24
MORPHOLOGY of IMPACT CRATERS Henrik Hargitai [email protected]

MORPHOLOGY of IMPACT CRATERS Henrik Hargitai [email protected]

Embed Size (px)

Citation preview

Page 1: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

MORPHOLOGYof IMPACT CRATERS

Henrik [email protected]

Page 2: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Origins• Lunar Craters

• Volcanic (17-19th century) (Galilei)• Impact (20th century) (Wegener, Gilbert)• Great Basins

Page 3: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Morphology depends:• Impact energy • E=1/2mv2

Original impacting body usually evaporated during a hypervelocity impact event

Crater is formed by shock wave from the released energyEnergy of shock wave depends on kinetic energy (1/2mv2)Temperature and pressure are also related to the potential

energy (Ep=mgh)

Data for Mars: g=3.97, h[eight of the impacting body] v[elocity of impctor] asteroid: ~7 km/s, cometary body: ~42 km/s

Page 4: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Formationstages

• Contact/• compression• Excavation• Modification

Page 5: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

SimpleCrater•Small (3-10 km)•Bowl-shaped•Da apparent depth •Dt true depth

Fallout ejectaEjecta blanket

Breccia lens

Rim crest

Crater fill sediment

Page 6: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Complex craters• Elastic rebound• Central peak (structural uplift [SU])• Ring depression (flat floor/annular

basin)

rim Ejecta Terrace/slump

sedimentpeak

Melt sheet

brecciaShatter cones

Monomict Autochtonbreccia

Allochton Polimictbreccia

Page 7: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Flat floor crater

• „walled plains”• Sediment / • lava-filled

Dawes-typePlato, Moon

Page 8: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Central ring crater

• Complex crater with internal ring

• >4 km on EarthSchrödinger, Moon Lowell, Mars Barton, Venus

W Clearwater,Québec, Canada

Page 9: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Giant Multiringed Basins

• Impact-related inner,• Tectonics related outer

rings• Lava-fill possible• Valhalla-type

• 20+ rings• Young elastic thin crust• Global effects

Mare Orientale, Moon

Valhalla, Callisto

Page 10: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Doublet craters

• Physical or „optical”• Source: Double asteroids

Toutatis Venus

Clearwater

Possible Optical

Page 11: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Catena (crater chain)

• Source: distrupted comets• (Shoemaker Levy 9) (impact to Jupiter, 1994)

Davy Catena

Ganymede

Mars: Volcanic origin

Page 12: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Crater cluster

• Multiple asteroid or• Synchronous impact of

• Exploded incoming body• In the atmosphere

Page 13: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Central pit/domecraters

• Pit: volatile rich material explodes / released (ice melted)

• Dome: Mars polar areas• Ice/snow deposits

Page 14: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Erosion:

• Buried / Ghost craters• Lava or sediment

Crater under ice polygons (Mars)

Page 15: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Rayed crater

• Ejecta jets• Fresh material (colour

difference)• Mars: above the dust

layer• Optical freshness:

1 Gy

Tycho, Moon

Unnamed, Mars

Page 16: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Petal Ejecta

• On Venus• P=90 atm, CO2

atmosphere• Extreme pressure• „supercritical state”• Fluidized atmosphere/rock interaction• With missing segment (at incoming

direction)

Page 17: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Lobate ejecta

• Single Lobe Ejecta• Double Lobe Ejecta• Rampart• Regolith Ice Layers• Fluidized ejecta• Eroded: pedestal• Also: Pancake craters

Pedestal

Page 18: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Butterfly ejecta

• Observed on Mars• „Grazing impact”• <5° impact angle• Also: Oval craters:• Rio Cuarto, Argentine• Mars

Page 19: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Impact with no crater

• Splotche (Dark spot) • Atmospheric explosion• Air Blast /Shock Wave• 1908 Tunguzka event• comet explosion at 8 km?• Penetration Crater:• Just a pit

(not hypervelocity impact)

Page 20: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Secondaries

• Secondary impacts

• Often V shaped• Small craters on

Mars all secondaries?

Page 21: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Relaxed craters

• Ice in regolith• Softened terrain• „melted craters”• Freeze-thaw cycle

Enceladus

Mars

Page 22: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Paimpsest

• On Icy moons• Albedo difference• Relaxed (no topography)• Early age: viscous relaxation• Bright material from underneath• Remnant topography:

Penepalimpsest (crust not viscous)

• Geographic term: Facula

Page 23: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

Cometary craters

P/Wild 2

Pit halo structures• Ejecta, Microgravity, homogenous material

Flat floor structures• No ejecta, steep slope: porous material

Page 24: MORPHOLOGY of IMPACT CRATERS Henrik Hargitai hargitai@emc.elte.hu

• Thank you• Henrik Hargitai

[email protected]

Tempel 1 / Deep Impact