,172,311,313,338,365,381,389, 425, 470, 475, 494, 500, 502, 632, 640, 677, 774, 845, 903, 1054, 1098, 1298, 1331, 1355, 1474,

[soperoxidases in related species or cultivars : 14, 15, 22, 23, 24, 25, 182, 210, 211, 234, 241, 254, 259, 383a, 384, 494, 604a, 687, 704, 712, 713, 777, 833, 935, 1055, 1081, 1106, 1191, 1223, 1226, 1239, 1243, 1304, 1428.

Kinetics : 16, 33, 65, 70, 217, 257a, 289, 329, 343, 370, 531, 594, 629, 730, 752, 807, 933, 1033, 1056, 1066, 1085, 1088, 1121, 1122, 1150, 1359.

Lactoperoxidase : 197a, 907, 1003, 1062.

Leaf : 172, 174, 209, 221, 294, 321, 348, 369, 469, 650, 651, 658, 722, 948, 990, 991,998, 1031, 1236, 1298, 1331, 1398.

Light (effect of) : 54a, 92, 93, 122,292,613,745,746,749,755,784,799, 1137. 1193. 1229, 1237.

Lignification : 20, 139, 190a, 192, 487a, 499, 503, 507. 518, 525, 529, 564. 828a. 878. 879, 890a, 926, 967, 1074, 1099, 1214. 1261, 1370, 1371, 1436. 1436a.

Localization (animal cells) : 4, 28, 121, 184, 185, 248. 269, 293, 316, 366. 375. 417. 467, 468, 539, 557, 560, 662, 663. 714. 798. 823. 825. 836. 890. 957. 1042, 1114, 1116, 1296. 1297, 1351, 1419. 1452.

Localization (plant cells) : 94. 124a. 147. 155. 190. 190a. 191, 192. 193. 253. 264. 265, 266, 391, 392. 465. 513. 514. 515. 543. 544. 556. 645. 739. 762. 834, 858. 859. 863, 910. 919. 949, 951, 952. 979. 990. 991, 992. 1046. 1052. 1053, 1065,1246, 1262. 1399, 1402. 1408. 1420, 1442. 1480.

Page 331: peroxidases ( peroksida )

320 i·

PEROXIDASES 1970/1980

Mechanisms of reaction : 90, 105, 106, 107, 195,231, 232, 249,250, 256, 257, 315, 347a, 422, 437, 453, 481,519,594,678,697,924,928, 1002, 1035, 1051, 1096, 1101, 1151, 1152, 1162, 1312, 1338, 1411, 1461.

Membrane-bound : 143,282,496,538,739, 847,951,952,991,992,993,994, 1016, 1023, 1024, 1372, 1381.

Mitochondria : 279, 434, 474, 864.

Molecular interactions: 6, 327, 625, 627, 702, 1002, 1162, 1172, 1456.

Morphactin (effect of) : 63, 930, 1072, 1482.

Mutants: 19,207,847, 910a, 987, 1145, 1179, 1248, 1249, 1297a.

Myeloperoxidase : 893, 965, 995a, 1122a, 1123, 1308.

Mycetes : 332,335,336,724,770.771,941, 1058, 1182, 1332, 1416.

Nitrate reductase activity : 31 a, 607, 608, 10 II, 1012, 1115, 1254.

Nuclear magnetic resonance : 724a, 727, 751, 897, 898, 899.

Nucleic acids : 87, 88, 621, 740, 753, 860, 956, 1409.

Nutrition: 98, 244, 307, 638, 733, 887, 895, 1115, 1140, 1273.

Oscillatory reactions : 291, 974, 975, 975a.

Ozone (effect of) : 262. 263, 285, 359, 1329, 1330.

Page 332: peroxidases ( peroksida )

SUBJECT INDEX 321

Peroxidase-like : 378,418,540, 701, 1049, 1440.

Pheno1ics : 74, 84, 297, 321, 389, 414,512, 519a, 547, 573,603,638,723,744,746, 787,795,856,876.996, 1060, 1099, 1100, 1134, 1142, 1148, 1161, 1177, 1178,1189,1202,1233,1258,1260,1261,1278,1281, 1314, 1366, 1418, 1435, 1440, 1476.

Photoperiod : 167,295, 462a, 1018, 1022, 1149, 1184a, 1413, 1453.

Phototropism : 504.

Physico-chemical studies : 225a, 492, 555, 563, 624, 654, 724a,751 , 810, 897, 898, 899,900,1147,1162, 1199, 1206, 1293, 1310, 1438, 1474a.

Phytochrome: 592,660,661,1019,1020,1023,1025,1174, 1174a, 1175, 1176, J 194, 1195,1196,1197,1198,1237.

Plant parts: 75, 75a, 135a, 494, 495, 502, 1139, 1344, 1442.

Plant selection: 165, 177, 1010, 1333.

Ploidy : Il, 338, 882, 896, 1043, 1238a, 1251, 1304.

Pollen tube: 149, 150, 151, 152, 153, 154, 156,284,324.

Pollution: 187a, 359, 395, 482, 509, 579, 580, 670, 671, 672, 733, 759, 811, 839, 911, 913, 946, 1048, 1178a, 1232, 1330, 1427a.

Proteins (etfect on) : 44, 183,309,457, 1062, 1436.

Protoplasts : 804.

Purification: 7, 17,41,47, 162, 230, 233, 272, 317, 319,326,619,650,696,794, 915,976, 1006, 1089, 1132, 1138, 1160, 1207, 1250, 1309, 1326a.

Page 333: peroxidases ( peroksida )

322 PEROXIDASES 1970/1980

Radiations uv : l72a. 501, 548. 553.

- x : 222.

- y : 1326, 1416.

Rapid effects : 660, 661, 1019. 1020, 1021, 1022, 1023, 1025, 1026.

Reactions catalyzed by peroxidases : 83, 84, 85, 86,97, 163,217,226,239, 271b, 273, 325, 349, 35~ 368, 421~ 422, 423, 457~ 462, 463, 481, 520, 566, 573, 605, 6[8, 647, 648, 656, 681a, 682, 703, 723, 730, 766a, 795, 828, 840, 872, 940, 971, 973, 1036, 1069, 1076, 1085, 1086, 1087, 1088, 1119, Il 43a, 1177, 1178, 1188, 1202, 1215, 1339, 1440, 1443, 1448, 1449, 1457, 1467, 1472, 1486.

Resistance against infection: 13, 17,81,93,270,271, 271a, 355, 374, 575, 576, 889, 921,982, 1079, 1094, 1180, 1181, 1221, 1222, 1340, 1365. 1370, 1371, 1394, 1401, 1439.

Respiration: 500, 598, 599, 733, 999, 1390, 1406.

Ribosomes: 191,279, 428, 467, 952, 1028, 1066, 1480.

Root : 124a, 177,219,251,277,280,338,348,391,392,432,435,441, 502, 591, 615,616, 675, 742, 861, 862, 1141, 1187a, 1241, 1301, 1374.

- nodules: 861, 862, 863, 979, 1046, 1047, 1059, 1060, 1346.

Rooting : 100, 101, 120, 168, 196, 197,214,215,323,404,444,445,446,448,449, 493,568,652,886,930,931,932, 1041, 1063, 1217, 1328, 1375.

Secretion: 2, 135a, 227, 415,426,467,537,539,557,562,891, 976a, 1061, 1117a, 1382, 1480.

Seeds : 21, 330, 508, 640, 1043, 1078a, 1143.

Separation of isofonns : 162,233,381,384,397,679.

Sex expression: 613a, 643, 645, 646, 658, 659, 776, 790, 1018,1095, 1192.

Substrate specificity : 220, 605, 682, 1002, 1036, 1214, 1393, 1476.

Sulphydryl : 44, 61, 62, 64, 1070, 1071.

Page 334: peroxidases ( peroksida )

SUBJECT INDEX 323

Temperature (effect 01) : 135, 295, 306, 515a, 639, 641, 699, 700, 784, 977, 1124, 1182, 1227, 1317, 1321, .

Thermal stabi1ity : 29,96,223,303,304,305,339,778,802,995, 1056, 1313, 1321, 1358, 1361, 1369, 1397, 1479.

Thigmomorphogenesis 140, 141, 142, 143, 144.

Tissue culture: 51,75, 75a, 87, 180, 181,242,360,448,449,503,569,570,676,690, 729b, 734, 735, 736, 737, 745, 750, 755, 784, 800, 806, 905, 927, 938, 985, 1043a, 1054, 1129, 1130, 1131, 1159, 1252, 1327, 1328, 1360, 1406, 1407, 1416, 1445, 1447, 1481, 1483.

Tuberization : 338, 433, 435, 447.

Uptake in animal tissues: 243, 314, 526, 695, 717, 726, 1117, 1266.

Vacuoles: 124, 191,251,265,467,486,514,951,993,994, 1052, 1053, 1480.

Virus: 29,68, 71, 80, 81, 89,99, 109, 178, 198,420,773, 1221, 1222, 1267, 1299, 1341, 1366a, 1394, 1395, 1400, 1430, 1450, 1451.

Wall: 72, 109, 115, 144, 161, 192, 193,223,261,264,284,357,391,414,415, 423a. 467,485, 488a, 489,514,521,550,604,725,769,801.804.805. 828a, 849,850,870,951,952,993, 1044, 1053, 1078, 1109, 1110, 1271, 1283, 1284, 1434, 1435, 1436, 1436a, 1478, 1479, 1480.

Water potential : 274.

Water stress: 212, 275, 978.

Wound : 76, 77, 78, 79, 108, 109, 110, Ill, 113, 114, 115, 116,127, 129, 322. 498, 588,753,754,766,844,978, 1099, 1144, 1314, 1326.

Page 335: peroxidases ( peroksida )

'9[[1 '8L8 'B88P 'P9Z 'Z61 '161 'B061 : s!sauailolAX

'6601 '9ÇÇ '99Z 'Ç9Z 'P9Z '[61 : illalAX

086110L61 S3:SVaIXO~3:d

Page 336: peroxidases ( peroksida )