of 22 /22
1 NEW MICROALGAE BIOREFINERY CONCEPT Laura Azócar, Hernán Díaz, Robinson Muñoz, Leonel González, David Jeison, Rodrigo Navia Financiado por

NEW$MICROALGAE$ BIOREFINERY$CONCEPT...Spent microalgae post transesterification 1 Spent microalgae post transesterification 2 Figure" 12." BMP" using" spent" microalgae" aner" direct

  • Author
    others

  • View
    3

  • Download
    0

Embed Size (px)

Text of NEW$MICROALGAE$ BIOREFINERY$CONCEPT...Spent microalgae post transesterification 1 Spent microalgae...

  • 1  1  

    NEW  MICROALGAE  BIOREFINERY  CONCEPT  

       Laura  Azócar,  Hernán  Díaz,  Robinson  Muñoz,  Leonel  González,  David  Jeison,  Rodrigo  

    Navia  

    Financiado  por  

  • 2  

    IntroducEon  

    Lam  and  Lee,  2012  

    Brennan  and  Owende,  2010  

  • Downstream  

    3  

    Mata  et  al.  2012  

    Ahmad  et  al.  2012  

    Brennan  and  Owende,  2010  

  • Downstream  

    Waste  biomass  (70%)  Solvents  

    Harvest  

    Biomass  procesing    

    Lipid  extracEon  

    TransesterificaEon  

    Protein  extracEon  

    Anaerobic  digesEon  

    Biodiesel  upgrading    

    Harvest  

    Carbohidrate  extracEon  to  bioethanol  producEon  

    Direct  transesterificaEon  

    Protein  extracEon  

    Anaerobic  digesEon  

    Biodiesel  upgrading    

  • 5  

    SequenEal  opEmizaEon    

    Variables  pH=  9-‐10-‐11-‐  12-‐13  

    Temperature  (°C)=  30-‐50-‐70  Eme  (min)=  10-‐  20-‐  30    

    SEr  (rpm)=  100-‐  200-‐  300    

    Chemical  proteins  solubilizaEon  &  EnzymaEc  hydrolysis    

    PROTEIN  EXTRACTION  

    CHEMICAL  PROTEIN    SOLUBILIZATION  

  • 6  

    pH

    9 10 11 12 13

    % P

    rote

    in s

    olub

    ility

    0

    10

    20

    30

    40

    50

    temperature [°C]

    20 30 40 50 60 70

    % P

    rote

    in s

    olub

    ility

    0

    10

    20

    30

    40

    50

    60

    Results  ü 50°C  ü 20min    ü 200  rpm  

    ü pH  12  ü 20min    ü 200  rpm  

    Figure   1.   %   Protein   solubility   from  microalgae  biomass  to  different  pH  condiEons      

    Figure   2.   %   Protein   solubility   from   microalgae  biomass  to  different  reacEon  temperature      

  • time [min]

    10 20 30 40 50 60

    % P

    rote

    in s

    olub

    ility

    0

    10

    20

    30

    40

    50

    60

    70

    Stir [rpm]

    50 100 150 200 250 300 350

    % P

    rote

    in s

    olub

    ility

    0

    20

    40

    60

    80

    ü pH  12  ü 50°C    ü 200  rpm  

    ü pH  12  ü 50°C    ü 40  min  

    OpEmal  condiEons:  pH  12  50°C    40  min  200rpm    Yield:  64%  

    Figure   3.   %   Protein   solubility   from   microalgae  biomass  to  different  reacEon  Eme        

    Figure  4.  %  Protein  solubility  from  microalgae  biomass  to  different  sEr  condiEons  

  • 8  

     1)  EnzymaEc   hydrolysis   of   microalgae   biomass   through   successive   steps  

    addiEon  of:  Viscozyme,  Alcalasa  and  Flavourzyme    2)    EnzymaEc  hydrolysis  of  solubilized  protein  by  chemical  treatment  by  using  

    Alcalasa.    3)  EnzymaEc  hydrolysis  of  solubilized  protein  by  chemical  treatment  by  using  

    Flavourzyme.    Raw  material    1)  Pretreated  Microalgae  150g/L  (similar  to  biomass  post  harvest)      

    ENZYMATIC  HYDROLYSIS  

  • 9  

    Reactor   On  line  traking  Thermoregulated  bath  

    Set  up  

  • EnzymaEc  hydrolysis  of  microalgae  biomass  

    10  

    Time [h]

    0 50 100 150 200 250 300

    % H

    ydro

    lysi

    s de

    gree

    30

    40

    50

    60

    70

    80

    90Disadvantage  Carbohydrates  loss  (65%)  

    Hydrolysis  degree:  84%    

    Viscozyme  Alcalasa  

    Flavourzyme  

    Figure   5.   Hydrolysis   degree   aner   enzymaEc   hydrolysis   of  microalgae  biomass  

  • Flavourzyme  

    Time [h]

    0 20 40 60 80 100

    Hyd

    roly

    sis

    degr

    ee [%

    ]

    20

    30

    40

    50

    60

    70

    80

    90

    Time [h]

    0 50 100 150 200 250 300

    Hyd

    roly

    sis

    degr

    ee (%

    )

    40

    50

    60

    70

    80

    90

    Flavourzyme  

    Alcalasa  EnzymaEc  hydrolysis  of  previously  solubilized  protein  by  chemical  process  

    Low  carbohydrates  loss      Carbohydrates  extracEon  to  bioethanol  producEon???  

    Total  yield:  88%    

    Figure   6.   Hydrolysis   degree   aner   enzymaEc  hydrolysis  of  solubilized  protein  by  chemical  process  

    Figure  7.  Hydrolysis  degree  aner  enzymaEc  hydrolysis  of  solubilized  protein  by  chemical  process  

  • 12  Biomass  to  biodiesel  producEon  (high  lipid  content)  

    Carbohydrates  to  bioethanol  producEon  

    CARBOHYDRATES  EXTRACTION  TO  BIOETHANOL  PRODUCTION  

  • BIODIESEL  PRODUCTION  

    Lipids  extracIon  and  transesterificaIon  

    Figure   8.   Chromatogram   faqy   acid   profile   (a)  microalgae  1  and  (b)  microalgae  2    

    (a)  

    (b)  

  • 14  

    BIODIESEL  PRODUCTION  

    Direct  transesterificaIon  

    CondiEons  invesEgated  RSM    ü Methanol  to  oil  molar  raEo  ü Catalyst  ü Time  ü Temperature  

    Figure  9.  Biodiesel  produced  by  direct  transesterificaEon  

  • 15  

    BIOGAS  PRODUCTION  

    Figure  10.  Biomass  during  microalgae  biorefinery  process  (a)Protein    extracEon,  (b)  Drying,  (c)   Dry   biomass,   (d)   Biomass   milled   to   the     lipids   extracEon,   (e)   Biomass   aner   lipids  extracEon,  (f)  Biomass  milled  to  biogas  producEon    

    Biochemical  methane  potenIal  by  using  microalgae  biomass    aQer  lipids  extracIon  

  • 16  

    BIOGAS  PRODUCTION  Biochemical  methane  potenIal  by  using  microalgae  

    biomass  aQer  transesterificaIon  reacIon  

    Figure  10.  Biomass  aner  transesterificaEon  reacEon  

    117  serum  boqles  50  mL  reacEon  Nutrients  Bicarbonate  35°C    

    Assays  

  • 17  

    BIOGAS  PRODUCTION  

    Parámetro Microalgae 1 Spent microalgae 1 Spent microalgae 2 Spent microalgae 2

    Humidity content [%] 79,58 7,66 3,99 3,13Lipids [%]* 19,20 5,23 9,61 7,4Protein [%]* 33,00 22,80 39,42 41Fiber [%]* 3,33 7,94 4,34 3,54Ash [%]* 31,00 40,13 10,34 13,75Carbohidrates [%] 13,47 16,24 32,3 31,18C/N [gC/gN] 5.85 6.97 - -

    *dry  basis  

    Table  1.  Microalgae  characterizaEon  

  • 18  

    BIOGAS  PRODUCTION  

    Time [d]

    0 20 40 60 80

    Bio

    chem

    ical

    met

    hane

    pot

    entia

    l BM

    P [m

    L C

    H4/g

    VS

    ]

    0

    50

    100

    150

    200

    250

    300

    350

    Spent microalgae post transesterification 1Spent microalgae post transesterification 2

    Figure   12.   BMP   using   spent   microalgae   aner   direct  transesterificaEon  

    Time [d]

    0 20 40 60 80

    Bio

    chem

    ical

    met

    hane

    pot

    entia

    l BM

    P [m

    L C

    H4/g

    VS

    ]

    0

    100

    200

    300

    400

    500

    Spent microalgae + residual culture mediumSpent microalgae + water + nutrients

    Figure  11.  BMP  using  spent  microalgae  aner  protein  and  lipids  extracEon    

  • 19  

    BIOGAS  PRODUCTION  

    Figure  13.  TheoreEcal  and  real  BMP  usiing  spent  microalgae  

    Microalga agotadaMicroa

    lgae 1.1

    Microalgae 1

    .2Microa

    lgae 2.1

    Microalgae 2

    .2

    BM

    P [m

    LCH

    4/gV

    S]

    0

    200

    400

    600

    800

    Theoretical BMPReal BMP

  • 20  

    NEW  MICROALGAE    BIORREFINERY  CONCEPT    

    *BIOCOMPOSITS  *PYROLYSIS  PRODUCTS  

    Wastewater

    Wastewater

    Spent biomass

    Spent biomass

    BIODIESEL

    Microalgae

    (

    Direct transesterification

    Spent biomass

    1. Harvest

    Solvent recovery

    BIOGAS

    5. Upgrading

    3. Bioethanol production

    2. Protein solubilization

    4. Biodiesel production

    AMINO ACIDS

    BIOETHANOL

    Residual culture medium

    6. Anaerobic digestion

  • 21  

    ACKNOWLEDGMENT  

    ü   Consorcio  Desert  Bioenergy  S.A.,  Innova-‐CORFO  ü   CONICYT  Project  78110106  ü   Chilean  Fondecyt  project  3120171  ü   PIA  project  DI12-‐7001  from  University  of  La  Frontera    

    Grupo  de  Biotecnología  de  Microalgas  Marinas  Universidad  de  Almería  (G.  Acién,  P.  García)  

     Center  of  Waste  Management  and  Bioenergy      

    ScienEfic  and  Technological  Bioresource  Nucleus  

  • NEW  MICROALGAE  BIOREFINERY  CONCEPT  

       Laura  Azócar,  Hernán  Díaz,  Robinson  Muñoz,  Leonel  González,  David  Jeison,  Rodrigo  

    Navia  

    www.desertbioenergy.cl  www.  bioren.cl  

    [email protected]