29
Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Industrial application of microalgae in the circular bioeconomyDorinde Kleinegris

[Applied Biotechnology / Microalgae]

Page 2: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Why microalgae?

• High areal productivity

• CO2 mitigation

• No arable land

• Low water use

• Seawater and wastewater

• Can use residual streams for nutrients

• High diversity, many products

[Applied Biotechnology / Microalgae]

CO2

Nutrients (N, P)

+ O2

Page 4: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

There is a large gap

[Applied Biotechnology / Microalgae]

CommoditiesMicroalgae

Page 5: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Commercial production: challenges

[Applied Biotechnology / Microalgae]

Product costs

Scale

Production chain analysis

Market development

Page 6: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Biomass Production costs: Model

Netherlands

Saudi Arabia

Canary Islands

Turkish Riviera

South Spain

Curacao

Culture temperature

Daily Dilution

Mixing day/night)

Operation days per year

...

Light Intensity

Electricity costs

Taxes

Labor€ / Kg biomass

CAPEX & OPEX

NER

Sensitivity Analysis

Areas to focus

Output

Location

Cultivation

System

Empirical data

Specific

parameters

Input

Page 7: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Product costs - biomass production

[Applied Biotechnology / Microalgae]

Projections 100ha

Page 8: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Cost breakdown: cultivation costs

[Applied Biotechnology / Microalgae]

Page 9: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Sensitivity analysis

[Applied Biotechnology / Microalgae]

Page 10: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Biomass composition: benchmark on Nannochloropsis

N-replete N-limited

Lipids 20% 50%

SF

A*

MU

FA

*

PU

FA

*

SF

A*

MU

FA

*

PU

FA

*

Glyco-, Phospho-lipids 12% 35% 30% 35%

10% 45% 40% 15%

Triacylglycerides 2% 37.5%

Waxes 3% 1.25% Sterols 3% 1.25%

Proteins 50% 30% Water soluble 20% 12%

Non-water soluble 30% 18%

Carbohydrates 20% 15%

Monosaccharides 5% 3% Polysaccharides 15% 12%

Pigments 3% 1%

Ashes 7% 4%

Page 11: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Microalgae

Lipids

Proteins

WaxesSterols

CosmeticHealth care

Biopolymer

Surfactants

Biolubricant

Paint, Coating

TAGGlyco-lipids

Phospho-lipids

Soluble proteins

Un-solubleproteins

Pharma

Bulk chemicals

Food additives

Food/Feed

BiodieselBiokeroseneBioethanolBiobutanolBiomethane

Carbohydrates

Mono- Oligo-saccharides

StarchCellulose

Mark

et d

em

an

d

Sellin

gp

rice

Ash/minerals

PigmentsChlorophyllCarotenoidPhycobilins

Microalgal biorefinery

Page 12: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Microalgal biorefinerydesign and techno-economical analysis

Biomassproductivity

Biomass composition

Utilities cost

(energy, labour)

Mass andenergy balances

CAPEX

OPEX

Page 13: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Microalgal biomass

Disrupted Biomass

Hexane

Isopropanol

Polar lipids

TAG

Pigments

Waxes

50 C

1 bar

Hexane

Isopropanol

Water

Water

Ash

non water soluble proteins

proteins

carbohydrates

0.4 bar

I.1) BEADM ILLING

III.1) LIPID EXTRACTORIII.2) DISTILLATION COLUM N

FOR SOLVENT RECOVERYIII.3) DECANTER FOR

WAXES REM OVAL

2 C

III.4b) BLEACHING FOR PIGM ENT REM OVAL

IV.1) DIAFILTRATION FOR

PROTEINS WASHING

IV.2) SPARY DRIER

FOR PROTEINS/CARBOHYDRATES

Waxes

Steam

Pigment

Polar lipids

TAG

III.0) SPRAY DRIER

Proteins

Carbohydrates

Ash

Microalgal biorefinerydesign and techno-economical analysis

Food/feed

Page 14: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Microalgal biorefinerydesign and techno-economical analysis

Biofuel

P-14 / R-101

Stoich. Reaction

Microalgal biomass

Disrupted Biomass

Hexane

Isopropanol

Polar lipids

TAG

Pigments

Waxes

50 C

1 bar

Hexane

Isopropanol

FAME

Glycerol

Pigments

Sterols

NaOH

Methanol

Methanol

NaOH

Water

Water

Ash

non water soluble proteins

Proteins

Carbohydrates

Ash

2 bar

60 C

30 min

0.4 bar0.4 bar

WaterFAME

Sterols

Pigments

Glycerol

H3PO4 Na3PO4

I.1) BEADM ILLING

III.1) LIPID EXTRACTORIII.2) DISTILLATION COLUM N

FOR SOLVENT RECOVERYIII.3) DECANTER FOR

WAXES REM OVAL

2 C

III.4) BATCH REACTOR

FOR TRANSESTERIFICATION

III.5) EVAPORATION/CONDENSATION

FOR M ETHANOL RECOVERY

III.6) EXTRACTOR FOR

GLYCEROL WASHING

IV.1) DIAFILTRATION FOR

PROTEINS WASHING

IV.2) SPRAY DRIER

FOR PROTEINS/CARBOHYDRATES

Waxes

III.0) SPRAY DRIER

Proteins

Carbohydrates

Page 15: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Microalgal biorefinerydesign and techno-economical analysis

P-14 / R-101

Stoich. Reaction

Microalgal biomass

Disrupted Biomass

PEG

PEG

water soluble Proteins

Polysaccharides

Monosaccharides

Phosphate

PEG

Hexane

Isopropanol

Polar lipids

TAG

Pigments

Waxes

50 C

1 bar

Hexane

Isopropanol

FAME

Glycerol

Pigments

Sterols

NaOH

Methanol

Methanol

NaOH

Water

Water

Ash

non water soluble proteins

non water soluble proteins

non water soluble proteins

Ash

2 bar

60 C

30 min

0.4 bar

0.4 bar

water soluble Proteins

Polysaccharides

Monosaccharides

Phosphate

PBS buffer

Monosaccharides

water soluble Proteins

WaterFAME

Sterols

Pigments

Glycerol

H3PO4 Na3PO4

1 kDa

Phosphate

II.1) DIRECT PROTEIN

EXTRACTOR

I.1) BEADM ILLING

II.2) BACKWARD PROTEIN

EXTRACTOR II.7) DIAFILTRATION UNIT FOR

PROTEINS/POLYSACCHARIDES

FRACTIONATIONII.3) ULTRAFILTRATION UNIT FOR

PROTEIN/POLYSACCHARIDES

CONCENTRATION

II.9) SPRAY DRIER FOR POLYSACCHARIDES

Polysaccharides

II.4) ULTRAFILTRATION UNIT

FOR PHOSPHATE RECOVERY

II.6) SPRAY DRIER

FOR PHOSPHATE CONCENTRATION

III.1) LIPID EXTRACTORIII.2) DISTILLATION COLUM N

FOR SOLVENT RECOVERYIII.3) DECANTER FOR

WAXES REM OVAL

2 C

III.4) BATCH REACTOR

FOR TRANSESTERIFICATION

III.5) EVAPORATION/CONDENSATION

FOR M ETHANOL RECOVERY

III.6) EXTRACTOR FOR

GLYCEROL WASHING

IV.1) DIAFILTRATION FOR

PROTEINS WASHING

IV.2) SPRAY DRIER

FOR PROTEINS

1 kDa300 kDa

Waxes

10 kDa

Water

II.10) SPRAY DRIER FOR WATER SOLUBLE PROTEIN

II.8) DIAFILTRATION UNIT FOR

PROTEINS/M ONOSACCHARIDES

FRACTIONATION

Complete biorefinery

Page 16: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Biorefinery costs

Page 17: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Cost breakdown

Biorefinery costs

Page 18: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Market value of biomass

Page 19: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Market value of biomass

€ 3.4

+

€ 0.9

€ 4.3

€ 3.4

+

€ 1.1

€ 5.5

€ 3.4

+

€ 0.9

€ 4.3

€ 3.4

+

€ 2.9

€6.3

€ 3.4

+

€ 2.9

€ 6.3

€ 3.4

+

€ 3.0

€ 6.4

Cultivation costs

South of Spain

Biorefinery costs

Total costs

Page 20: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Market value of biomass

€ 3.4

+

€ 0.9

€ 4.3

€ 0.5

+

€ 1.1

€ 1.6

€ 0.5

+

€ 0.9

€ 1.4

€ 3.4

+

€ 2.9

€6.3

€ 3.4

+

€ 2.9

€ 6.3

€ 3.4

+

€ 3.0

€ 6.4

Cultivation costs

South of Spain

Biorefinery costs

Total costs

Page 21: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Scale - Salmon as example

• Objective: replace 10% of fish meal with algae

• There is a proof of concept

1.26 milliontonnes of

Atlantic salmon

1.6 million tonnes of feed

0.16 million tonnes of

algae

Without algae With algae

Page 22: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Scale - Salmon as example• Objective: replace 10% of fish meal with algae

• Productivity: 14-28 (57*) ton ha-1 y-1

• solar conditions Norway / greenhouse + illum.

• 150-300 days cultivation per year

• Hectare needed: 5621-11915 ha

59-119 km2

• Current scale worldwide: ~40.000 ha

1.26 million

tonnes 1.6 million

tonnes

0.16 million

tonnes

Land - County - Area [km2]

Norway - only land 307 860

Østfold 4 181

Akershus 4 918

Oslo 454

Hedmark 27 398

Oppland 25 192

Buskerud 14 911

Vestfold 2 225

Telemark 15 296

Aust-Agder 9 158

Vest-Agder 7 277

Rogaland 9 376

Hordaland 15 438

Sogn og Fjordane 18 623

Møre og Romsdal 15 101

Sør-Trøndelag 18 839

Nord-Trøndelag 22 415

Nordland 38 482

Troms 25 863

Finnmark 48 631

Bergen 446

Sotra 179

Algae – Needed for feed 59-119

Page 23: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

[Applied Biotechnology / Microalgae]

Main inputs in the process

• 1.8 tons of CO2 is needed

• 0.09 ton N

• 0.01 ton P

• micronutrients

To produce 1 ton of algal biomass:

CO2

Nutrients

(nitrogen, phosphor)

H2O

Page 24: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Scale - Salmon as example

• Objective: replace 10% of fish meal with algae

• Nutrients needed:

• 293 400 tons CO2

• 14 670 ton N

• 1 630 ton P

• TCM captures 100 000 ton CO2 per year

• Yara produces in Norway alone 2,7 million ton NPK yearly

BUT

• There are other sources as well....

1.26 million

tonnes 1.6 million

tonnes

0.16 million

tonnes

Page 25: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

CO2

Fish manure

Insects

Insectmanure

MunicipalityBiodegradable

Waste

CO2

Page 26: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Fish manureInsect manureMunicipality Biodegradable Waste

First experiments

Page 27: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

We need:

• More robust strains

• a.o. higher productivity, temperature range

• Smart production chain

• Integration with waste streams

• Market development products

[Applied Biotechnology / Microalgae]

Product costs

Scale

Production chain analysis

Market development

Page 28: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Conclusions

• Microalgae can be used for food/feed/chemicals

and fuels as a by-product

• Decrease of costs and increase of scale

necessary

• E.g.: grow on various residual streams

They form a perfect link between the bioeconomy

and the circular economy

[Applied Biotechnology / Microalgae]

Page 29: Industrial application of microalgae in the circular ... · Industrial application of microalgae in the circular bioeconomy Dorinde Kleinegris [Applied Biotechnology / Microalgae]

Tusen takk!

Spørsmål?

[Applied Biotechnology / Microalgae]