43
NMR Quantum Computing Slides courtesy of Lieven Vandersypen Then: IBM Almaden, Stanford University Now: Kavli Institute of NanoScience, TU Delft 1 with some annotations by Andreas Wallraff.

NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

NMR Quantum Computingp g

Slides courtesy of Lieven VandersypenThen: IBM Almaden, Stanford University

Now: Kavli Institute of NanoScience, TU Delft

1

,

with some annotations by Andreas Wallraff.

Page 2: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

How to factor 15 with NMR?

F FF

13

26perfluorobutadienyl

F

13C12C12C

F

F

13CFe

3

54

7p f y

iron complex

C5H5 COCO red nuclei are

qubits: F, 13C

2

Page 3: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Goals of this lecture

Survey of NMR quantum computing

Principles of NMR QCp QTechniques for qubit controlState of the artFuture of spins for QIPCFuture of spins for QIPCExample: factoring 15

3

Page 4: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

NMR largely satisfies the DiVincenzo criteria

Qubits: nuclear spins ½ in B0 field ( and as 0 and 1)

Quantum gates: RF pulses and delay timesQuantum gates: RF pulses and delay times

() Input: Boltzman distribution (room temperature)

Readout: detect spin states with RF coil1H

Readout: detect spin states with RF coil

Coherence times: easily several seconds 13CClCl

ClCl

4

(Gershenfeld & Chuang 1997, Cory, Havel & Fahmi 1997)

Page 5: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Nuclear spin HamiltonianSingle spinSingle spin

5

Page 6: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Nuclear spin HamiltonianMultiple spins

without qubit/qubitc pli gMultiple spins coupling

1H 500MHz

~ 25 mKchemical shiftsof the five F qubits

H13C15N

500126-51

25 mK

N19F31P

51470202

6qubit level separation

(at 11.7 Tesla)

Page 7: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Hamiltonian with RF fieldsingle-qubit rotationssingle qubit rotations

z x y

typical strength Ix, Iy : up to 100 kHzrotating wave approximation

7Rotating frame Lab frame

Page 8: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Nuclear spin HamiltonianCoupled spins J>0: antiferro mag.Coupled spins

coupling term

J f g

J<0: ferro-mag.

Typical values: J up to few 100 Hzyp p

16 configurations

8solid (dashed) lines are (un)coupled levels

Page 9: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Controlled-NOT in NMR A target bitB control bit

Before AfterA B A B

+ i

B control bit

+ i 2

+ 2

” flip A if B ”

YA Delay

2

wait

if spin B is

YA90 XA

90Delay1/2JAB

xy

z

xy

z

xy

z

xy

z

x x x x

z z z

if spin B is

z

9

if spin B is x

yx

yx

yx

y

timedifferent rotation direction depending on control bit

Page 10: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Making room temperature spins look cold

(Cool to mK) Optical pumping

Effective pure state(Gershenfeld&Chuang Science ‘97

warm

p p p g DNP, …

(Gershenfeld&Chuang, Science 97, Cory, Havel & Fahmi, PNAS ‘97)

ner

gy

ner

gy

equalize population

low

en

hig

h en

cold

quasi cold

Look exactly like cold spins !

cold

warmquasi cold

10[Hz] [Hz]

Page 11: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Effective pure state preparation(1) Add up 2N-1 experiments (Knill,Chuang,Laflamme, PRA 1998)

+ + =Later (2N - 1) / N experiments (Vandersypen et al., PRL 2000)

prepare equal population (on average) and look at

(2) Work in subspace (Gershenfeld&Chuang, Science 1997)

deviations from equilibrium.

11

compute with qubit states that have the same energy and thus the same population.

Page 12: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Read-out in NMR |0 |0

|0 |1|0 |1

Phase sensitive detection

|1 |0

Phase sensitive detectionY90z z

|0x

yx

|

positive signal for |0> (in phase)

|1 |1yY90

y

z

y

z

|1

12

xy

xy

negative signal for |1> (out of phase)

Page 13: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Measurements of single systems versus ensemble measurements

|00quantum state |00 + |11

single-shot bitwise |0 and |0 each bit |0 or |1

single-shot “word”wise |00 |00 or |11 QC

|0 and |0bitwise average each bit average of |0 and |1 NMR

“word”wise average |00 average of |00 and |11

13

adapt algorithms if use ensemble

Page 14: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Quantum state tomography

after X

Look at qubits from different angles

after Yno pulse after X90

z z

after Y90

z

no pulse

xy

xy

xy

zz

xy

z

xy

z

xy

z

z zz

14

xy

xy

xy

Page 15: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Outline

Survey of NMR quantum computing

Principles of NMR QCTechniques for qubit controlE l f t i 15Example: factoring 15State of the artOutlook

16

Page 16: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Off-resonance pulses and spin-selectivity

spectral content of a square pulse

off-resonant pulses induce eff. rotation in addition to z rotation in addition to x,y

17

may induce transitions in other qubits

Page 17: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Pulse shaping for improved i l ti itspin-selectivity

gaussian pulse profile gaussian spectrumgaussian pulse profile gaussian spectrum

less cross-talk

18

Page 18: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Missing coupling terms: Swap

How to couple distant qubits with only nearest neighbor physical couplings?

Missing couplings: swap states along qubit network

p y p g

di dSWAP12 = CNOT12 CNOT21 CNOT12 as discussed in exercise class

1 2 3 4

19

“only” a linear overhead ...

Page 19: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Undesired couplings: refocusremove effect of coupling during delay times

bi

XB180 XB

180

opt. 1: act on qubit B

XA180XA

180 180180

opt. 2: act on qubit A

20

• There exist efficient extensions for arbitrary coupling networks• Refocusing can also be used to remove unwanted Zeeman terms

opt. 2: act on qubit A

Page 20: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Composite pulsesExample: Y90X180Y90

corrects for corrects forcorrects for under/over-rotation

corrects for off-resonance

z z

yx y

x y

22

However: doesn’t work for arbitrary input stateBut: there exist composite pulses that work for all input states

Page 21: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Molecule selection

A quantum computer is a known molecule.

spins 1/2 (1H, 13C, 19F, 15N, ...)

q pIts desired properties are:

spins 1/2 ( H, C, F, N, ...) long T1’s and T2’s heteronuclear, or large chemical shifts

d J li t k ( l k d) good J-coupling network (clock-speed)

stable, available, soluble, ... required to make spi s f sa e spins of same type addressable

24

Page 22: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Quantum computer molecules (1)Grover / Deutsch-Jozsa

Cl NH H3

Q. Error correction

red nuclei are used

CCl

Cl

HO

CC

3

CH

red nuclei are used as qubits:

CCl

Cl

H

H

C

O

CH3

HOTeleportationLogical labeling / Grover Q. Error Detection

C CF F

C CH Cl

CHO

25

BrF ClCl O-Na+

Page 23: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Quantum computer molecules (2)Deutsch-Jozsa 7-spin coherence

DD H

NC

D

CH F

D

CC

CC

HH3

O

ON

O

C

OH OH

C CF F

Order-findingC C

C CFF

F26

FFe(CH)5 (CO)2

Page 24: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Outline

Survey of NMR quantum computing

Principles of NMR QCTechniques for qubit controlE l f t i 15Example: factoring 15State of the artOutlook

27

Page 25: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

The good news

Quantum computations have been demonstrated in the lab

A high degree of control was reached, permitting hundreds of operations in sequence

A variety of tools were developed for accurate unitary control over multiple coupled qubits useful in other quantum computer realizations

Spins are natural, attractive qubits

29

Page 26: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

ScalingScaling

We do not know how to scale liquid NMR QCWe do not know how to scale liquid NMR QC

M i b t lMain obstacles:• Signal after initialization ~ 1 / 2n [at least in practice]

C h ti t i ll d ith l l i• Coherence time typically goes down with molecule size• We have not yet reached the accuracy threshold ...

30

Page 27: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Main sources of errors in NMR QCQ

Early on (heteronuclear molecules)Early on (heteronuclear molecules) inhomogeneity RF field

Later (homonuclear molecules) J coupling during RF pulses

Finallydecoherencedecoherence

31

Page 28: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Solid-state NMR ?

molecules insolid matrix

Yamaguchi & Yamamoto, 2000

Cory et al

32

Page 29: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Electron spin qubitsp q

SL SR

Loss & DiVincenzo, PRA 1998Kane, Nature 1998

33

Page 30: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Outline

Survey of NMR quantum computing

Principles of NMR QCTechniques for qubit controlE l f t i 15Example: factoring 15State of the artOutlook

34

Page 31: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Quantum Factoring Find the prime factors of N: chose a and find order r

f (x) = a x mod N Results from number theory:f is periodic in x (period r)

Find the prime factors of N: chose a and find order r.

composite numbercoprime with N

f is periodic in x (period r)

gcd(a r/2 ± 1, N ) is a factor of N

Quantum factoring: find r

Quantum: ~ L 3 P Shor (1994)C l it f f t i

g

Quantum: ~ L 3 P. Shor (1994)Complexity of factoring numbers of length L: Classically: ~ e L/3

35

Widely used crypto systems (RSA) would become insecure.

Page 32: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Factoring 15 - schematic| |0 |1 |22L 1

QFT

|x = |0 + |1 + ... + |22L-1

|x2 L bits |0

|k2L/rk

Interference

H

x a x mod N

QFT|

L=log2(15) |x | a x mod 15

|

|13 qubits

Quantum parallelism

4 qubits| | x

x0xx = ... + x2 22 + x1 21 + x0 20

ax = ... a a2 ax2 x1 x0 ...

...x a 2x a 1 x a 4

x1x2

a = 4, 11 amod 15 = 1 “easy” case

x ax a x a

period 2

36

a = 2, 7, 8, 13 amod 15 = 1 “hard” casea = 14 fails

period 4

Page 33: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Quantum Fourier transform and the FFT

[ 1 1 1 1 1 1 1 1 ] [ 1 . . . . . . . ]

FFT

[ 1 . 1 . 1 . 1 . ]

[ 1 . . . 1 . . . ]

[ 1 ]

[ 1 . . . 1 . . . ]

[ 1 . 1 . 1 . 1 . ]

[ 1 1 1 1 1 1 1 1 ]

The FFT (and QFT) Inverts the period[ 1 . . . . . . . ]

[ 1 . . . 1 . . . ][ 1 1 ]

[ 1 1 1 1 1 1 1 1 ]

[ 1 . 1 . 1 . 1 . ][ 1 -i -1 i ]

p Removes the off-set

[ . 1 . . . 1 . . ][ . . 1 . . . 1 . ][ . . . 1 . . . 1 ]

[ 1 . -i . -1 . i . ][ 1 . -1 . 1 . -1 . ][ 1 . i . -1 . -i . ]

a = 11

|3 = |0 |0 + |1 |2 + |2 |0 + |3 |2 + |4 |0 + |5 |2 + |6 |0 + |7 |2= ( |0 + |2 + |4 + |6 ) |0 + ( |1 + |3 + |5 + |7 ) |2 after mod exp

37

|4 = ( |0 + |4 ) |0 + ( |0 - |4 ) |2

p

after QFT

Page 34: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

11 7 T l O f d d ti t t t b

Experimental approach 11.7 Tesla Oxford superconducting magnet; room temperature bore 4-channel Varian spectrometer; need to address and keep track of 7 spins

phase ramped pulsesp p p software reference frame

Shaped pulsesC t f t lk

12 34

5

Compensate for cross-talk Unwind coupling during pulses

469.98 470 00 470 02 [MHz]

F13C12C

FF

Larmor frequencies 470 MHz for 19F

469.98 470.00 470.02 [MHz]1

3

26

~25 mK

F13C12C

12CF

F13C

F

470 MHz for F 125 MHz for 13C

J - couplings: 2 - 220 Hz54

7 25 mK

38

FC5H5 (CO)2

Fe coherence times: 1.3 - 2 s

Page 35: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Picture of the labPicture of the lab

39

Page 36: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Thermal Equilibrium Spectranits

]Qubit 1

p• line splitting due to J-coupling• all lines present

art [

arb.

un

1 2 34 5

Rea

l pa

[Hz]

Qubit 2 Qubit 3uncoupled qubit states i di at d b a

rb. u

nits

]

rb. u

nits

]Qubit 2 indicated by arrows

eal p

art [

ar

eal p

art [

ar

40

Re

Re

[Hz] [Hz]

Page 37: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Spectra after state initializationni

ts]

Qubit 1 state initializationar

t [ar

b. u

n

• only the |00 … 0 line remains• the other lines are averaged away

Qubit 1

RT spins appear cold!

Rea

l pa • the other lines are averaged awayby adding up multiple experiments

p pp[Hz]

rb. u

nits

]

rb. u

nits

]Qubit 2 Qubit 3

eal p

art [

ar

eal p

art [

ar

41[Hz] [Hz]

Re

Re

Page 38: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Pulse sequence (a=7)

/2 X- or Y-rotations (H and gates) i ( f i )

42

> 300 pulses, 720 msX-rotations (refocusing)Z - rotations

Page 39: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

“Easy” case (a=11)ni

ts]

321Ideal prediction

period 2

|000 0Qubit 1: |0

8 / r = 4r = 2

art [

arb.

un 321

|100 4

Ideal prediction

periodup |0 gcd(112/2 - 1, 15) = 5

gcd(112/2 + 1, 15) = 3Rea

l pa

Experiment

15 = 3 x 5[Hz]

recall

Qubit 3:rb. u

nits

]

rb. u

nits

]

eread-out scheme

Qubit 2:up |0

up/down |0,|1

eal p

art [

ar

mag

par

t [a

43

Re

Im

[Hz] [Hz]

Page 40: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

“Hard” case (a=7)ni

ts]

|000 0

period 4

8 / r = 2r = 4

art [

arb.

un |000 0

|010 2|100 4|110 6Qubit 1:

up |0

period

gcd(74/2 - 1, 15) = 3gcd(74/2 + 1, 15) = 5R

eal p

a up |0

15 3 x 5Qubit 3:

[Hz]

rb. u

nits

]

rb. u

nits

] up/down |0,|1

Qubit 2:/d |0 |1

mag

par

t [a

mag

par

t [aup/down |0,|1

44

Im Im

[Hz] [Hz]

decoherence

Page 41: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Model quantum noise (decoherence)Spins interact with the environment

Decoherence

The decoherence model for 1 nuclear spin is well-described.

phaserandomization

energyexchange

We created a workable decoherence model for 7 coupled spins.The model is parameter free

45

The model is parameter free.

Page 42: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Simulation ofnits

]

fundamental limit

Simulation of decoherence (1)

art [

arb.

un

fundamental limit

Rea

l pa

hard casedecoherence can be

[Hz]decoherence can be

understood and modeled

rb. u

nits

]

rb. u

nits

]

mag

par

t [a

mag

par

t [a

46

Im Im

[Hz] [Hz]

Page 43: NMR Quantum Comppguting - qudev.phys.ethz.ch · Goals of this lecture Survey of NMR quantum computing Principles of NMR QC Techniques for qubit control State of the art Future of

Simulation ofnits

]

Simulation of decoherence (2)

fundamental limitart [

arb.

un

fundamental limit

Rea

l pa

easy casedecoherence can be

[Hz]decoherence can be

understood and modeled

rb. u

nits

]

rb. u

nits

]

eal p

art [

ar

mag

par

t [a

47

Re

Im

[Hz] [Hz]