1

Multiscale Methods and Analysis for the Dirac Equation in

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiscale Methods and Analysis for the Dirac Equation in

Multiscale Methods and Analysis for the Dirac Equation in the Nonrelativistic Limit Regime

Weizhu Bao

Department of MathematicsNational University of SingaporeEmail: [email protected]

URL: http://www.math.nus.edu.sg/~bao

Collaborators: Yongyong Cai (CSRC, Beijing), Xiaowei Jia (China);Qinglin Tang (postdoc, Hong Kong), Jia Yin (PhD, NUS)

Page 2: Multiscale Methods and Analysis for the Dirac Equation in

Outline

The Dirac equation Numerical methods and error estimates– Finite difference time domain (FDTD) methods– Exponential wave integrator Fourier spectral (EWI-FP) method– Time-splitting Fourier pseudospectral (TSFP) method

A uniformly accurate (UA) method Extension to nonlinear Dirac equationConclusion & future challenges

Page 3: Multiscale Methods and Analysis for the Dirac Equation in

The Dirac equation

– : spatial coordinates– : complex-valued vector wave function ``spinorfield’’– : real-valued electrical potential– : real-valued magnetic potential – : electric field– : magnetic field

Refs: [1] P.A.M. Dirac, Proc. R. Soc. London A, 127 (1928) & 126 (1930). [2]. Principles of Quantum Mechanics, Oxford Univ Press, 1958.[3] http://en.wikipedia.org/wiki/Dirac_equation

3 32

41 1

( ) ( )t j j j jj j

i ic mc e V x I A xα β α= =

∂ Ψ = − ∂ + Ψ + − Ψ

∑ ∑

41 2 3 4( , ) ( , , , )Tt x ψ ψ ψ ψΨ = Ψ = ∈

0V A= −

1 2 3( , , )TA A A A=

0t tE V A A A= −∇ − ∂ = ∇ − ∂B A= ∇×

31 2 2( , , ) (or ( , , ) )T Tx x x x x y z= ∈

Page 4: Multiscale Methods and Analysis for the Dirac Equation in

The Dirac equation

• : 4-by-4 matrices

• : 2-by-2 Pauli matrices

• : 4-by-4 matrices

• The Dirac equation

1 2 3, , ,α α α β

31 2 21 2 3

31 2 2

00 0 0, , ,

00 0 0I

Iσσ σ

α α α βσσ σ

= = = = −

0 1 2 3, , ,γ γ γ γ

1 2 3, ,σ σ σ

1 2 3

0 1 0 1 0, ,

1 0 0 0 1i

iσ σ σ

− = = = −

0 0, , 1,2,3kk kγ β γ γ α= = =

( ) 0i mc e Aµ µµ µγ γ∂ − + Ψ =

2 24 ,

0, 0j

j l l j j j

Iα β

α α α α α β βα

= =

+ = + =

Page 5: Multiscale Methods and Analysis for the Dirac Equation in

The Dirac equation

Derived by British physicist Paul Dirac in 1928 to describe all spin-1/2 massive particles such as electrons and quarksIt is consistent with both the principles of quantum mechanics and the theory of the special relativityThe first theory to account fully for special relativity in quantum mechanics

Accounted for fine details of the hydrogen spectrum in a completely rigorous way, implied the existence of a new form of matter, antimatter & predated experimental discovery of positron

In special limits, it implies the Pauli, Schrodinger and Weyl equations!

Par Dirac with Newton, Maxwell & Einstein!! Be awarded the Nobel Prize in 1933 (with Schrodinger). Host Lucasian Professor of Mathematics at the University of Cambridge at the age of 30!!

Page 6: Multiscale Methods and Analysis for the Dirac Equation in

Quantum Mechanics with Relativistic

Making the Schroedinger equation relativistic

Klein-Gordon equation for spinless –pion (Oskar Klein&Walter Gordon, 1926)

2 2;2( ) ( ) :

2 2tE i p i

tpE V x i V x Hm m

ψ ψ ψ ψ→ ∂ →− ∇

= + ⇒ ∂ = − ∇ + =

( )2

22 2 4 2 2 22

2 2 2;2

2 2 21tE i p i

EE m c cp p m cc

m cc t

φ φ→ ∂ →− ∇

= + ⇔ − =

∂⇒ ∇ − = ∂

::

0

t t

t

JJ

ρ φ φ φ φ

φ φ φ φρ

= ∂ − ∂

= ∇ − ∇∂ +∇ =

Page 7: Multiscale Methods and Analysis for the Dirac Equation in

Quantum Mechanics with Relativistic

Dirac’s coup– Square-root of an operator

– Dirac equation

22 2 2 22 2 2 2

2 2 2 21

x y z tE i m cp m c A B C Dc c t c

∂ − = ⇒∇ − = ∂ + ∂ + ∂ + ∂ = ∂

22

2 0 0x y z tE i mcp mc A B C Dc c

ψ − − = ⇒ ∂ + ∂ + ∂ + ∂ − =

2 22 2 2 2 2

2 2( ) ( ) 0E EE pc mc p mc p mcc c

= + ⇔ − = ⇔ − − =

3;2 2 2 2

1( ) ( )

tE i p i

t j jj

E pc mc i ic mcα β→ ∂ →− ∇

=

= + ⇒ ∂ Ψ = − ∂ + Ψ

2 2

1 2 3

0, & 1, , , Clifford Algebra over 4d!!

AB BA A BA i B i C i Dβα βα βα β+ = = = =

⇒ = = = = ⇔

Page 8: Multiscale Methods and Analysis for the Dirac Equation in

Typical Applications

Graphene/graphites and/or 2D materials – K. Novoselov, A. Geim, etc., Science, 2004; K. Novoselov, A. Geim , etc., Nature, 2005; K. Novoselov, …, A. Geim, Science, 2007; D.A. Abanin, etc., Science, 2011; A.H.C. Neto, etc., Rev. Mod. Phys., 2009, … (Nobel Prize in 2010!!!!)

– Same dispersion relation at Dirac cone

Page 9: Multiscale Methods and Analysis for the Dirac Equation in

Typical Applications

Chiral confinement of quasirelativistic BEC – M. Merkl et al., PRL,2010

Atto-second laser on molecule -F. Fillion-Gourdeau, E. Lorin and A.D. Bandrauk, PRL, 13’&JCP14’

Neutron interaction in nuclear physics--H. Liang, J. Meng &Z.G. Zhou, Phys. Rep., 15’

Page 10: Multiscale Methods and Analysis for the Dirac Equation in

The Dirac equation

Dimensionless Dirac equation in d-dimension (d=3,2,1)

Different parameter regimes– Standard scaling: – Semi-classical limit regime: – Nonrelativistic limit regime:– Massless regime:

02

0

0 : 1; 0 : 1; 0 : 1s

s

x vv mt c c e m

κε η λ< = = ≤ < = ≤ < = ≤

421 1

( ) ( ) ,d d

dt j j j j

j j

ii V x I A x xη λη α β αε ε= =

∂ Ψ = − ∂ + Ψ + − Ψ ∈

∑ ∑

1ε η λ= = =1& 0 1ε λ η= = <

1& 0 1η λ ε= = <

1& 0 1ε η λ= = <

3 32

41 1

( ) ( )t j j j jj j

i ic mc e V x I A xα β α= =

∂ Ψ = − ∂ + Ψ + − Ψ

∑ ∑

Page 11: Multiscale Methods and Analysis for the Dirac Equation in

Different limits of the Dirac equation

Dirac Equation

WeylEquation

massless

1, 10( 0)m

µ ελ

= =→ → Schrodinger

orPauli Equationnonrelativistic

1, 10( )c

η λε= =→ →∞

relativistic Euler Equation

Euler equation

semiclasical1, 10( 0)

λ εη= =→ →

10( )c

λε=→ →∞

10

( 0)

λη=→→

421 1

( ) ( ) ,d d

t j j j jj j

ii V x I A xη λη α β αε ε= =

∂ Ψ = − ∂ + Ψ + − Ψ

∑ ∑

Page 12: Multiscale Methods and Analysis for the Dirac Equation in

The Dirac equation

Dimensionless Dirac equation in d-dimension (d=3,2,1)

– Initial data

– Dispersive PDE & time symmetric – Mass & energy conservation

0 : 1s

s

x vt c c

ε< = = ≤

421 1

1 ( ) ( ) ,d d

dt j j j j

j j

ii V x I A x xα β αε ε= =

∂ Ψ = − ∂ + Ψ + − Ψ ∈

∑ ∑

0(0, ) ( ), dx x xΨ = Ψ ∈

41 2 3 4( , , , )Tψ ψ ψ ψΨ = ∈

1η λ= =

Page 13: Multiscale Methods and Analysis for the Dirac Equation in

Conservations laws

Position and current densities

Conservation lawMass conservation

Energy (or Hamiltonian) conservation

4 2* *1 2 3

1

1: , ( , , ) with :Tj l l

jJ J J J Jρ ψ α

ε=

= Ψ Ψ = = = Ψ Ψ∑

0, dt J xρ∂ +∇ = ∈

2 2 20: ( , ) ( ) 1

d d

t x dx x dxΨ = Ψ ≡ Ψ =∫ ∫

2* * *2

1 1

1( ) : ( ) ( ) (0)d

d d

j j j jj j

iE t V x A x dx Eα β αε ε= =

= − Ψ ∂ Ψ + Ψ Ψ + Ψ − Ψ Ψ ≡

∑ ∑∫

421 1

1 ( ) ( )d d

t j j j jj j

ii V x I A xα β αε ε= =

∂ Ψ = − ∂ + Ψ + − Ψ

∑ ∑

Page 14: Multiscale Methods and Analysis for the Dirac Equation in

The Dirac equation

In 2D/1D

– Initial data

– Dispersive PDE & time symmetric– Mass & energy conservation

1 2 1 4 2 3( , ) with =( , ) or ( , )T T Tφ φ ψ ψ ψ ψΦ = Φ

3 221 1

1 ( ) ( ) ,d d

dt j j j j

j j

ii V x I A x xσ σ σε ε= =

∂ Φ = − ∂ + Φ + − Φ ∈

∑ ∑

0(0, ) ( ), dx x xΦ = Φ ∈

Page 15: Multiscale Methods and Analysis for the Dirac Equation in

Conservations laws

Position and current densities

Conservation lawMass conservation

Energy (or Hamiltonian) conservation

2 2* *1 2

1

1: , ( , ) with :Tj l l

jJ J J Jρ φ σ

ε=

= Φ Φ = = = Φ Φ∑

0, dt J xρ∂ +∇ = ∈

2 2 20: ( , ) ( ) 1

d d

t x dx x dxΦ = Φ ≡ Φ =∫ ∫

2* * *32

1 1

1( ) : ( ) ( )d

d d

j j j jj j

iE t V x A x dxσ σ σε ε= =

= − Φ ∂ Φ + Φ Φ + Φ − Φ Φ

∑ ∑∫

3 221 1

1 ( ) ( )d d

t j j j jj j

ii V x I A xσ σ σε ε= =

∂ Φ = − ∂ + Φ + − Φ

∑ ∑

Page 16: Multiscale Methods and Analysis for the Dirac Equation in

Two typical regimes & results

Standard regime– Analytical study on existence & multiplicity of solutions: Gross, 66’;

Gesztesy, Grosse & Thaller, 84’; Das & Kay, 89’; Das, 93’; Esteban & Sere, 97’; Dolbeault, Esteban & Sere, 00’; Esteban & Sere, 02’; Booth, Legg & Jarvis, 01’; Fefferman & Weistein, J. Amer. Math. Soc., 12’; CMP, 14; Ablowitz & Zhu, 12’; ……

– Numerical methods• Leap-frog finite difference (LFFD) method: Shebalin, 97’; Nraun, Su & Grobe, 99’; Xu,

Shao & Tang, 13’; Brinkman, Heitzinger & Markowich, 14’; Hammer, Potz & Arnold, 15’; Antoine, Lorin, Sater, Fillion-Gourdeau & Bandrauk, 15’, …..

• Time-splitting Fourier pseudospectral (TSFP) method: Bao & Li, 04’; Huang, Jin, Markowich, Sparber & Zheng, 05’; Xu, Shao & Tang, 13’; …..

• Gaussian beam method: Wu, Huang, Jin & Yin, 12’, ….

Nonrelativistic limit regime

( ) 1v O c ε= ⇔ =

( )20 1v c Oε ω ε −⇔ < ⇒ =

Page 17: Multiscale Methods and Analysis for the Dirac Equation in

Existing results in nonrelativistic limit regime

Nonrelativistic limits: Gross, 66’; Hunziker, 75’; Foldy & Wouthuysen, 78’; Schoene, 79’; Cirincione & Chernoff, 81’; Grigore, Nenciu & Purice, 89’; Najman, 92’; Gerad, Markowich, Mauser & Poupaud, 97’; Bechouche, Mauser & Poupaud, 98’; Bolte & Keppeler, 99’; Spohn, 00’; Kammerer, 04’; Bechouche, Mauser & Selberg, 05; ……

– Main difficulty: Solution propagates waves with wavelength in time & in space– Plane wave solutions

: (or : ) ??? when 0ε ε εΨ = Ψ Φ = Φ → →( ) is indefinite & unbounded when 0!!!E t ε →

2( )O ε

( )0 0 2 23 22

1

1 ,d

jj j

j

kB A V I B B Oω σ σ ω ε

ε ε−

=

= − + + ∈ ⇒ =

(1)O( )( , ) i k x tt x B e ω−Φ =

Page 18: Multiscale Methods and Analysis for the Dirac Equation in

Numerical results

Page 19: Multiscale Methods and Analysis for the Dirac Equation in

Numerical results

Page 20: Multiscale Methods and Analysis for the Dirac Equation in

Existing results in nonrelativistic limit regime

– Asymptotic and rigorous results: Gross, 66’; Hunziker, 75’; Foldy & Wouthuysen, 78’; Schoene, 79’; Cirincione & Chernoff, 81’; Grigore, Nenciu & Purice, 89’; Najman, 92’; Gerad, Markowich, Mauser & Poupaud, 97’; Bechouche, Mauser & Poupaud, 98’; Bolte & Keppeler, 99’; Spohn, 00’; Kammerer, 04’; Bechouche, Mauser & Selberg, 05; ……

• The Schrodinger equation

• Semi-nonrelativistic limit: Bechouche, Mauser & Poupaud, 98

Highly oscillatory dispersive PDEs:

2 2/ / 0: ( ), 0

0it ite e Oε ε εφ

ε εφ

+ −

Φ = Φ = + + →

1 ( ) ,2

dti V x xφ φ φ± ± ±∂ = ∆ + ∈

Page 21: Multiscale Methods and Analysis for the Dirac Equation in

Numerical methods for Dirac equation

Finite difference time domain (FDTD) methods

– Mesh size– Time step– Numerical approximation

( )1 3 2 1 12

0

1 ( , ) ( , ) , , 0

( , ) ( , ), ( , ) ( , ), 0;( ,0) ( ), [ , ]

t x

x x

ii V t x I A t x x t

a t b t a t b t tx x x a b

σ σ σε ε

∂ Φ = − ∂ + Φ + − Φ ∈Ω >

Φ = Φ ∂ Φ = ∂ Φ ≥

Φ = Φ ∈Ω =

: , , 0,1, ,jb ah x x a jh j MM−

= ∆ = = + =

: 0, , 0,1,nt t n nτ τ= ∆ > = =

( , ) , 0,1, , , 0,1,nj n jx t j M nΦ ≈ Φ = =

Page 22: Multiscale Methods and Analysis for the Dirac Equation in

Numerical methods for Dirac equation

Finite difference discretization operators

Leap-frog finite difference (LFFD) method

Semi-implicit finite difference (SIFD1) method

Page 23: Multiscale Methods and Analysis for the Dirac Equation in

Numerical methods for Dirac equation

Semi-implicit finite difference (SIFD2) method

Energy conservative finite difference (CNFD) method

– Initial and boundary data

– First step for LFFD, SIFD1 &SIFD2

Page 24: Multiscale Methods and Analysis for the Dirac Equation in

Properties of FDTD methods

Time symmetric, unchanged if

Stability – CNFD is unconditionally stable– LFFD, SIFD1 & SIFD2 are conditionally stable

Energy conservation: CNFD conserves mass & energy vs others not

Computational cost– CNFD needs solve a linear coupled system per time step!! LFFD is explicit!– SIFD1 & SIFD2 can be solved very almost explicit !!

Resolution in nonrelativistic limit regime

1 1 &n n τ τ+ ↔ − ↔ −

? ?( ) & ( ), 0 1h O Oε τ ε ε= = <

Page 25: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates for FDTD methods

Define `error’ function

Assumptions– For the solution of the Dirac equation --- (A)

– For the electronic & magnetic potentials – (B)

Page 26: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates for FDTD methods

Theorem Under some stability conditions, we have error estimates for LFFD, SIFD1, SIFD2 & CNFD as (Bao, Cai , Jia & Tang, JSC, 16’)

– Resolution ---- (under resolution)

Page 27: Multiscale Methods and Analysis for the Dirac Equation in

Spatial Errors of CNFD

Page 28: Multiscale Methods and Analysis for the Dirac Equation in

Temporal Errors of CNFD

Page 29: Multiscale Methods and Analysis for the Dirac Equation in

Spatial Errors of CNFD

Page 30: Multiscale Methods and Analysis for the Dirac Equation in

EWI-FP method

Apply Fourier spectral method for spatial derivatives

– with

Take Fourier transform, we get ODEs for l=-M/2,…,M/2-1

Page 31: Multiscale Methods and Analysis for the Dirac Equation in

Exponential wave integrator (EWI) for 1st ODEs

Take and approximate the integral --W. Gautschi(61’); P. Deuflhard (79’); E. Hairer, Ch. Lubich, G. Wanner, A. Iserles, V. Grimm, M. Hochbruck, D. Cohen, …..

EWI-FP method

s τ=

Page 32: Multiscale Methods and Analysis for the Dirac Equation in

Symmetric Exponential wave integrator (sEWI)

Take and approximate the integral

sEWI-FP method

s τ= ±

Page 33: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates for EWI-FP method

Theorem Under some stability conditions, we have error estimates for EWI-FP and sEWI-FP as (Bao, Cai, Jia & Tang, JSC,16’)

– Resolution --- (optimal resolution)

01/2 2( ) ( ), ( ) (1), 0 1mO O h O Oτ ε δ ε δ ε= = = = <

Page 34: Multiscale Methods and Analysis for the Dirac Equation in

Spatial Errors of EWI-FP

Page 35: Multiscale Methods and Analysis for the Dirac Equation in

Temporal Errors of EWI-FP

Page 36: Multiscale Methods and Analysis for the Dirac Equation in

Time-splitting Fourier spectral (TSFP) method

From , apply time splitting technique – Step 1

– Step 2

Thm. Under proper assumptions, we have

– Resolution --- (optimal resolution)

1[ , ]n nt t +

01/2 2( ) ( ), ( ) (1), 0 1mO O h O Oτ ε δ ε δ ε= = = = <

Page 37: Multiscale Methods and Analysis for the Dirac Equation in

Spatial Errors of TSFP

Page 38: Multiscale Methods and Analysis for the Dirac Equation in

Temporal Errors of TSFP

Thm. If time step satisfies (Bao, Cai, Jia&Yin, SCM, 16’)

– P. Chartier,F. Mehats,M. Thalhammer &Y. Zhang, superconvergnnce for TSSP for NLSE, 14’

22 / Nτ πε=

2Cτ ε≤ ⇒

Page 39: Multiscale Methods and Analysis for the Dirac Equation in

Comparison

Page 40: Multiscale Methods and Analysis for the Dirac Equation in

Comparison

Page 41: Multiscale Methods and Analysis for the Dirac Equation in

A uniformly accurate (UA) method

T can be diagonalizable (Bechouche, Mauser & Poupaud, 98’)

– With

– Satisfying

2

1 3 2 1 1

0

1 ( , ) , , 0

, ( , ) ( , ) ( , )(0, ) ( ),

t

x

i T W t x x t

T i W t x V t x I A t xx x x

εεσ σ σ

∂ Φ = Φ + Φ ∈ >

= − ∂ + = −Φ = Φ ∈

2 21 1T ε ε+ −= − ∆ Π − − ∆ Π

( ) ( )1/2 1/22 22 2

1 11 , 12 2

I T I Tε ε− −

+ − Π = + − ∆ Π = − − ∆

22 , 0,I+ − + − − + ± ±Π + Π = Π Π = Π Π = Π = Π

Page 42: Multiscale Methods and Analysis for the Dirac Equation in

A uniformly accurate (UA) method

Given initial data at :Multiscale decomposition in frequency (MDF) :(Bechouche, Mauser & Poupaud, 98’)

Two sub-problems

nt t=( , ) ( ),n nt x x xΦ = Φ ∈

2 2/ 1, 1, / 2, 2,( , ) ( , ) ( , ) , 0is n n is n nnt s x e s x e s x sε ε τ−

+ − + − Φ + = Ψ +Ψ + Ψ +Ψ ≤ ≤

( ) ( )

( ) ( )

1, 2 1, 1, 1,2

1, 2 1, 1, 1,2

1, 1,

1( , ) 1 1 ( , ) ( , ) ( , )

1( , ) 1 1 ( , ) ( , ) ( , )

(0, ) ( ), (0, ) 0, with : ( , )

n n n ns

n n n ns

n nn n

i s x s x W s x W s x

i s x s x W s x W s x

x x x W W t s x

εε

εε

+ + + + −

− − − + −

+ + −

∂ Ψ = − ∆ − Ψ + Π Ψ + Ψ

∂ Ψ = − − ∆ − Ψ + Π Ψ + Ψ

Ψ = Π Φ Ψ = = +

1, 1, 2(1), ( )n nO O ε+ −Ψ = Ψ =

Page 43: Multiscale Methods and Analysis for the Dirac Equation in

A uniformly accurate (UA) method

Two sub-problems

Solve the two sub-problems via EW-FP

Reconstruct the solution at

( ) ( )

( ) ( )

2, 2 2, 2, 2,2

2, 2 2, 2, 2,2

2, 2,

1( , ) 1 1 ( , ) ( , ) ( , )

1( , ) 1 1 ( , ) ( , ) ( , )

(0, ) 0, (0, ) ( ), with : ( , )

n n n ns

n n n ns

n nn n

i s x s x W s x W s x

i s x s x W s x W s x

x x x W W t s x

εε

εε

+ + + + −

− − − + −

+ − −

∂ Ψ = − ∆ + Ψ +Π Ψ + Ψ

−∂ Ψ = − ∆ − Ψ +Π Ψ + Ψ

Ψ = Ψ = Π Φ = +

2, 2 2,( ), (1)n nO Oε+ −Ψ = Ψ =

1, 2,( , ) & ( , )n nx xτ τ± ±Ψ Ψ1nt t +=

2 2/ 1, 1, / 2, 2,1( , ) ( , ) ( , )i n n i n n

nt x e x e xτ ε τ ετ τ−+ + − + − Φ = Ψ +Ψ + Ψ +Ψ

Page 44: Multiscale Methods and Analysis for the Dirac Equation in

Multiscale Decomposition 0.5ε =

Page 45: Multiscale Methods and Analysis for the Dirac Equation in

Multiscale Decomposition 0.25ε =

Page 46: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates for MTI-FP method

Theorem Under proper assumptions on the solution, we have error estimates for the MTI-FP method (Bao, Cai, Jia & Tang, SINUM 15’)

– Which yields a uniform error bound

– Resolution ---- (super resolution)01/( ) (1), ( ) (1), 0 1mO O h O Oτ δ δ ε= = = = <

Page 47: Multiscale Methods and Analysis for the Dirac Equation in

Key Steps in the Proof

Step 1. Some properties of micro variables

Step 2. Local error bounds for micro variables0

2 2

02 2

0 02 2

0 02 2

1, 1, 1 2, 1

2, 2, 1 2, 1

1, 1, 2 1, 1, 2 2, ,

2, 2, 2 2, 2, 2, ,

( ,.) ( ) ( ),

( ,.) ( ) ( ),

( ), ( / ),

( ), ( /

mn n nh n IL L

mn n nh n IL L

m mn n n nh hL L

m mn n n nh hL L

t h

t h

h h

h h

τ τ

τ τ

τ ε τ τ ε

τ ε τ τ

−+ + −

−− − −

− − − −

+ + + +

Ψ −Ψ ≤ Φ −Φ + +

Ψ −Ψ ≤ Φ −Φ + +

Ψ −Ψ ≤ + Ψ −Ψ ≤ +

Ψ −Ψ ≤ + Ψ −Ψ ≤ +

2 )ε

1, 2, 1, 2, 1, 2,

1, 2, 2 1, 2, 1, 2,2

(1)

1( ), (1), ( )

n n n n n ns s ss ss

n n n n n ns s ss ss

O

O O Oεε

+ − + − + −

− + − + − +

Ψ + Ψ + ∂ Ψ + ∂ Ψ + ∂ Ψ + ∂ Ψ ≤

Ψ + Ψ ≤ ∂ Ψ + ∂ Ψ ≤ ∂ Ψ + ∂ Ψ ≤

Page 48: Multiscale Methods and Analysis for the Dirac Equation in

Key Steps in the Proof

Step 3. Local error bounds for macro variables

Step 4. The energy method via discrete Gronwall’s inequality

Step 5. Uniform error bound

2 2 2 2 2

02

02 2

1, 1, 2, 2, 1, 1, 2, 2,, , , ,

21 2

1 2

1 2 21

( ,.) ( )

( ,.) ( ) ( )

( ,.) ( ) ( ,.) ( ) ( )

n n n n n n n n nn I h h h hL L L L L

mnn I L

mn nn I n IL L

t

t h

t t h

ττ τε

τ τ ε

+ + − − − − + +

−−

−−

Φ −Φ ≤ Ψ −Ψ + Ψ −Ψ + Ψ −Ψ + Ψ −Ψ

≤ Φ −Φ + + +

Φ −Φ ≤ Φ −Φ + + +

0 02

22 2

2( ,.) ( ) min , , 0 1m mnn I L

t h hττ ε τ εε

Φ −Φ ≤ + + ≤ + < ≤

Page 49: Multiscale Methods and Analysis for the Dirac Equation in

Spatial Errors of MTI-FP

Page 50: Multiscale Methods and Analysis for the Dirac Equation in

Temporal Errors of MTI-FP

Page 51: Multiscale Methods and Analysis for the Dirac Equation in
Page 52: Multiscale Methods and Analysis for the Dirac Equation in

The nonlinear Dirac equation (NLDE)

The nonlinear Dirac equation in d-dimension (d=3,2,1)

– Initial data– Dispersive PDEs & time symmetric – Soliton solution in 1D when – Mass & energy conservation

0 : / 1v cε< = ≤

( )*42

1 1

1 ( ) ( ) ,d d

t j j j jj j

ii V x I A xα β α δ β βε ε= =

∂ Ψ = − ∂ + Ψ + − Ψ + Ψ Ψ Ψ

∑ ∑

0(0, ) ( ), dx x xΨ = Ψ ∈

1ε =

( )

2 2 20

22* * * *2

1 1

: ( , ) ( ) 1

1: ( ) ( )2

d d

d

d d

j j j jj j

t x dx x dx

iE V x A x dxδα β α βε ε= =

Ψ = Ψ ≡ Ψ =

= − Ψ ∂ Ψ + Ψ Ψ + Ψ − Ψ Ψ + Ψ Ψ

∫ ∫

∑ ∑∫

Page 53: Multiscale Methods and Analysis for the Dirac Equation in

The nonlinear Dirac equation

In 2D/1D (d=2,1):

– Initial data – Dispersive PDEs & time symmetric – Soliton solution in 1D when – Mass & energy conservation

( )*3 2 3 32

1 1

1 ( ) ( ) ,d d

t j j j jj j

ii V x I A xσ σ σ δ σ σε ε= =

∂ Φ = − ∂ + Φ + − Φ + Φ Φ Φ

∑ ∑

1 2 1 4 2 3( , ) with =( , ) or ( , )T T Tφ φ ψ ψ ψ ψΦ = Φ

0(0, ) ( ), dx x xΦ = Φ ∈

1ε =

( )

2 2 20

22* * * *3 32

1 1

: ( , ) ( ) 1

1: ( ) ( )2

d d

d

d d

j j j jj j

t x dx x dx

iE V x A x dxδσ σ σ σε ε= =

Φ = Φ ≡ Φ =

= − Φ ∂ Φ + Φ Φ + Φ − Φ Φ + Φ Φ

∫ ∫

∑ ∑∫

Page 54: Multiscale Methods and Analysis for the Dirac Equation in

Extension to nonlinear Dirac equation

FDTD methods– LFFD

– SIFD1

– SIFD2

– CNFD ---- mass & energy conservation!!

( ) ( )*1 3 2 1 1 3 32

1 ( , ) ( , )t xii V t x I A t xσ σ σ δ σ σε ε

∂ Φ = − ∂ + Φ + − Φ + Φ Φ Φ

Page 55: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates of FDTD for NLDE

Thm. Under some stability conditions and we have error estimates for LFFD, SIFD1, SIFD2 & CNFD as (Bao, Cai, Jia & Yin, SCM,16’)

– Resolution

3 1/ 4 2 /3&C h h Cτ ε ε≤ ≤

Page 56: Multiscale Methods and Analysis for the Dirac Equation in

Extension to nonlinear Dirac equation

EWI-FP methodTSFP method– Step 1– Step 2

– Time symmetric, dispersive relation, mass conservation!

321

1d

t j jj

ii σ σε ε=

∂ Φ = − ∂ + Φ

( )

( ) ( )

( )

*2 3 3

1

* *3 3

*2 3 3

1

( , ) ( ) ( ) ( , ) ( , ) ( , )

( , ) ( , ),

( , ) ( ) ( ) ( , ) ( , ) ( , )

d

t j jj

n n

d

t j j nj

i t x V x I A x t x t x t x

t x t x t t

i t x V x I A x t x t x t x

σ δ σ σ

σ σ

σ δ σ σ

=

=

∂ Φ = − Φ + Φ Φ Φ

⇒ Φ Φ = Φ Φ ≥

∂ Φ = − Φ + Φ Φ Φ

( ) ( )*1 3 2 1 1 3 32

1 ( , ) ( , )t xii V t x I A t xσ σ σ δ σ σε ε

∂ Φ = − ∂ + Φ + − Φ + Φ Φ Φ

Page 57: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates of EWI-FP for NLDE

Theorem Under some stability conditions and , we have error estimates for EWI-FP as (Bao, Cai, Jia & Yin, SCM, 16’)

– Resolution

01/2 2( ) ( ), ( ) (1), 0 1mO O h O Oτ ε δ ε δ ε= = = = <

2 1/ 4C hτ ε≤

Page 58: Multiscale Methods and Analysis for the Dirac Equation in

Error estimates of TSFP for NLDE

Thm. Under some stability conditions and , we have error estimates for TSFP as (Bao, Cai, Jia & Yin, SCM, 16’)

– Resolution

Thm. If time step satisfies

01/2 2( ) ( ), ( ) (1), 0 1mO O h O Oτ ε δ ε δ ε= = = = <

22 / Nτ πε=

2Cτ ε≤

Page 59: Multiscale Methods and Analysis for the Dirac Equation in

Spatial Errors of TSFP for NLDE

Page 60: Multiscale Methods and Analysis for the Dirac Equation in

Temporal Errors of TSFP for NLDE

2Cτ ε≤ ⇒

Page 61: Multiscale Methods and Analysis for the Dirac Equation in

TSFP for Dirac without magnetic potential

0 02 2

22 2( , ) ( ) ; ( , ) ( ) uniform accuratem mn n

n M n ML Lt I h t I hτ τ ε

εΦ − Φ ≤ + Φ − Φ ≤ + + ⇒

Page 62: Multiscale Methods and Analysis for the Dirac Equation in

TSFP for NLDE without magnetic potential

0 02 2

22 2( , ) ( ) ; ( , ) ( ) uniform accuratem mn n

n M n ML Lt I h t I hτ τ ε

εΦ − Φ ≤ + Φ − Φ ≤ + + ⇒

Page 63: Multiscale Methods and Analysis for the Dirac Equation in

Conclusion & future challenges

Conclusion– For Dirac equation in nonrelativistic limit regime

• FDTD methods:• An EWI-FP method:• A TSFP method :

– A uniformly accurate (UA) method

Future challenges– Extension of the UA method to nonlinear Dirac equation (Y. Cai & Y.Wang, 17’)

– For coupled systems – Klein-Gordon-Dirac, Maxwell-Dirac, …

– For other parameter limit regimes

( )2 2 6 3/ / ( ) & ( )O h h O Oε τ ε ε τ ε+ ⇒ = =

( )2 4 2/ (1) & ( )mO h h O Oτ ε τ ε+ ⇒ = =

( )2 2 2 2/ (1) & ( )mO h h O Oτ ε τ ε τ ε≤ ⇒ + ⇒ = =

( )2

220 1

max min , (1) & (1)m mh O h h O Oε

τ ε τ τε< ≤

+ = + ⇒ = =