40
Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Glial Cell Defense Mechanisms in Response to Ischemic Hypoxia in the Brain Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani Graduate Advisors: Kamal Barley & Adrian Smith Faculty Advisors: Benjamin Morin & Anuj Mubayi Simon A. Levin Mathematical, Computational and Modeling Sciences Center Arizona State University July 24, 2014 Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 1 / 35

MTBI Final Presentation

Embed Size (px)

Citation preview

  1. 1. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Glial Cell Defense Mechanisms in Response to Ischemic Hypoxia in the Brain Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani Graduate Advisors: Kamal Barley & Adrian Smith Faculty Advisors: Benjamin Morin & Anuj Mubayi Simon A. Levin Mathematical, Computational and Modeling Sciences Center Arizona State University July 24, 2014 Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 1 / 35
  2. 2. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion 1 Background Ischemic Stroke and Research Goal 2 Stochastic Cellular Automaton (CA) CA Assumptions CA Stochastic Realizations 3 Mean Field (MFA) Model MFA System of ODEs MFA Stability Analysis 4 Pair Approximation (OPA) Model Development of the Pair Approximation ODE System 5 Numerical Results Qualitative Results Parameter Sweeps 6 Conclusion Discussion Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 2 / 35
  3. 3. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Background and Research Goal: Ischemic Stroke Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 3 / 35 http://trialexhibitsinc.com/legalexhibits/atrialbrillationstrokep271.html
  4. 4. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Background and Research Goal: Ischemic Stroke Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 4 / 35 (Courtesy of medmovie.com)
  5. 5. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Denition of State Variables and Parameters State Meaning H Healthy cells D Damaged cells S Scar cells G Glial cells Parameter Denition The rate of scar cell formation The rate that damaged cells are repaired The rate of damage to healthy cells Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 5 / 35
  6. 6. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Assumptions MFA OPA CA Spatial Complexity 100 100 lattice of cells is created Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 6 / 35
  7. 7. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Assumptions MFA OPA CA Spatial Complexity von Neumann neighborhood Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 7 / 35
  8. 8. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Assumptions MFA OPA CA Spatial Complexity Poisson process Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 8 / 35
  9. 9. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Assumptions MFA OPA CA Spatial Complexity Periodic boundary conditions Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 9 / 35
  10. 10. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Assumptions MFA OPA CA Spatial Complexity Damage must be small enough to avoid self-intersection through the boundary Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 10 / 35
  11. 11. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Stochastic Realizations CA realizations at initial state (top) and steady state (bottom) with clustered (left), semi-clustered (middle), and random (right) initial damage Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 11 / 35
  12. 12. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Realization: Random Damage Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 12 / 35
  13. 13. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Two Systems of ODE Approximations of Stochastic Simulation Mean Field (MFA) model Pair Approximation (OPA) model Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 13 / 35
  14. 14. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Mean Field Model to Approximate Stochastic Simulation MFA OPA CA Spatial Complexity d dt P[H] = P[G]P[D] P[H]P[D] d dt P[D] = P[G]P[D] P[G]P[D] + P[H]P[D] d dt P[G] = P[G]P[D] d dt P[S] = 2P[G]P[D] Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 14 / 35
  15. 15. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Reduction of MFA MFA OPA CA Spatial Complexity Invariants of motion: P[H] + P[D] + P[G] + P[S] = 1 2P[G] + P[S] = k | k R 2-Dimensional system: d dt P[H] =P[D]((P[H] + P[D] + k 1) P[H]) d dt P[D] =P[D](P[H] ( + )(P[H] + P[D] + k 1)) Equilibria: (0, 1 k), (H, 0) Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 15 / 35
  16. 16. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Local Stability of Healthy Cell Free Equilibrium MFA OPA CA Spatial Complexity J(0, 1 k) = ( )(1 k) (1 k) ( )(1 k) ( )(1 k) . Eigenvalues: 1 = (1 k), 2 = (1 k) Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 16 / 35
  17. 17. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Local Stability of Healthy Cell Free Equilibrium MFA OPA CA Spatial Complexity J(0, 1 k) = ( )(1 k) (1 k) ( )(1 k) ( )(1 k) . Eigenvalues: 1 = (1 k), 2 = (1 k) (H, D) = (0, 1 k) is asymptotically stable when (1 k) > 0 Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 16 / 35
  18. 18. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Local Stability of Healthy Cell Free Equilibrium MFA OPA CA Spatial Complexity J(0, 1 k) = ( )(1 k) (1 k) ( )(1 k) ( )(1 k) . Eigenvalues: 1 = (1 k), 2 = (1 k) (H, D) = (0, 1 k) is asymptotically stable when (1 k) > 0 This implies: 2P[G] + P[S] < 1 P[G]0 < 1 2 Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 16 / 35
  19. 19. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Global Stability of Healthy Cell Free Equilibrium MFA OPA CA Spatial Complexity Phase Plane, Case 1: 1 k > 0 and > + Positive invariance Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 17 / 35
  20. 20. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Global Stability of Healthy Cell Free Equilibrium MFA OPA CA Spatial Complexity Phase Plane, Case 1: 1 k > 0 and > + Dulac criterion Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 17 / 35
  21. 21. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Global Stability of Healthy Cell Free Equilibrium MFA OPA CA Spatial Complexity Phase Plane, Case 1: 1 k > 0 and > + Global stability when > + Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 17 / 35
  22. 22. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Parameter Space MFA OPA CA Spatial Complexity + 1/2 P[G0] Healthy Cell-Free Equilibrium Global Stability Unstable Unstable 0 Local Stability Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 18 / 35
  23. 23. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Two Systems of ODE Approximations of Stochastic Simulation Mean Field (MFA) model Pair Approximation (OPA) model Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 19 / 35
  24. 24. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Development of the Pair Approximation ODE System MFA OPA CA Spatial Complexity Assumptions Development dP[HH] dt = Inow Outow Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 20 / 35
  25. 25. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Development of the Pair Approximation ODE System MFA OPA CA Spatial Complexity DH ? G ? dP[HH] dt = P[HD] 3P[DG] 4P[D] + ... Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 21 / 35
  26. 26. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Development of the Pair Approximation ODE System MFA OPA CA Spatial Complexity ? ? G D H dP[HH] dt = 2P[HD] 3P[DG] 4P[D] + ... Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 22 / 35
  27. 27. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Development of the Pair Approximation ODE System MFA OPA CA Spatial Complexity D H? ? H dP[HH] dt = ... P[HH] 3P[HD] 4P[H] Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 23 / 35
  28. 28. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Development of the Pair Approximation ODE System MFA OPA CA Spatial Complexity D H ? ? H dP[HH] dt = ... 2P[HH] 3P[HD] 4P[H] Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 24 / 35
  29. 29. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Development of the Pair Approximation ODE System MFA OPA CA Spatial Complexity dP[HH] dt = 2P[HD] 3P[DG] 4P[D] 2P[HH] 3P[HD] 4P[H] Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 25 / 35
  30. 30. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion OPA Model Equations dP[HH] dt = 2P[HD] 3P[DG] 4P[D] 2P[HH] 3P[HD] 4P[H] dP[HG] dt = P[DG] 3P[DG] 4P[D] + 4 P[HG] 3P[DG] 4P[G] + 3P[HD] 4P[H] dP[HD] dt = 2P[DD] 3P[DG] 4P[D] + 2P[HH] 3P[HD] 4P[H] P[HD] 3P[DG] 4P[D] ( + ) + 3P[HD] 4P[H] + 4 dP[HS] dt = P[DS] 3P[DG] 4P[D] + P[HG] 3P[DG] 4P[G] + P[HD] 3P[DG] 4P[D] P[HS] 3P[HD] 4P[H] dP[GG] dt = 2P[GG] 3P[DG] 4P[G] dP[GD] dt = P[GH] 3P[HD] 4P[H] P[GD] 3P[DG] 4P[D] + 4 + 3P[DG] 4P[D] ( + ) + 4 dP[GS] dt = P[GD] 3P[DG] 4P[D] + P[GG] 3P[DG] 4P[G] P[GS] 3P[GD] 4P[G] dP[DS] dt = P[DG] 3P[DG] 4P[G] + P[DD] 3P[DG] 4P[D] + P[HS] 3P[HD] 4P[H] P[DS] 3P[DG] 4P[D] ( + ) dP[SS] dt = 2P[GS] 3P[DG] 4P[G] + 2P[DS] 3P[DG] 4P[D] + 2P[GD] 4 Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 26 / 35
  31. 31. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Qualitative Results > + Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 27 / 35
  32. 32. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Qualitative Results > + Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 28 / 35
  33. 33. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Parameter Sweep: Clustered Damage Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 29 / 35
  34. 34. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Parameter Sweep: Semi-Clustered Damage Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 30 / 35
  35. 35. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Parameter Sweep: Random Damage Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 31 / 35
  36. 36. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion CA Initial Conditions Steady State Min/Max in Varying and Clustered Semi-Clustered Random H 42.4 43.7% 38.8 40.4% 0.0 26.0% D 11.0 13.4% 11.7 17.2% 9.0 50.0% G 42.0 44.0% 44.0 41.5% 14.0 44.0% S 0.0 2.8% 0.0 9.0% 0.0 61.0% Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 32 / 35
  37. 37. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Steady States vs. Initial Glial Cells Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 33 / 35
  38. 38. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Steady States vs. Initial Glial Cells Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 34 / 35
  39. 39. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Discussion If P[G]0 < 1 2 and > + , then P[H] = 0. The spatial stochastic model predicts that P[G0] < 1 2 for non-zero P[H]. Increased values of result in decreased amounts scar tissue. Variance of steady states increases with randomness of initial damage. Damage is contained with less scarring when initial damage is more clustered. Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 35 / 35
  40. 40. Background Stochastic Cellular Automaton (CA) Mean Field (MFA) Model Pair Approximation (OPA) Model Numerical Results Conclusion Acknowledgments We would like to thank Dr. Carlos Castillo-Chavez, Executive Director of the Mathematical and Theoretical Biology Institute (MTBI), for giving us this opportunity to participate in this research program. We would also like to thank Co-Executive Summer Directors Dr. Omayra Ortega and Dr. Baojun Song for their efforts in planning and executing the day to day activities of MTBI. This research was conducted in MTBI at the Simon A. Levin Mathematical, Computational and Modeling Sciences Center (SAL MCMSC) at Arizona State University (ASU). This project has been partially supported by grants from the National Science Foundation (DMS-1263374 and DUE-1101782), the National Security Agency (H98230-14-1-0157), the Ofce of the President of ASU, and the Ofce of the Provost of ASU. Glial Cell Defense Mechanisms Matthew Buhr, Oscar Garcia, Tiffany Reyes, Hasan Sumdani MCMSC 36 / 35