20
1 Atomistic aspect of silicon surface processes studied by in-situ electron microscopy and atomic force microscopy Institute of Semiconductor Physics, Novosibirsk, RUSSIA Autumn School «Electron microscopy for tomorrow industrial materials», Berlin 2005 Laboratory of Electron Microscopy and Submicron Structures Alexander Latyshev Diagnostics Diagnostics of Low of Low- Dimension Dimension System with Atomic Resolution System with Atomic Resolution (HREM, SEM, AFM, STM, unique (HREM, SEM, AFM, STM, unique UHV UHV- REM, ex REM, ex- and in situ and in situ characterizations) characterizations) Methods of Atomic Methods of Atomic Manipulations Manipulations ( atomic processes at atomic processes at surface, interface and bulk, MBE, self surface, interface and bulk, MBE, self- organization et al organization et al.) OUT OUT- LINE LINE

OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

1

Atomistic aspect of silicon surfaceprocesses studied by in-situ electron

microscopy and atomic force microscopy

Institute of Semiconductor Physics, Novosibirsk,

RUSSIA

Autumn School ««Electron microscopy for tomorrow industrial materials», Berlin 2005

Laboratory of Electron Microscopy and Submicron Structures

Alexander Latyshev

•• Diagnostics Diagnostics of Lowof Low--Dimension Dimension System with Atomic ResolutionSystem with Atomic Resolution(HREM, SEM, AFM, STM, unique (HREM, SEM, AFM, STM, unique UHVUHV--REM, exREM, ex-- and in situ and in situ characterizations) characterizations)

•• Methods of Atomic Methods of Atomic ManipulationsManipulations ((atomic processes at atomic processes at surface, interface and bulk, MBE, selfsurface, interface and bulk, MBE, self--organization et alorganization et al..))

OUTOUT--LINELINE

Page 2: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

2

HRTEMHRTEM SEMSEM

STMSTMAFMAFM

Imaging techniquesImaging techniques

Si(111)Si(111)

((7x7) 7x7) reconstructionreconstruction,,

Omicron,Omicron,((S.TeysS.Teys))

Au particles Au particles on graphite,on graphite,

LEOLEO--1430,1430,((T.GavrilovaT.Gavrilova))

Si(111),Si(111),

2D2D--islandsislands

NTNT--MDT,MDT,((E.RodyakinaE.Rodyakina))

Silicon,Silicon,JEMJEM--4000EX,4000EX,

((A.GutakovskiiA.Gutakovskii))

High resolution electron microscopy image

of cross-section of SiO2 - Si(111) interface. Monatomic steps, 0.31nm in height, are shown.

TEM Studies of Surface structure

Transmission electron microscopy

image of a carbon replicadecorated by gold particles from

Si(111) surface. Surface morphology including monatomic steps and step pinning centers can be defined from analyses of gold island distribution.

Page 3: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

3

Scattering process of electron beam at resonance conditions

incident beam

The incidence angle is usually a few degrees in order to restrict the penetration depth into the bulk of crystal.

TETEММ

screenscreen

REMREM samplesample

screen

objectiveobjective

apertureaperture

UHV Reflection Electron Microscopy

Page 4: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

4

Monatomic steps on Si(111)

0,4 0,4 µµmm

1010

T=T=1010000000CC

Typical REM-image and schematicalrepresentation of atomically clean silicon (111) surface with system of monatomic steps, 0.31nm in height.

9500C

1280128000CC1 1 µµmm

200C

Foreshortening effect x4

Page 5: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

5

22 3311

T=1190T=119000CC

Step Pinning, Step Motion and 2D Nucleation

Step Pinning CentersStep Pinning Centers

Step MotionStep Motion

1 1 µµmm

w

wd

wd

w

2D Nucleation2D Nucleation(pits)(pits)

Study of surface dynamics in continuum models allows to calculate the step free energy cost and the

effective interaction between neighboring steps, step-nuclear, nuclear-nuclear and step-pinning center.

MONATOMIC STEP MOTION

Velocity of straight stepsVelocity of straight steps: VVstepstep((∆µ∆µ)=)=ΘΘ[exp([exp(∆µ∆µ//kTkT) ) --1]1]wherewhere ΘΘ =2=2νλνλss exp(exp(--W/kT)tanh(x/2W/kT)tanh(x/2λλss)) is kinetic coefficient,is kinetic coefficient,

λλss is the adatom diffusion length,is the adatom diffusion length,WW is the sublimation energy,is the sublimation energy,νν is the frequency of atom vibration,is the frequency of atom vibration,x is the is the interstepinterstep distance,distance,∆µ∆µ is a shift of the chemical potential and is a shift of the chemical potential and k is is BoltzmannBoltzmann’’ss constant.constant.

Velocity of a curved step (Velocity of a curved step (at a spatially nonat a spatially non--uniform chemical uniform chemical potentialpotential):):

VVcurvcurv((∆µ∆µ,K,U,K,U)=)=ΘΘ[exp([exp(∆µ∆µ//kTkT) ) -- exp(exp(ΩΩU/kTU/kT + + ΩβΩβK/K/kTkT)])]wherewhere UU is the density of the surface strain energy, is the density of the surface strain energy, ΩΩ is atomic area,is atomic area,

ββ is the step stiffness and K is the step stiffness and K is the step curvature.is the step curvature.

Page 6: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

6

Determination of basic parameters of atomic processes on silicon surface

Sublimation energy, Sublimation energy, W=4,2W=4,2±±0,20,2эВэВDiffusion coefficient, DDiffusion coefficient, Dss(T)(T)Adatom density, nAdatom density, nss(T)(T)Diffusion length, Diffusion length, λλss(T)(T)Migration energy, EMigration energy, Ess=1,2=1,2±±0,20,2эВэВShcwoebel’sShcwoebel’s barrier,barrier, ∆∆EEss=0,1=0,1÷÷0,20,2эВэВStep edge stiffness,Step edge stiffness, ββ≈≈1010--1212 J/cmJ/cm

1200120000CC 1170117000CC

1130113000CC1090109000CC

Step

rate

, nm

/c

Terrace width, µm

10000/T

Step

rate

, A/c

W=4,2±0,2eV

Adaptation of BCF theoryAdaptation of BCF theory..

Optimization treatments of MBE Optimization treatments of MBE

Computer simulationsComputer simulations..

Atomic Force Microscopy SOLVER P-47H (NT-MDT))

• For stability reasons, stiff cantilevers were preferable minimizing the effects of tip-substrate forces.

• To reduce noise contribution of external electromagnetic fields, the AFM apparatus have been positioned inside of a metal box having a good electric connection to ground.

• Additional rubber bearers for this box have been installed reducing mechanical vibration noise.

• The both temperature and humidity of atmosphere inside of the box were controlled during AFM scanning.

The both contact and semi-contact (frequency-

modulation) modes were performed.

scan 47µm x 47µm

Scan 47µm x 47µm

Page 7: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

7

SEMSEM

SEMSEM

10 nm

HREMHREM

0,31 nm0,31 nm

NoncontactNoncontact Silicon CantileverSilicon Cantilever

NSG20NSG20

Stepped Silicon SurfaceStepped Silicon Surface

terrace width = 0,314nm × arctg(α)

typical AFM-image

αα

α, degree

terrace, nm

5 12 1 18

0,5 36 0,1 180

0,01 1799

Laboratory of Electron Microscopy and Submicron StructuresLaboratory of Electron Microscopy and Submicron Structures

Si(111)Si(111)

Page 8: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

8

GaAs(001)GaAs(001)

MacrostepsMacrosteps on on Si(111)Si(111)

Analysis of step distribution on Si(111)

Typical ACM images and schematical representation of the surface with steps in height of one interplanes distances. To model the step motion in the frames of a linear kinetics approximation, one can take into account the changes in free energy.

7х7мкм7х7мкм22

Si(111)Si(111)

44хх44мкммкм22 55хх55мкммкм22

ступени эшелоны ступениµµmm0.50.5

Kinetic instability ofKinetic instability of Si(111)Si(111)

830 1050 1250 1350

bunchingbunching

bunchingbunchingbunchingbunching

stepssteps

stepssteps

stepssteps

regular

regular regular

The surface morphology depends on the direction of direct electric current which used for sample heating.

Temperature ( 0C)

T=1280T=128000CC

Real timeReal time

0,5 0,5 µµmm

Page 9: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

9

1,8 nm1,8 nm

height spectra

Temporal Dependence of Step Bunching

1

10

100

0,1 1 10 100

t I m e (m I n)

n um

b er

of

s t e

ps

The solid line represents the best fitted power law function with an exponent

equalled to 0.45±0.5.

JJstepstep--downdown

JJstepstep--upup

JJstepstep--down down ≠≠ JJstepstep--upup

bunc

hbu

nch

antianti--bunch

bunch

1 1 µµmm

LL

20 nm < L < 20 µm

dd

bunch

antianti--bunchbunchOne-dimensional

nanostructure fabrication through self-ordering of monatomic steps to anti-

bunches

aa

bb

cc

Page 10: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

10

Regular steps Step bunches Anti-bunches

Dislocation at the surface

Si(111)

Page 11: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

11

Large Terrace on the Silicon Surface

•• Surface : 5842.1 nm x 5895.9 nmSurface : 5842.1 nm x 5895.9 nm•• Peak to peak, Peak to peak, RRmaxmax = 5.952 = 5.952 AAoo

•• Mean, Mean, RRmeanmean = 5.581 = 5.581 AAoo

•• Roughness, RRoughness, Raa = 0.587 = 0.587 AAoo

•• RootRoot--MeanMean--Sq, Sq, RRqq = 0.723 = 0.723 AAoo

•• SkewnessSkewness, , RRsksk = = --0.0790.079•• Kurtosis , Kurtosis , RRkuku = 2.738= 2.738

Laboratory of Electron Microscopy and Submicron StructuresLaboratory of Electron Microscopy and Submicron Structures

Phys. LowPhys. Low--Dim.Structure 5 (2002) 231.Dim.Structure 5 (2002) 231.

Typical AFM image of Si(111) surface with

extremely wide terraces.

Huge step-free area after quenching and annealing

at 5600C

11

22

12 x 12 µm2

2211

• two-dimensional islands

• two types of islands:positive and negative

• number of positive islands is larger than negative ones

0,3 nm

0,3 nm0,3 nm

• positive islands have circular shape

• negative ones have triangular

• negative islands reveal their equilibrium shape

[110]

Page 12: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

12

enlargingenlarginginitialinitial nucleationnucleation

Analysis of structural-morphological peculiarities of low-dimensional system

9900х00х9900нм00нм2244хх44мкммкм22 44хх44мкммкм22

АFM-images of initial stages of epitaxial growth germanium islands on silicon substrate. Size dependence and islands distribution were studied in details. Typical TEM-image of germanium island on the silicon (111) surface is presented also.

TEMTEM

Statistical analysis of islands distribution on vicinal Si(111)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 1 2 3 4

step-step spacing, µm

isla

nd s

ize,

µm

The The characteristicalcharacteristicallength of changing the length of changing the mechanisms of mechanisms of epitaxial growth from epitaxial growth from stepstep--flow to twoflow to two--dimensional dimensional nucleation.nucleation.

0,001

0,01

0,1

0,8 0,9 1 1,1 1,2

1000 / T (1/K)

criti

cal l

engt

h

EEss=1,25=1,25±±0,15eV0,15eV

d >γλs / kBT

Page 13: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

13

Chemical reaction betweenChemical reaction between SiSi and Oand O22

Thermal etching by means of oxidation reactions at the surface for nanosructure formation method

Step motionisland

dкр=2λvd<dкрd>dкр

λv

Step flowStep flow 2D nucleation of pits2D nucleation of pits

Si + O(ads) Si + O(ads) →→ SiO(gasSiO(gas) ) ---- etchingetching

(1x1)(1x1)

(7x7)(7x7)

ААFMFM--imageimage (8х8(8х8mmmm22) ) of negative islands (pits) of negative islands (pits) on the silicon (111) surface, which shape is on the silicon (111) surface, which shape is depended on the surface reconstructiondepended on the surface reconstruction..

Initial stages of silicon oxidation as method of formation of dielectric wires

degreasing intensity of RHEED patterndegreasing intensity of RHEED patternpinning step motionpinning step motion

««erosionerosion» » of step edge of step edge

OutOut--phase boundariesphase boundarieserosion oferosion of step edgestep edge““noise” on terracesnoise” on terraces

O2(gas) → O(ads) + O(ads) Si + O(ads) → SiO(gas) -- травлениеSi + 2O(ads) → SiO2 -- окисление

AFMAFM--imagesimages (4х4(4х4µµmm22) ) of Si (111) of Si (111) surface at initial stages of surface at initial stages of oxidationoxidation..

Page 14: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

14

phase contrastphase contrasttopographytopography enlarged fragmentenlarged fragment

3D3D--image of TFT treatmentimage of TFT treatment

StepStep--flow growthflow growth

at initial stagesat initial stages

of of GeGe depositiondeposition

Step wandering and local step curvature

0

5

10

15

20

25

0 0,2 0,4step-step spacing

RM

S de

viat

ion

Statistic analysis ofStatistic analysis of amplitude and shorthort--&&--long wavelong wavelength fluctuations allows to evaluate the stepfluctuations allows to evaluate the step--step interaction and step interaction and step edge stiffness ( <X step edge stiffness ( <X 22> = kTL/12> = kTL/12ββ).).

Laboratory of Electron Microscopy and Submicron Structures

Page 15: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

15

Stress induced by screw dislocation at the surface

Laboratory of Electron Microscopy and Submicron Structures

The size of twoThe size of two--dimensional germanium islands is smaller around outdimensional germanium islands is smaller around out--point of dislocation emerging at the surface probably due to locpoint of dislocation emerging at the surface probably due to local al deformation having asymmetric shape at the dislocation coredeformation having asymmetric shape at the dislocation core..

topographictopographic phase contrastphase contrast

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9top terrace (µм)

denu

ded

zone

(nм

)

Denuded zones and sizeDenuded zones and size--dimension of islands allows dimension of islands allows to deduce the distribution of to deduce the distribution of

germanium adatoms near germanium adatoms near steps and along terraces. steps and along terraces.

Dependence of denuded zones on terrace widthDependence of denuded zones on terrace width

Page 16: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

16

Shape and size of germanium twoShape and size of germanium two--dimensional islandsdimensional islands

Laboratory of Electron Microscopy and Submicron Structures

The islands reveal their equilibrium shape at high temperature.The islands reveal their equilibrium shape at high temperature.

Equilibrium for small islands can be achieved easily. Equilibrium for small islands can be achieved easily.

T = 490T = 49000CC T = 670T = 67000CC T = 790T = 79000CC

Multilayer growth

•Barrier-limited growth of multilayer islands.

•The driving force is the local gradient of chemical potential.

•Ehrlich-Schwoebel barrier for incorporation.

•Interlayer transport mechanism.

•Out-phase boundaries and denuded zones

Laboratory of Electron Microscopy and Submicron Structures

Page 17: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

17

Laboratory of Electron Microscopy and Submicron Structures

Germanium on Silicon

• denuded zones near steps

• triangular islands on terrace

• the same orientation of triangular islands

• equilibrium shape

• step edge barrier-limited growth

STM image of a Si(001) surface. STM image of a Si(001) surface. Scale is ~110 nm square. Scale is ~110 nm square.

Published by Prof. Max Published by Prof. Max LagallyLagally..

Structure of silicon (001) surfaceStructure of silicon (001) surface

•• atomic steps (a/2 in height) ~ 0,28 nm atomic steps (a/2 in height) ~ 0,28 nm

•• atomic steps (a/4 in height) ~ 0,14 nmatomic steps (a/4 in height) ~ 0,14 nm

where a is a lattice parameter.where a is a lattice parameter.

Typical AFM-images of silicon (001) surface: topography and phase contrast.

Si(001)Si(001)

Page 18: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

18

Stages of step bunching on Si(001)

t = 0 ct = 0 c t = 8 ct = 8 c t = 34 ct = 34 c t = 120 ct = 120 c

T = 860T = 86000CC

Step bunching on the silicon (001) surface at step-down direction of direct current using for sample heating.

Monatomic steps on Si(001) and step anisotropy Monatomic steps on Si(001) and step anisotropy induced by dimer row of reconstruction induced by dimer row of reconstruction

Laboratory of Electron Microscopy and Submicron Structures

Page 19: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

19

Step bunching on silicon (001) surface

Fragments of surface morphology of silicon (001) Fragments of surface morphology of silicon (001) surface during sample heating by direct electric surface during sample heating by direct electric current flowing through the sample.current flowing through the sample.

Schematic presentation of influence of heating Schematic presentation of influence of heating current on the step pairing during thermal current on the step pairing during thermal annealing.annealing.

The average terrace width in the bunch depends The average terrace width in the bunch depends on the number steps: on the number steps: (W(W11 + W+ W22) > W) > W3 3 andand (W(W11 + W+ W22) = (W) = (W44 + W+ W55) )

W1

W5

W2

W3

W4

AFM “movie” for stepAFM “movie” for step--step interaction step interaction

1,6x1,61,6x1,6µµmm22

2,5x2,52,5x2,5µµmm22 2,5x2,52,5x2,5µµmm22

3,5x3,53,5x3,5µµmm22

3,5x3,53,5x3,5µµmm22

•• step pairing instability step pairing instability

•• nanonano--bridges between bridges between step pairsstep pairs

•• size modulation along size modulation along bridgebridge

Page 20: OUT-LINEcrysta.physik.hu-berlin.de/as2005/pdf/as2005_talk_06... · 2006-01-30 · JEMJEM--4000EX,4000EX, (A.Gutakovskii) High resolution electron microscopy image of cross-section

20

Attractive interaction between Attractive interaction between monolayer pit and atomic steps monolayer pit and atomic steps

on Si(001)on Si(001)

f

ff

f

Stress anisotropyStress anisotropy

The opposite sign of steps – attractive force.

The same sign of steps – repulsion force.

•• Basic studies of semiconductor surfaces Basic studies of semiconductor surfaces and interfaces by means of diagnostics and interfaces by means of diagnostics with with nanoscalenanoscale and atomic resolution and atomic resolution (HREM, SEM, AFM, STM, unique UHV(HREM, SEM, AFM, STM, unique UHV--REM, REM, exex-- and in situ characterizationsand in situ characterizations..

• Development of diagnostics and methods of atomic manipulations (atomic processes at surface, interface and bulk, self-organization, ordering et al.).

Conclusion :