12
Methods Ecol Evol. 2019;10:2129–2140. wileyonlinelibrary.com/journal/mee3 | 2129 © 2019 The Authors. Methods in Ecology and Evolution © 2019 British Ecological Society Received: 28 November 2018 | Accepted: 16 August 2019 DOI: 10.1111/2041-210X.13292 RESEARCH ARTICLE Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods Rory S. O'Connor 1,2 | William E. Kunin 2 | Michael P. D. Garratt 1 | Simon G. Potts 1 | Helen E. Roy 3 | Christopher Andrews 4 | Catherine M. Jones 2,5 | Jodey M. Peyton 3 | Joanna Savage 3 | Martin C. Harvey 3 | Roger K. A. Morris 6 | Stuart P. M. Roberts 1 | Ivan Wright 7 | Adam J. Vanbergen 4,8 | Claire Carvell 3 1 Centre for Agri‐Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK; 2 The Faculty of Biological Sciences, University of Leeds, Leeds, UK; 3 Centre for Ecology & Hydrology, Wallingford, UK; 4 Centre for Ecology & Hydrology, Penicuik, UK; 5 Buglife – The Invertebrate Conservation Trust, Peterborough, UK; 6 Commonside East, Surrey, UK; 7 Shotover Wildlife, Oxford, UK and 8 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche‐Comté, Dijon, France Correspondence Rory S. O'Connor Email: [email protected] Funding information Biotechnology and Biological Sciences Research Council, Grant/Award Number: BB/I000348/1; Wellcome Trust, Grant/ Award Number: BB/I000348/1; Department for Environment, Food and Rural Affairs, Grant/Award Number: BB/I000348/1 and WC1101; Scottish Government, Grant/ Award Number: BB/I000348/1 and WC1101; Natural Environment Research Council, Grant/Award Number: NE/ R016429/1 Handling Editor: Luisa Carvalheiro Abstract 1. The status of pollinating insects is of international concern, but knowledge of the magnitude and extent of declines is limited by a lack of systematic monitoring. Standardized protocols are urgently needed, alongside a better understanding of how different methods and recorders (data collectors) influence estimates of pol- linator abundance and diversity. 2. We compared two common methods for sampling wild pollinating insects (soli- tary bees, bumblebees and hoverflies), pan traps and transects, in surveys of 1 km countryside squares (agricultural and semi‐natural habitats) and flowering crop fields across Great Britain, including the influence of local floral resources (nectar sugar availability or crop flower density) on the insects sampled. Further, we com- pared the performance of recorders with differing expertise (non‐specialist re- search staff, taxonomic experts and non‐expert volunteers) in applying methods. 3. Pan traps and transects produced compositionally distinct samples of pollinator communities. In the wider countryside, pan traps sampled more species of solitary bee and hoverfly. In flowering crops, transects recorded a greater number of indi- vidual bumblebees, but fewer species. 4. Across all taxonomic groups and countryside and crop samples, transects gen- erally had lower rates of species accumulation per individual collected than pan traps. This demonstrates that differences between methods in estimating rich- ness are not due to sampling effort alone. However, recorders possessing greater taxonomic expertise can produce species accumulation data from transects that are almost commensurate with pan trapping. 5. The abundance and species richness of pollinators (except solitary bees) on tran- sects in the wider countryside was positively related to the availability of esti- mated nectar sugar. In crops, pollinator abundance responses to flower densities

Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

Methods Ecol Evol. 2019;10:2129–2140. wileyonlinelibrary.com/journal/mee3  | 2129© 2019 The Authors. Methods in Ecology and Evolution © 2019 British Ecological Society

Received:28November2018  |  Accepted:16August2019DOI: 10.1111/2041-210X.13292

R E S E A R C H A R T I C L E

Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods

Rory S. O'Connor1,2  | William E. Kunin2  | Michael P. D. Garratt1  | Simon G. Potts1  | Helen E. Roy3  | Christopher Andrews4  | Catherine M. Jones2,5 | Jodey M. Peyton3  | Joanna Savage3 | Martin C. Harvey3  | Roger K. A. Morris6 | Stuart P. M. Roberts1 | Ivan Wright7 | Adam J. Vanbergen4,8  | Claire Carvell3

1CentreforAgri‐EnvironmentalResearch,SchoolofAgriculture,PolicyandDevelopment,UniversityofReading,Reading,UK;2TheFacultyofBiologicalSciences,UniversityofLeeds,Leeds,UK;3CentreforEcology&Hydrology,Wallingford,UK;4CentreforEcology&Hydrology,Penicuik,UK;5Buglife–TheInvertebrateConservationTrust,Peterborough,UK;6CommonsideEast,Surrey,UK;7ShotoverWildlife,Oxford,UKand8Agroécologie,AgroSupDijon,INRA,Univ.BourgogneFranche‐Comté,Dijon,France

CorrespondenceRoryS.O'ConnorEmail:[email protected]

Funding informationBiotechnologyandBiologicalSciencesResearchCouncil,Grant/AwardNumber:BB/I000348/1;WellcomeTrust,Grant/AwardNumber:BB/I000348/1;DepartmentforEnvironment,FoodandRuralAffairs,Grant/AwardNumber:BB/I000348/1andWC1101;ScottishGovernment,Grant/AwardNumber:BB/I000348/1andWC1101;NaturalEnvironmentResearchCouncil,Grant/AwardNumber:NE/R016429/1

HandlingEditor:LuisaCarvalheiro

Abstract1. Thestatusofpollinatinginsectsisofinternationalconcern,butknowledgeofthemagnitudeandextentofdeclines is limitedbya lackof systematicmonitoring.Standardizedprotocolsareurgentlyneeded,alongsideabetterunderstandingofhowdifferentmethodsandrecorders(datacollectors)influenceestimatesofpol-linatorabundanceanddiversity.

2. Wecomparedtwocommonmethodsforsamplingwildpollinating insects (soli-tarybees,bumblebeesandhoverflies),pantrapsandtransects,insurveysof1kmcountryside squares (agricultural and semi‐natural habitats) and flowering cropfieldsacrossGreatBritain,includingtheinfluenceoflocalfloralresources(nectarsugaravailabilityorcropflowerdensity)ontheinsectssampled.Further,wecom-pared theperformanceof recorderswithdifferingexpertise (non‐specialist re-searchstaff,taxonomicexpertsandnon‐expertvolunteers)inapplyingmethods.

3. Pantrapsandtransectsproducedcompositionallydistinctsamplesofpollinatorcommunities.Inthewidercountryside,pantrapssampledmorespeciesofsolitarybeeandhoverfly.Infloweringcrops,transectsrecordedagreaternumberofindi-vidualbumblebees,butfewerspecies.

4. Across all taxonomic groups and countryside and crop samples, transects gen-erallyhadlowerratesofspeciesaccumulationperindividualcollectedthanpantraps.Thisdemonstrates thatdifferencesbetweenmethods inestimating rich-nessarenotduetosamplingeffortalone.However,recorderspossessinggreatertaxonomicexpertisecanproducespeciesaccumulationdatafromtransectsthatarealmostcommensuratewithpantrapping.

5. Theabundanceandspeciesrichnessofpollinators(exceptsolitarybees)ontran-sects in thewider countrysidewaspositively related to theavailabilityofesti-matednectarsugar.Incrops,pollinatorabundanceresponsestoflowerdensities

Page 2: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

2130  |    Methods in Ecology and Evolu on O'CONNOR et al.

1  | INTRODUC TION

There is international concern about declines in the diversity anddistributionofinsectpollinatorsandtheconsequencesforpollina-tion services (Potts et al., 2016). Research is increasingly demon-stratinghow land‐use change, pesticides, climate change, invasivenon‐nativespecies,pestsanddiseasemayact,andinteract,tocausedeclines in pollinating insects (Vanbergen et al., 2013). However,evidenceis incompleteandimportantgapsremainwithrespecttothemagnitude,geographicandtaxonomicextentofthesedeclines(Pottsetal.,2016).Forexample,ourunderstandingofthepopulationstatusandtrendsinabundanceanddiversityofpollinatinginsectsisseverelylimitedbyaworldwidelackofstandardized,long‐termandlarge‐scaledata(Lebuhnetal.,2013).Thiscreatesanurgentneedformonitoring,andprotocolsthataccommodatebroadtaxonomicandgeographic coverage, account for potential biases in the data andgenerateadequatesamplesizes;allwhileremainingcosteffective.

The most important providers of pollination services globallyare insects, particularly bees and some flies (e.g. hoverflies) (Pottsetal.,2016).Currentbestevidenceforthestatusofwildbeesandhoverflies comes from records of species occurrence collected innationalandglobalbiodiversitydatabases.InGreatBritain(GB),re-cordscollatedbytheBees,WaspsandAntsRecordingSocietyandtheHoverflyRecordingSchemehaveallowedunparalleled insightsintothestatusanddistributionalchangesofbeesandhoverflies inGB(Carvalheiroetal.,2013;Powneyetal.,2019).Toourknowledge,suchverifiedlong‐termoccurrencedataforwildbeesandhoverfliesexistonlyforGB,theNetherlands,Belgium(Carvalheiroetal.,2013)andbumblebees intheUSA(Cameronetal.,2011).Thesedataarecollectedusingunstandardizedorsemi‐standardizedprotocols(Isaac&Pocock,2015)andchangesinrecordingintensity,taxonomicabilityandsamplingstrategiesmeansourcesofbiashavenotbeenconsis-tentovertime.Critically,occurrencerecordsprovidenostandardizedestimates of abundance, which are fundamental to understandingchangesinpopulationsizeandthelinksbetweenpollinatorsandpol-linationservices(Pottsetal.,2016).Identifyingthebestapproachesforpollinatormonitoringiscrucialtoreducetheselimitations.

Different methods for sampling pollinating insects are associ-atedwithdifferentoutputsandchallengeswithregardtotaxonomiccoverage and implementation. Direct observations (transects and

observation plots) and pan traps (sampling within painted water‐filledbowls)arethemostcommonlyusedmethods(Westphaletal.,2008).Transectsandtimedfocalfloralobservationsarestraightfor-wardtoconductandcangeneratedataoninsect–plantinteractionsbut depend on the expertise of the observer (Sutherland, Roy, &Amano,2015)andmaybebiasedtowardsmoreconspicuousspecies(Dennisetal.,2006).Pantrapstendtosamplemorespeciesofbeethanotherstandardizedmethods(Westphaletal.,2008),areinde-pendentofobserverexpertiseandarerecommendedbytheFoodandAgricultureOrganisation (FAO)formonitoringbees inagricul-tural habitats (LeBuhn,Droege, Connor, Gemmill‐Herren, &Azzu,2016).However, pan trap efficacymaybebiasedbecause certaintaxa (e.g. social bees)may be less likely to be caught and effectsoflocalfloralresourcedensityoncatchesarenotwellunderstood(Cane,Minckley,&Kervin,2000;butseeWood,Holland,&Goulson,2015).Similarly,usingnon‐expertvolunteers,or ‘citizenscientists’,presentsanopportunitytocollectlargeamountsofdataandengageawiderangeofindividualsinwildliferecording.However,theseben-efitspotentiallytrade‐offagainstthereducedtaxonomicresolutionthat thesevolunteerscantypicallygatheranddataaccuracy (Roy,Baxter,Saunders,&Pocock,2016),whichisrequiredtoaddresseco-logicalquestionsconcerningthediversityofwildpollinators.

Wecomparedthepotentialofpantrapsandtransectsforsur-veyingpollinatinginsectsin(a)thewidercountrysideand(b)flow-ering crop fields in 38 sites acrossGB. Furthermore, in thewidercountryside, we explored the effect of recorder expertise on thenatureandaccuracyofdatacollectedusingtransectsandfloralob-servationplots.Thereafter,weoutlineoptionsforthedevelopmentof protocols formonitoring pollinator abundance and diversity tofacilitatetheproductionoflong‐term,standardizednationalandin-ternationaldatasetsinaccordwithinternationalscienceandpolicyneedsidentifiedbytheIntergovernmentalScience‐PolicyPlatformonBiodiversityandEcosystemServices(Pottsetal.,2016).

2  | MATERIAL S AND METHODS

2.1 | Wider countryside surveys

We tested three commonly usedmethods for sampling bees andhoverflies(O'Connoretal.,2016;Westphaletal.,2008);

wereidiosyncraticaccordingtocroptype,butoveralltheresponsewaspositiveandnegativefortransectsandpantraps,respectively.

6. Giventhesetaxonomicandcontext‐specificdifferencesinmethodperformance,weassesstheirsuitabilityformonitoringpollinatinginsectcommunitiesandpol-linationservices.Wediscusstherelevanceofthesefindingswithinthecontextofachievingstandardized,large‐scalemonitoringofpollinatinginsects.

K E Y W O R D S

abundance,bees,diversity,expertise,hoverflies,pantraps,pollinatormonitoring,transects

Page 3: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

     |  2131Methods in Ecology and Evolu onO'CONNOR et al.

(i) Pan traps: a triplet of plastic bowls (350 ml capacity; Salbert,Item Number: 92012A500) sprayed with UV fluorescent paint(1 × white, 1 × yellow, 1 × blue; Sparvar “Leuchtfarbe”) witheachbowl containing100mlofwaterplusadropofunscenteddetergenttobreaksurfacetension.Eachtriplet(hereafterstation)was fixed toawoodenstakeusingwiresupportsandsetat theaverage height of flowers or other surrounding vegetation orsecured to the ground in very short vegetation or bare ground.

(ii) Insectvisitationtransects:Fivetransectsections,each200minlengthandfollowingalinearroute,werewalkedataslowpaceforbetween12and15minallowingforvariationintransectter-rain.Allinsectsseenvisitingflowerswererecordedwithina1m3 samplingboxaheadandtothesideoftherecorderandassignedtooneofthefollowingtaxonomicgroups:bumblebees,honey-bees, solitary bees (including primitively eusocial species) andhoverflies. Individual insectswere recordedonlyonce.Wherespecieslevelidentificationswererequired(seebelow),individu-alswere netted, placed in a labelled tube and frozen for lateridentification,unlesstheycouldbereadilyidentifiedinsitu.Timespenthandlinginsectsforidentificationwasnotincludedinthetransecttime.

(iii) Floralobservationplots:adefinedareaobservedforasettimetorecordinsectflowervisitors.Plotsof50×50cm2 were ob-served for 10min for insect flower visitation on a focal plantspecies,insectswereobservedandrecordedonceandclassifiedinto taxonomic groups, as described above (without specimenidentification).Focalplantspeciesonasitewereselectedfromalistof25nationallycommonfloweringplants(TableS1)or,ifnotpresent,thenalocallyabundantplantspecies.Theplantspeciesandnumberoffloralunitswithineachplotwererecorded.

Thewidercountrysidesurveysusedaone‐dayprotocoltosamplewithina1km2,compatiblewithexistingbiodiversitymonitoringschemesinGB

(e.g.Pescottetal.,2015).Fourteen1kmgridsquares(Brtishnationalgrid)were sampled acrossGB (Figure1a; England=6; Scotland=6;Wales = 2) with half the squares dominated (>50%) by semi‐naturallandcoverandhalfdominatedbyagriculturallandcover(arable,horti-cultureorimprovedgrasslandcollectively).Ineachsquare,wesituatedfive200mtransectsandfivepantrapstationsatapproximately200mintervalsonadiagonallinebisectingthesquare(Figure1b),typicallyfol-lowingboundaryfeaturesor,whereaccessible, followingtractor lineswithincroppedfieldsoredgesofgrassfieldswithlivestock.

Pan trap stationswere deployed at the start of each transect(Figure1b) and left exposed for6–7hr (dependingon terrain andtime taken to complete the other methods) between 10:00 and16:00.Afterpantrapdeployment,each200mtransectsectionwaswalkedtorecord insect flowervisitors.Foreachsection,availablefloralresourceswerequantified.Thenumberoffloralunits(flowerheads,umbelsorspikes)of≥5mostcommonfloweringplantspe-cieswasalsorecordedona5‐pointordinalscale:(1)1–2,(2)2–30,(3)31–300,(4)301–3,000, (5)>3,000.Tostandardizenectaravail-abilitypertransect,thetotalamountofavailablenectarsugarwasestimated for each recorded flowering plant species as µg sugarproducedin24hrperfloralunit(followingBaudeetal.,2016);seeSupplementaryMaterial).Wemultiplied this value by themediancoverageofeachspecies forcategories1–4andby3,001forcat-egory5andconverteditintoanestimateofnectaravailabilityperm2foreachtransect(bydividingthisproductby200).Duetosomeextremeestimatesofflowerdensity,weimposedamaximumlimitof20,000µgsugarperm2per24hr.Two10‐minfocalfloralobser-vationspersitewerealsoconductedduringeachsamplingday.Eachsitewassampledonceduringfoursamplingroundsin2015:(a)27April–10May,(b)1–14June,(c)6–19July,(d)17–30August.

Toexploretheeffectofrecorderexpertiseonthedatacollected,we classified recorders according to their degree of expertise infield surveys and recognizing pollinating insects: (a) non‐specialist

F I G U R E 1   (a)Distributionofstudysites,showingtheagriculturalwidercountrysidesites(browncircles).Semi‐naturalwidercountrysidesites(yellowcircles),strawberrysites(redstars),fieldbeansites(redsquares)andapplesites(redtriangles);(b)Thelayoutofpantrapsandtransectsforthewidercountryside‘one‐day’protocolata1kmsamplingsquare;(c)Thelayoutofpantrapsandtransectsinasamplingplotforfloweringcrops

Page 4: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

2132  |    Methods in Ecology and Evolu on O'CONNOR et al.

researchstaff–employeesofuniversitiesorresearchinstituteswithpriorexperienceofsurveyingandidentifyinginsectsandplantstoatleastbroadgrouplevels;(b)taxonomicexperts–volunteerorpro-fessional entomologists who submit records to existing biologicalrecordingschemespossessingahighlevelofexpertiseincollectingandidentifyingatleastonebroadtaxonomicgrouptospecieslevel;(c)non‐expertvolunteers–membersofthepublicwhopartake incitizenscienceprojectspossessingvaryinglevelsoffamiliaritywithpollinator identification or ecological surveys. All recorders con-ducted transects, volunteers and researchers conducted focalob-servations,butonlyresearchersconductedpantraps.Allrecordersfollowedthesameprotocolforeachmethodandwereprovidedwithidentificationguidesforbroadinsectgroupsandfocalplantspecies.Researchstaffandexpertscollecteddatatospeciesresolutionasfaraspossible,whereasnon‐expertsonlyclassifiedinsectsintobroadgroups.

Allsitesweresurveyedbyresearchstaff;taxonomicexpertsvis-itedonlythesitesinEnglandandWalesandnon‐expertvolunteerswererestrictedtoroundsthreeandfour,surveyingonthesamedaysastheresearchstaff.Researchstaffandvolunteersundertooktran-sectswithin15minofeachotherandfocalobservationsinparallelonthesamepatchesofflowers.Here,55sitevisitswereachievedbyresearchstaff,25bytaxonomicexperts,and17byvolunteernon‐experts(TableS2).

2.2 | Flowering crop surveys

Tocomparepollinator surveymethods in crops,pan trappingandtransectswerecarriedoutsimultaneouslyindessertapples(Malus domestica, variety Cox's Orange Pippin), strawberries (Fragaria X ananassa,mixedvarieties)andfieldbeans(Vicia faba,varietyWizard)inthespringandsummerof2011(Garratt&Potts,2011).WeusedeightappleorchardsinKent,eightstrawberryfieldsinYorkshireandeightfieldbeanfieldsinOxfordshireandBerkshire(Figure1a),withthreesamplingroundscarriedoutduringstrawberryandfieldbeanflowering and two during apple bloom. Sampling plots containedtwo150msamplingtransects,dividedintothree50msectionsandapantrapstationwasplacedattheendofeachsection,givingsixpseudo‐replicates of eachmethod per field (Figure 1c). Transectswereatleast25mapartandfromthefieldedge(Figure1c)andeach50msectionwaswalkedfor10minatasteadypace.Pantrapswereasspecifiedaboveforwidercountryside,butused460mlbowls,leftoutfor24hrinapplesandstrawberries,and7–10hrinfieldbeans.Appleflowerdensitieswerecountedwithin1×1m2quadratsheldagainst treesatheadheight,whereas forstrawberriesa1×2m2 areawasassessed.Fieldbeanfloweringstemswerecountedwithina1×2m2area,andmultipliedbythemeanflowercountsonfiverandomlychosenstems.

2.3 | Survey conditions and identification

All surveys were carried out between 10:00 and 16:00 in dryweather, with light winds (<29 km/hr, Beaufort 5), and where

minimumtemperaturesexceeded13°Cif<50%cloudcover,or15°Cif>50%cloudcover(although11°Cor13°CwasallowedforsomeuplandlocationsorvisitsinApril).Collectedbeeandhoverflyspeci-menswerestoredin70%ethanolforidentificationtospecieslevelbyexperttaxonomistsandarchivedin99%ethanol.

2.4 | Analysis

All analyseswere performed usingR version 3.3.2 (RCore Team,2016).

2.5 | Similarity of pan trap and transect samples of pollinator communities

Dataweresummarizedatthesite (1kmsquareorcropfield) leveltodemonstratethetypicalsamplesizesachievedbythetwometh-odsandbythedifferentrecordergroupsacrossthefourfocalinsectgroups(Tables1and2;TablesS3andS4).

We assessed the degree of dissimilarity (Morisita–Horn abun-dance‐based dissimilarity index) between the pollinator (bees andhoverflies identified to species) communities sampledby researchstaffusingpantrapsandtransectsinthewidercountrysidedatasetandeach floweringcropdataset (apple, strawberryand fieldbeanseparately).Todetermineifthepantrapandtransectmethodspro-duced significantly dissimilar assemblages,we used permutationalANOVAs (r: vegan: adonis) against random permutations of theoriginal data (countryside=999; FC=255 for each cropdataset)(Oksanenet al., 2015).Data for thewider countryside semi‐natu-raldominatedsiteinWaleswereexcludedduetotoofewrecords.Non‐metricmultidimensionalscaling(NMDS)wasusedtovisualizedissimilarity between sampling methods based onMortista–Horndissimilarity(r:vegan:MetaNMDS;Oksanenetal.,2015).

2.6 | The effects of sampling effort and recorder expertise on estimates of species richness

We used species accumulation curves to understand the influ-enceof samplingefforton theefficacyofmethodsand recorderstoproducespecies richnessestimatesgiven theirdifferentmodesofactionandinherentbiases.Thenumberofindividualssampledisthebasiccurrencywithwhichspeciesrichnessestimatesbetweensamples or datasets can be compared.Using the inext package inr (Hsieh,Ma, & Chao, 2019), we plotted individual‐based speciesaccumulation curves that show interpolated species richness (percumulativeindividualsampled)uptothetotalsamplesizeandthere-after extrapolated species richness. Curves were plotted for pantrapsandtransects,usingsamplesamalgamatedacrossthedatasetforeachbroadtaxonomicgroup in thewidercountrysidedataset,forsolitarybeesinapples,bumblebeesinstrawberriesandbumble-bees and solitary bees in field beans. Further, for a subset of thewidercountrysidedatacoveringsevensites(fourwithsamplesforallfoursamplingrounds,oneforthe2nd,3rdand4thsamplingroundsandtwoforthefirsttwosamplingrounds,totally23samplingvisits)

Page 5: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

     |  2133Methods in Ecology and Evolu onO'CONNOR et al.

individual‐basedspeciesaccumulationcurveswereplottedforbum-blebees,solitarybeesandhoverfliestocomparepantrapswithtran-sectsconductedbyeitherresearchersortaxonomicexperts.

Correlationanalyses(Spearman'sorKendall'srank)wereusedtocompareestimatesofbumblebee,solitarybee,hoverflyandhoney-bee abundance from transectswalkedby research staff andnon‐expertvolunteers(17sitevisitswithcorrespondingdata)andfromparallelfloralobservationplots.

2.7 | Per sampling unit differences between pan traps and transects

Generalizedlinearmixedmodels(GLMMs)wereusedtotestfordif-ferencesbetweenpantrapsandtransectsatthesamplingunitlevel(individualpantrapstationorcorrespondingtransectsection),alongwiththeeffectsoflocalfloralresourcesandothercovariates,usingthedatasetsforbumblebees,solitarybeesandhoverfliesgeneratedbyresearchstaff(honeybeenumberswereinsufficient).ModelswerefittedandselectedusingtheglmmADMBpackage(Skaug,Fournier,Bolker, Magnusson, & Nielsen, 2015), which allows zero‐inflatedmodels,althoughpoissonornegativebinomialerrorswereappropri-ateforallmodels.Finalmodelswereselectedbystepwiseeliminationof non‐significant variables using log‐likelihood tests (Zuur, Hilbe,& Ieno, 2013). Final models were also run with the lme4 package(Pinheiro,Bates,DebRoy,&Sarkar,2015)tochecktheagreementofmodelfitsbetweenpackages. Inevery instance,theywerecompa-rable,givingthesamequalitativeresultswithonlyslightdifferencesinparameterestimates.Thelsmeanspackage(Lenth,2016)wasusedtocalculateleastsquaremeansandmarginaleffectsplotsfromlme4outputwereproducedusingtheSJPlotpackage(Lüdecke,2017).

Fortheabundanceandspeciesrichnessofbumblebees,solitarybeesandhoverfliessampledonthewidercountrysidesurveys,ini-tial model predictors included sampling method, sampling round,

country (EnglandandWaleswereamalgamated intoone levelduetolowreplicationforWales),logestimatednectarsugaravailabilitypertransect(µgper24hr),maximumdaytimetemperature(°C)fromthenearestUKMETofficerecordingstationanddominantland‐useofthesiteasfixedeffects.Two‐wayinteractionswereincludedbe-tweenmethodandlognectar,methodandsamplinground,lognec-tarandsamplinground,andcountryandsamplinground.Allmodelsincludedan intercept level randomeffectof sample location (1–5)nestedwithinsite(1–14).

ForeachFCdataset,estimatesofabundanceforthedominantinsectpollinatorvisitorgroupweremodelled;solitarybeesforap-ples, bumblebees for strawberries and fieldbeans.Datawerenotsufficient to model the abundance of all groups individually, butmodelsofthetotalabundanceofallbeesandhoverflieswererunforcomparison.Speciesrichnessofallbeesandhoverflieswasalsomodelled.Initialmodelsincludedsamplingmethod,thenaturallogofflowerdensityandtheirinteractionasfixedeffectsandaninterceptlevelrandomeffectofthesamplingsection(1–6)nestedwithinthesite.

3  | RESULTS

Pan traps and transects implemented by research staff on thewider countryside surveys across 14 1 km2 sampled a total of110species (16bumblebee,38solitarybee,55hoverflyspeciesand thehoneybeeApis mellifera)with variations in species rich-nessandabundance foreachmethod (Table1,TableS3). In thewider countryside, 65% of solitary bees, 19% of hoverflies and14%ofbumblebeesrecordedbyresearchstaffwereidentifiedtothegrouplevelonly,becausespecimenswerenotnettedforiden-tification.Taxonomicexpertsrecorded10speciesofbumblebee,21speciesofsolitarybeeand34speciesofhoverflyontransects,

TA B L E 1  Mean±SEabundanceandspeciesrichnesspersamplingsite(n=14)sampledbyresearchstaffacrossthewidercountryside

Method

Abundance Species richness

Bumblebee Solitary bee Honeybee Hoverfly Bumblebee Solitary bee Hoverfly

PanTrap 12.14±3.17 18.36±5.77 3.00±1.03 32.07±70.53 2.36±0.59 2.43±0.74 9.43±1.28

Transect 17.86±3.18 5.86±2.35 4.36±1.39 39.79±16.93 2.64±0.42 0.5±0.24 3.64±0.75

TA B L E 2  Meanabundance±SEandspeciespersamplingsiteforapples,strawberryandfieldbeansites

Crop Method

Abundance Species

Bumblebee Solitary bee Honeybee Hoverfly Bumblebee Solitary bee Hoverfly

Apple Pantrap 2.63±0.46 148.88±53.82 0.88±0.35 0.13±0.13 2.25±0.53 16.88±2.22 0.13±0.13

Transect 4.38±0.98 14.00±3.49 5.88±1.64 1.38±1.10 2.13±0.40 2.00±0.38 0.00±0.00

Strawb Pantrap 15.75±6.01 11.13±2.75 5.25±2.02 3.75±1.29 3.75±0.53 4.13±0.81 0.88±0.23

Transect 147.25±32.28 1.75±0.65 121.00±34.55 40.00±12.30 3.88±0.35 0.38±0.26 0.25±0.16

FieldB Pantrap 16.50±6.35 33.75±4.55 3.50±1.58 2.38±0.46 4.63±0.84 12.25±0.88 1.63±0.26

Transect 65.38±9.43 1.88±0.58 8.75±1.96 1.25±0.45 5.63±0.38 0.88±0.30 0.13±0.13

Page 6: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

2134  |    Methods in Ecology and Evolu on O'CONNOR et al.

whilstforthesamenumberofsamplingvisitstothesametransectlocations (25, thoughondifferentdays) research staff recorded11,9and18speciesofeach,respectively.Forcrops,werecordeda total of54 species in apples (8bumblebee,44 solitarybee,1hoverflyandthehoneybee),32speciesinstrawberries(12bum-blebee,14solitarybee,5hoverflyandthehoneybee)and55 infield beans (14 bumblebee, 31 solitary bee, 9 hoverfly and thehoneybee)(Table2,TableS4fortotalspeciesrichnessandabun-dancepercrop).

3.1 | Community dissimilarity

Overall,therewasasignificantdissimilaritybetweenthepollinatorcommunities sampled using pan traps and transects in the wider

countryside(R2=0.121,F1,24=3.312,p<.001)drivenbymoresoli-tarybeeandhoverflyspeciesdetectedbypantrapsthantransects,butmore individuals of common bumblebee species on transects(Figure2,TableS3,FigureS1a).Therewasa significantdissimilar-itybetween thepollinatorcommunities sampledbypan trapsandtransectsinallcroptypes;apples(R2=0.51,F1,14=14.309,p=.008);strawberries(R2=0.29,F1,14=5.744,p=.008);fieldbeans(R

2=0.41,F1,14 = 9.58,p = .008). (Figure 3). Transects sampledmuch highernumbersofbumblebee individuals in strawberriesand fieldbeansthandidpan traps (around10and5 times, respectively,TableS4)with samplesmoredominatedby commonspecies thanpan traps(FigureS1c,d).Inappleswerepantrapssamplednearly10timesthenumberofsolitarybees(TableS4).

3.2 | Species accumulation and recorder effects

For bumblebees in the wider countryside, there was a close cor-respondence between the species accumulation rates for eachmethod;although theoverallpan trapsaccumulatedmorespeciesand transects sampledmore individuals (Figure 4a). In crops, thispatternwasaccentuated,withthetransectmethodshowinglowerratesofbumblebeespeciesaccumulationperindividualsampledandreaching an asymptote,whereas the steeper accumulation curvesforpantrapsarepredictedtocontinue(Figure4b). Ingeneral, thespecies accumulation curves for bumblebeeswere broadly similarbetweenpantraps,transectsbyresearchersandtransectsbytaxo-nomicexperts(Figure5a).

Forsolitarybees,thesamegeneralpatternofspeciesaccumu-lationbetweenpantrapsandtransectswasobservedinthewidercountrysideandinapplesandfieldbeans.Itwasdifficulttoconstructmeaningfulspeciesaccumulationcurvesfortransects(Figure4candFigureS2)becausealargeproportionofindividualswasnotidenti-fiedtospeciesresolution(TableS4).However,whilethenumberofindividualsrecordedbytaxonomicexpertsontransectswaslowerthan those sampled in pan traps, species accumulation curves fortransects completed by experts suggest that, per individual, this

F I G U R E 2  Non‐metricmulti‐dimensionalscaling(NMDS)plotofpantraps(largerdarkgreycircles)andtransects(largerlightgreycircles)forallspeciesofbeeandhoverflydetectedinthewidercountrysidebynon‐expertresearchers.Bumblebeesareshownbystars,Apis melliferaasquare,solitarybeesbytrianglesandhoverfliesbycircles.Circleswiththesamenumberareforthesamesiteandthepolygonsconnectingsitesindicatetheoverlapbetweensamples

F I G U R E 3  Non‐metricmulti‐dimensionalscaling(NMDS)plotsofpantraps(largerdarkgreycircles)andtransects(largerlightgreycircles)forallspeciesofbeeandhoverflydetectedin(a)apples,(b)strawberriesand(c)fieldbeans.Bumblebeesareshownbystars,Apis melliferaasquare,solitarybeesbytrianglesandhoverfliesbycircles.Circleswiththesamenumberareforthesamesiteandthepolygonsconnectingsitesindicatetheoverlapbetweensamples

Page 7: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

     |  2135Methods in Ecology and Evolu onO'CONNOR et al.

wouldachievecomparableorbetterspeciescoveragewithgreatersamplingofindividuals(Figure5b).

Hoverflieswerenotsampledincropsinhighenoughnumbers,butforthewidercountryside,therateofspeciesaccumulationper

individualforpantrapswasarounddoublefortransects(Figure4d).However, it is notable that two species (E. balteatus and S. ribesi)comprised 84% of individual hoverflies sampled on transects andidentifiabletospeciesresolution.Removingthesetwospeciesleadstogreatercorrespondencebetweenpantapsandtransectsinspe-ciesaccumulation (FigureS3a).Correspondencebetweenhoverflyspecies accumulation curves for pan traps and taxonomic expertssuggestthattheyperformcomparablyintermsofsamplingspecies(Figure5c).Removing thehighly abundantE. balteatus and S. ribe-sisimprovedthecorrespondenceofresearchertransectstoexperttransectsandpantraps(FigureS3b).

Estimates of abundance for all taxonomic groupswere signifi-cantly,positivelycorrelatedbetweenresearchstaffandvolunteers,usingtransectandfocalobservations(seeSupplementaryMaterialandFiguresS4andS5forfullresults).

3.3 | Sampling unit level analyses

There were significant differences between sampling methods inboththeabundanceandspeciesrichnessofsolitarybeespersam-plingunit(pantrapstationor200mtransectsection).Pantrapssam-pledgreaternumbersofsolitarybeeindividuals(β=−1.27±0.22,z=−5.77,p<.001;Figure6b)andspecies(β=−2.38±0.27,z=−8.87,p<.001;FigureS7b)thantransects.However,forbumblebeesandhoverflies, significant interactions suggest that the effects of thesamplingmethodonabundanceandspeciesrichnessweredepend-entonboththeestimatednectarsugaravailabilityalongthe200mtransectand,forhoverflies,thetimingofthesamplinground(TablesS5andS6).Ontransects,theincreasingnectaravailabilityhadasig-nificant,positiveeffectcomparedtopantrapsforbumblebeeabun-dance (β =0.28±0.07, z =4.12,p < .001;Figure6a) and speciesrichness(β=2.09±0.34,z=6.09,p<.001;FigureS7a),andhoverflyabundance(β=0.16±0.06,z=2.59,p=.010;Figure6c)andspeciesrichness(β=0.16±0.06,z=2.74,p=.006;FigureS7c).Theeffectsofcountry,samplingroundandmaxtemperature inthemodelsofabundanceandrichnessarereportedintheSupplementaryMaterial(TablesS5andS6).

Inapplesa significant interactionbetweenmethodand flowerdensityshowedanegativeeffectofincreasedflowerdensityonsol-itarybeeabundanceinpantrapsbutapositiveeffectontransects(β=0.87±0.18,z=4.99,p<.001;Figure7a).Themodelforabun-danceofallpollinatinginsectswasqualitativelythesame(TableS7),aswasforspeciesrichness(β=0.51±0.13,z=3.92,p<.001;FigureS7a,TableS8).

In strawberries, bumblebee abundance on transects was sig-nificantly higher than in pan traps regardless of flower density(β=2.27±0.13,z=17.00,p<.001;Figure7b).However,fortheabun-dance of all pollinating insects, estimates from transects increasedsignificantly with flower density compared to those of pan traps(β=0.52±0.13,z=4.10,p<.001;TableS7),asdidthenumberofspe-ciessampled(β=0.38±0.12,z=3.32,p=.001;FigureS7b,TableS8).

In field beans, a significant interaction between method andflowerdensityshowedbumblebeeabundanceincreasedwithflower

F I G U R E 4   Individual‐basedspeciesaccumulationcurvesacrossthewholedatasetspooledfor(a)bumblebeesinthewidercountryside(b)bumblebeesinfieldbeansandstrawberries(c)solitarybeesinthewidercountrysideand(d)hoverfliesinthewidercountryside.Curveswereplottedbasedondatagroupedacrossallsites,usingtheinextpackageinr.Thesolidlineshowspredictionsbasedoninterpolationandthedashedpartshowspredictionsbasedonextrapolation.95%confidenceintervalsareshownasshadedareas

Page 8: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

2136  |    Methods in Ecology and Evolu on O'CONNOR et al.

F I G U R E 5   Individual‐basedspeciesaccumulationcurvesfromasubsetofdatafromacrosssevenofthewidercountrysitesprovidingcorrespondingdatafrompantraps,transectsconductedbyresearcherandtransectsconductedbyprofessionalexpertsfor(a)bumblebees,(b)solitarybeesand(c)hoverflies.Thesolidlineshowspredictionsbasedoninterpolationdashedlinethepredictionsbasedonextrapolation,95%confidenceintervalsareshownasshadedareas

F I G U R E 6  Plotsforthewidercountrysideof(a)predictionsofthemarginaleffectsofsamplingmethodandnectarsugaravailabilityonbumblebeeabundance(b)theleastsquaremeanpermethodforsolitarybeeabundanceand(c)predictionsofthemarginaleffectsofsamplingmethodandnectarsugaravailabilityonhoverflyabundance.Unbrokenlinesshowpredictedvaluesforpantrapsandbrokenfortransects.95%confidenceintervalsareshowningrey.Errorbarsonpointsshow±SE.Thesamplingunitforpantrapsisatrappingstation(tripletofbowls)andfortransectsisa200msection(Figure1b).ModelresultsarepresentedinTableS4.ModelsforspeciesrichnessarepresentedinFigure4sandTableS5

F I G U R E 7  Plotsshowing(a)predictionsformarginaleffectsofsamplingmethodandflowerdensityonsolitarybeeabundanceinapplecrops(b)meanabundancebumblebeespersamplingmethodinstrawberrycropsand(c)predictionsformarginaleffectsofsamplingmethodandflowerdensityonbumblebeeabundanceinfieldbeancrops.Unbrokenlinesshowpredictedvaluesforpantrapsandbrokenfortransects.95%confidenceintervalsareshowningrey.Errorbarsonpointsshow±SE.Samplingunitforpantrapsisatrappingstation(tripletofbowls)andfortransectsisa50msection(Figure1c).ModelresultsarepresentedinTablesS7.ModelsforthespeciesrichnessofallbeesandhoverfliesareshowninFigureS5andTableS8

Page 9: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

     |  2137Methods in Ecology and Evolu onO'CONNOR et al.

densityontransects,butdeclinedwithflowerdensityinpantraps(β=0.38±0.12,z=3.32,p=.001;Figure7c).Resultsfortotalpol-linator abundance were qualitatively the same (β = 0.35 ± 0.16,z=2.15,p=.032;TableS7),aswerethoseforthenumberofspeciessampled(β=0.42±0.15,z=2.88,p=.004;FigureS7c,TableS8).

4  | DISCUSSION

Understanding the status and trends of pollinators is an urgentglobal priority requiringdevelopmentof national scalemonitoringusing repeatable and standardized survey methods (Dicks et al.,2016).Ourstudycomparedtheperformanceofdifferentpollinatorsurveymethods insamplingdifferenttaxonomicgroupsandwhenimplementedbydifferentrecordersvaryinginexperience.Wedis-cussour findingswithin the contextof the logistical and financialconstraintspresentedbylarge‐scalebiologicalmonitoring.

Pantrapsandtransectsprovidedadifferentpictureofthepol-linatinginsectcommunity.Overall,theassemblagessampledbythetwomethodswere significantly dissimilar compositionally in boththewider countryside and crop fields. This differencewas drivenbytransectssamplingfewerspecies,particularlyofsolitarybeeandhoverfly,butmorebumblebeeindividuals,particularlyincrops.

Sampling effort dictates the relative performance of methods(Rhoadesetal.,2017),forexample,increasingthedurationofexperttransectsmayresultindatathatconvergesontherichnessestimatesproduced by pan‐traps. Fundamentally different modes of actionmakeitimpossibletoproperlystandardizethesamplingeffort(e.g.samplingduration)betweenpantrapsandtransects.However,usingspecies accumulation curves, we were able to compare estimatesof species richnessproducedby thedifferentmethods andactorstounderstandtheextentthatsamplingeffort(i.e.numbersofindi-vidualscollected)contributestotheobserveddifferentialpatterns.Accumulationofspeciesoccurringatasimilarrateindicatesthatdif-ferencesinrelativesamplingeffortaredrivingdifferencesinspeciesrichness.Wefoundhigherspeciesaccumulationratesforpantraps,exceptforbumblebeesinthewidercountryside,suggestingfactorsotherthansamplesizearedrivingdifferencesbetweenmethods.

In all datasets, transects sampledmore individual bumblebeesthanpantraps,probablydueinparttothestrongpositiveassocia-tionbetweenfloral resourcesandbumblebeecountson transectsandtothebias inpantrapsagainstsampling largerbodiedinsects(Caneetal.,2000).Thatthisdifferencewasofagreatermagnitudeinstrawberryandfieldbeanfieldscomparedtothewidercountry-sidemaybebecausethesecropsarepredominantlybumblebeepol-linated(Kleijnetal.,2015)andduetothecompetitionforbumblebeevisitsfromtheabundantfloraldisplaysofthesecropmonocultures,loweringpantrapcatches.However,pantrapsshowedhigherratesof species accumulation and generally sampled more species ofbumblebee.Oneexplanationisthatthetransectprotocolwascon-strainedtorecordflowervisitorsonly,sospeciesforagingspecialismwillreducethepoolofspeciesbeingsampled,particularlyincrops(whereonlyoneflowertypewassurveyed).

Forsolitarybees,pantrapscollectedmorespeciesandindividu-alsthantransects,andinapplesthelargermagnitudeofdifferenceinnumberscollectedmayrelatetothe24‐hrpantrappingused(asopposedto6–7hr).Projectingspeciesaccumulationwasdifficultfortransectsduetolowratesofspecieslevelidentification.However,whenexpertsundertooktransectsinthewidercountryside,thoughthenumberofsolitarybeesrecordedwasstilllowerthanpantraps,species accumulation rate per individual became higher for tran-sects. These findings highlight a limitationwhen using such ‘real‐time’methods tocollectdataonsolitarybees thataredifficult todetect,identifyorcapture,particularlyforlessexperiencedrecord-ers.Forhoverflies,pantrapsshowedsimilarlyhigherratesofspe-ciesaccumulationperindividualsampledthantransects,butagain,expert recordersmitigated this by providing a convergent rate ofspeciesaccumulationbetweenmethods.

While expertise seems necessary to collect species resolutiondatafromtransects,ourresultssuggesttransectscouldbesuitablefor novices to collect group level abundance data of bumblebeesandpossiblyhoverflies,withbasicinstructions.However,wefoundthe potential for miscounts or misclassifications, particularly forhoverflies.Kremen,Ullman,andThorp(2011),similarlyfoundesti-matesofbeeabundancewerecorrelatedbetweenvolunteerswithfivehourstrainingandexperts.Atransect‐based(1–2km)approachin 373 sites, ‘BeeWalks’, has been developed by the BumblebeeConservationTrust in theUK and is generating data on trends inabundance for bumblebee species (Comont & Dickinson, 2017).However, training, assessment and data validation processes areneededbeforemassparticipationobservationalmethodsarewidelyadoptedformonitoring.

Across all surveys, per sampling unit, estimates of abundanceandspeciesrichnessontransectsincreasedwithestimatednectaravailability or floral density. This effect is intrinsic to themethod(transectsrecordedflowervisitors),butthestrengthofresponsefordifferenttaxonomicgroupstofloralresourcesmayreflecttheirdif-ferentecologies.Socialbumblebeesincreasecolonyforagingactiv-ityinresponsetonectaravailability(Dornhaus&Chittka,2001)andover larger ranges thansmaller, solitarybeespecies (Gathmann&Tscharntke,2012;Osborneetal.,1999).Thismayexplainthestrongresponse of bumblebees to transect floral resources in thewidercountrysidecomparedwithsolitarybeesthatpossesssmaller for-agingrangesandalackofsocialrecruitmentbehaviour.Hoverfliesalsodonot recruit,butarenot restrictedto foragingaroundnestsites,andsoindividualsmayfreelyaggregatearoundhighfloralre-sources.Thisisconsistentwithourresultsshowingapositiverela-tionbetweenhoverflyabundanceandnectaravailability.

Fortransects,abundancerecordsmayreflectpopulationdensitiesinalocationbutalsotheredistributionofindividualsacrossaland-scapeinresponsetotemporaryincreasesinfloralresources(Carvell,Bourke,Osborne,&Heard,2015);however,methodsarenowavail-abletoaddressthis(Kleijnetal.,2018).Thenegativerelationshipbe-tweenlocalfloraldensityandthenumberofindividuals(andspecies)caughtinpantrapsinfloweringcropfieldssuggestthatcropflowerswere‘competing’withpantrapsbydrawingawayinsects(e.g.Caneet

Page 10: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

2138  |    Methods in Ecology and Evolu on O'CONNOR et al.

al.,2000).Ifpantrappingisconfoundedbyfloraldensities,thiscouldaffect theiruse inmonitoringschemesas itmay leadtoerroneousdetectionofdeclinesifanarea’sfloralresourcesincreaseovertime.However, this inverserelationshipbetweenpantrapcatchandflo-raldensitywasparticulartocrops,likelyduetotheveryhighflowerdensitiesinthesecropmonocultures.Themagnitudeoffloral‘com-petition’withpantrapswillbelowerinflorallyheterogeneouswidercountryside environments. Moreover, our results reflect a seriesofsnapshotsamplesofthedifferentmethods inspace.Structured,longitudinalmonitoringorexperimentsmanipulatingfloraldensitiesareneededtodemonstratehowpantrapcatchesmightrespondtoannualandmultiannualchangesinfloralresourcesatagivensite.Itmustbenotedthatournectarestimatesandpantrapstationswerenotpreciselyspatialcoincidentandquantifyingfloralresourcesinafixedareasurroundingthepantraps(inthewidercountrysidesetting)mayhavegivendifferentresults(Carvelletal.,2016).Previousfind-ingsontheimpactsoffloralresourcesonpantrapcatcheshavealsobeenmixed;withnegativeeffectsonabundance(Roulston,Smith,&Brewster,2007)andspeciesrichness (Baum&Wallen,2011),posi-tiveeffectsonabundance(e.g.Woodetal.,2015),andnoeffect(e.g.Rhoadeset al., 2017).Overall,measuresaccounting for local floralresourceswillbeavitalcovariateforcollectionwithanymethodusedinpollinatorsurveyprotocolsformonitoring.

Pan traps and transects have different utility and efficacy formonitoringdifferentaspectsofpollinatorbiodiversity.Identifyingtheobjectiveofthemonitoringandwhatmetricsofthepollinatorcom-munityare required isessential todeterminingwhichmethodsareemployed.Characterizingplant–pollinatorinteractionsoridentifyingwhichspeciesofinsectaredeliveringpollinationservicetocropsandwildflowersrequiretransects(orotherobservationalmethods)aspantrapsdonotreflectthis(Gibbsetal.,2017;Kleijnetal.,2015).Whilepan trapshave limitations andbiases, theyprovide species resolu-tiondataindependentofexpertiseandrequirelesspersonefforttoachieveequivalentsamplesizeswhencomparedtotransects.Theycouldalsominimizenoiseinthedatafromdifferentlevelsofrecorderknowledgeorchangesinrecordersovertime.Ourresultsshowthat,independentofdifferencesinsamplingeffort,transectsconductedbypeoplewithoutalargedegreeoftaxonomicexpertisewillnotsam-plethesamenumberofspeciesaspantraps,andforsolitarybeesthey require considerablymore sampling effort to detect asmanyindividuals. This could be particularly important when recorderswithappropriateexpertisearealimitingfactor,alongwithlogisticalandresourcingimplications.Forexample,ifspecies‐levelabundanceanddiversityofsolitarybeesweretargeted,ourresultssuggestfivetransectswould require sampling for36–45minby someonewithextensiveexperienceandtaxonomicexpertisetoachieveequivalentsamplesizesandspeciescoverageasfive6–7hrofpantraps.Ifstaffavailabilityorresourcesarelimiting,pantrapsusingnon‐expertre-corderscoupledwithspecies identificationbyexpertscanbeused(LeFéonetal.,2016)andmolecularmethodsmaysoonbeanoption(Creedyetal.,2019).Thoughlethal,pantrapsareunlikelytoreducepollinatinginsectpopulationsatthesamplingintensitiestestedhere(Gezon,Wyman,Ascher,Inouye,&Irwin,2015).

Noonesamplingmethodcanfullycharacterizethepollinatingin-sectcommunityatagivenlocation,butsamplingshouldaimtoprovidenecessarytaxonomiccoverageandkeepbiasasconsistentaspossi-bleover time.Furthermore,combiningdata fromdifferent locationsrequires methods that ensure datasets are at least comparable attheirmostbasic resolution.Anationalpollinatormonitoringschemecouldemploypantrapsandobservationalmethodstoallowthecom-plimentaryrecordingofdifferentfacetsofthepollinatorcommunityincludingabundance,speciesrichness,functionalrolesandpollinationservicepotential.Acrucialcaveat,however, isthedifferentialeffectoflocalfloralresourceavailabilityontheefficacyofthepantrapsandobservationalmethodsandhowthismayinfluencethedataobtainedand the conclusions drawn. This potential complementarity and ca-veatshouldbothbeconsideredcarefullyduringmethod(s) selectionalongsidemonitoringobjectives,desiredmetricsandtheavailabilityoffinancialorhuman resources.Only throughsuchstandardardizationcan monitoring efforts become internationally cohesive. The valueof obtaining standardized datasets on pollinating insects cannot beoverstatedinprovidingrobustevidenceonlong‐termandlarge‐scalepatternsandtrendstoinformnationalandinternationalpolicyneeds.

ACKNOWLEDG EMENTS

TheUKDepartment for theEnvironment,FoodandRuralAffairs,the ScottishGovernment and theWelshGovernment funded thewidercountrysidesurveyunderprojectWC1101.Thecropssurveyswere funded jointly by grant BB/I000348/1 from BBSRC, Defra,NERC,theScottishGovernmentandtheWellcomeTrust,undertheInsectPollinatorsInitiative.ThisworkwassupportedbytheNaturalEnvironmentResearchCouncilawardnumberNE/R016429/1,partoftheUK‐SCAPEprogrammedeliveringNationalCapability.Thankstothefarmers,landownersandlandmanagerswhoallowedusac-cesstotheir land.ThankstoA.Perry,D.Chapman,N.Majlessi,A.Turner,D.Coston,C.Dodson,R.Evans,L.TrusloveandM.Lappagefor undertaking fieldwork and to all the non‐expert volunteers.ThankstoS.Freemanforstatisticaladvice.Thankstothreereview-erswhosinsightsandsuggestionsimprovedthemanuscript.

AUTHORS' CONTRIBUTIONS

R.S.O.–H.E.R,A.J.V.andC.C.concievedanddesignedtheproject.R.S.O., C.A.–M.H. and S.P.M.R.–C.C. collected and collated thewidercountrysidedata,andM.H.–I.W.providedspecimenidenti-fications.M.P.D.Gcoordinatedthecollectionofandprovidedthefloweringcropdata.R.S.O.analyzedthedata.R.S.O.–H.E.R,A.J.V.andC.C.ledthewritingofthemanuscript.Allauthorscontributedcriticallytodraftsandgavefinalapprovalforpublication.

DATA AVAIL ABILIT Y S TATEMENT

Data for the wider countryside surveys are available from theNERC Environmental Information Data Centre: https://doi.org/10.5285/69a0d888‐9f6b‐4e67‐8d29‐402af1412d8e. Data

Page 11: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

     |  2139Methods in Ecology and Evolu onO'CONNOR et al.

for the flowering crops surveys are available from Data DryadRepository; https://datadryad.org/stash/dataset/doi:10.5061/dryad.31f7ph7ht tps://datadr yad.org/resource/10.5061/dryad.31f7ph7(Garratt&Potts,2011).

ORCID

Rory S. O'Connor https://orcid.org/0000‐0001‐7633‐4304

William E. Kunin https://orcid.org/0000‐0002‐9812‐2326

Michael P. D. Garratt https://orcid.org/0000‐0002‐0196‐6013

Simon G. Potts https://orcid.org/0000‐0002‐2045‐980X

Helen E. Roy https://orcid.org/0000‐0001‐6050‐679X

Christopher Andrews https://orcid.org/0000‐0003‐2428‐272X

Jodey M. Peyton https://orcid.org/0000‐0002‐8313‐6194

Martin C. Harvey https://orcid.org/0000‐0001‐7512‐2449

Adam J. Vanbergen https://orcid.org/0000‐0001‐8320‐5535

Claire Carvell https://orcid.org/0000‐0002‐6784‐3593

R E FE R E N C E S

Baude,M.,Kunin,W.E.,Boatman,N.D.,Conyers,S.,Davies,N.,Gillespie,M.A.K.,…Memmott,J.(2016).Historicalnectarassessmentrevealsthe fall and rise of floral resources inBritain.Nature,530, 80–85.https://doi.org/10.1038/nature16532

Baum,K.A.,&Wallen,K.E. (2011).Potentialbias inpantrappingasafunction of floral abundance. Journal of the Kansas Entomological Society,84(2),155–159.https://doi.org/10.2317/jkes100629.1

Cameron,S.A.,Lozier,J.D.,Strange,J.P.,Koch,J.B.,Cordes,N.,Solter,L. F., … Robinson, G. E. (2011). Patterns of widespread decline inNorthAmericanbumblebees.Proceedings of the National Academy of Sciences of the United States of America,108(2),662–667.https://doi.org/10.1073/pnas.1014743108

Cane,J.H.,Minckley,R.L.,&Kervin,L.J.(2000).Samplingbee(Hymenoptera:Apiformes) for pollinator community studies: Pitfall of Pan‐Trapping.Journal of the Kansas Entomological Society,73(4),225–231.

Carvalheiro,L.G.,Kunin,W.E.,Keil,P.,Aguirre‐Gutiérrez,J.,Ellis,W.N.,Fox,R.,…Biesmeijer,J.C.(2013).Speciesrichnessdeclinesandbiotichomogenisation have slowed down for NW‐European pollinatorsandplants.Ecology Letters,16(7),870–878.https://doi.org/10.1111/ele.12121

Carvell,C.,Bourke,A.F.G.,Osborne,J.L.,&Heard,M.S.(2015).Effectsofanagri‐environmentschemeonbumblebeereproductionatlocalandlandscapescales.Basic and Applied Ecology,16(6),519–530.https://doi.org/10.1016/j.baae.2015.05.006

Carvell,C., Isaac,N. J.B., Jitlal,M.,Peyton, J.,Powney,G.D.,Roy,D.B., …Roy, H. E. (2016). Design and testing of a national pollinatorand pollination monitoring framework. Final summary report tothe Department for Environment, Food and Rural Affairs (Defra),ScottishGovernmentandWelshGovernment:ProjectWC1101.

Comont, R. F., &Dickinson, H. (2017). BeeWalk Annual Report 2017.Retrieved from https://bumblebeeconservation.org/images/uploads/Beewalk/BBCT074_‐_BeeWalk_Annual_Report_2017_03.17_(1).pdf.

Creedy,T.J.,Norman,H.,Tang,C.Q.,Chin,K.Q.,Andujar,C.,Arribas,P.,…Vogler,A.P.(2019).Avalidatedworkflowforrapidtaxonomicassignmentandmonitoringofanationalfaunaofbees(Apiformes)usinghighthroughputDNAbarcoding.Molecular Ecology Resources. https://doi.org/10.1111/1755‐0998.13056

Dennis,R.L.H.,Shreeve,T.G., Isaac,N.J.B.,Roy,D.B.,Hardy,P.B.,Fox,R.,&Asher,J.(2006).Theeffectsofvisualapparencyonbiasinbutterfly recording andmonitoring.Biological Conservation,128(4),486–492.https://doi.org/10.1016/j.biocon.2005.10.015

Dicks, L.V., Viana, B., Bommarco, R., Brosi, B., Arizmendi,M.D.C.,Cunningham, S. A., … Potts, S. G. (2016). Ten policies for polli-nators: What governments can do to safeguard pollination ser-vices. Science, 354(6315), 14–15. https://doi.org/10.1126/science.aai9226

Dornhaus,A.,&Chittka, L. (2001). Foodalert inbumblebees (Bombus terrestris): Possible mechanisms and evolutionary implications.Behavioral Ecology and Sociobiology, 50(6), 570–576. https://doi.org/10.1007/s002650100395

Garratt,M. P. D., & Potts, S. G. (2011). Data from:Monitoring insectpollinators and flower visitation: The effectiveness and feasibilityof different survey methods. Dryad Digital Repository, https://doi.org/10.5061/dryad.31f7ph7

Gathmann, A., & Tscharntke, T. (2012). Foraging ranges of soli-tary bees. Journal of Animal Ecology, 71(5), 757–764. https://doi.org/10.1046/j.1365‐2656.2002.00641.x

Gezon, Z. J.,Wyman, E. S., Ascher, J. S., Inouye,D.W.,& Irwin, R. E.(2015). The effect of repeated, lethal sampling onwild bee abun-dance and diversity.Methods in Ecology and Evolution, 6(9), 1044–1054.https://doi.org/10.1111/2041‐210X.12375

Gibbs,J.,Joshi,N.K.,Wilson,J.K.,Rothwell,N.L.,Powers,K.,Haas,M.,…Isaacs,R.(2017).Doespassivesamplingaccuratelyreflectthebee(apoidea:Anthophila)communitiespollinatingappleandsourcherryorchards? Environmental Entomology, 46(3), 579–588. https://doi.org/10.1093/ee/nvx069

Hsieh,T.C.,Ma,K.H.,&Chao,A.(2019).inext:Interpolationandextrap-olationforspeciesdiversity.

Isaac,N.J.B.,&Pocock,M.J.O.(2015).Biasandinformationinbiologi-calrecords.Biological Journal of the Linnean Society,115(3),522–531.https://doi.org/10.1111/bij.12532

Kleijn,D.,Linders,T.E.W.,Stip,A.,Biesmeijer, J.C.,Wäckers,F.L.,&Bukovinszky, T. (2018). Scaling up effects of measures mitigatingpollinator lossfromlocal‐to landscape‐levelpopulationresponses.Methods in Ecology and Evolution, 9(7), 1727–1738. https://doi.org/10.1111/2041‐210X.13017

Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L. G., Henry, M.,Isaacs,R.,…Potts,S.G.(2015).Deliveryofcroppollinationservicesisan insufficientargument forwildpollinatorconservation.Nature Communications, 6(May), 7414. https://doi.org/10.1038/ncomms8414

Kremen,C.,Ullman,K.S.,&Thorp,R.W.(2011).Evaluatingthequalityofcitizen‐scientistdataonpollinatorcommunities.Conservation Biology,25(3),607–617.https://doi.org/10.1111/j.1523‐1739.2011.01657.x

LeFéon,V.,Henry,M.,Guilbaud,L.,Coiffait‐Gombault,C.,Dufrêne,E.,Kolodziejczyk,E.,…Vaissière,B.E. (2016).Anexpert‐assistedcitizen science program involving agricultural high schools pro-vides national patterns on bee species assemblages. Journal of Insect Conservation, 20(5), 905–918. https://doi.org/10.1007/s10841‐016‐9927‐1

LeBuhn,G.,Droege,S.,Connor,E.,Gemmill‐Herren,B.,&Azzu,N.(2016).Protocoltodetectandmonitorpollinatorcommunities.Guidanceforpractitioners.

Lebuhn,G.,Droege,S.,Connor,E.F.,Gemmill‐Herren,B.,Potts,S.G.,Minckley,R.L.,…Parker,F. (2013).Detecting insectpollinatorde-clinesonregionalandglobalscales.Conservation Biology,27(1),113–120.https://doi.org/10.1111/j.1523‐1739.2012.01962.x

Lenth,R.V.(2016).Least‐squaresmeans:Therpackagelsmeans.Journal of Statistical Software,69(1),1–33.

Lüdecke,D. (2017).Datavisualization for statistics in social science.r packageversion2.3.1.Retrievedfromhttps://CRAN.R‐project.org/package=sjPlot

Page 12: Monitoring insect pollinators and flower visitation: The … · 2021. 5. 7. · coverage and implementation. Direct observations (transects and ... (arable,horti-cultureor improvedgrasslandcollectively).In

2140  |    Methods in Ecology and Evolu on O'CONNOR et al.

O'Connor,R. S., Jones,C.M.,Carvell,C.,Peyton, J.,Vanbergen,A. J.,Andrews, C., & Kunin,W. E. (2016). Data from:Monitoring insectpollinators and flower visitation: The effectiveness and feasibilityof different survey methods. Dryad Digital Repository, https://doi.org/10.5285/69a0d888‐9f6b‐4e67‐8d29‐402af1412d8e

Oksanen,J.,BlanchetGuillaume,F.,Kindt,R.,Legendre,P.,Minchin,P.R.,O'Hara,R.B.,…Wagner,H. (2015).vegan:Communityecologypackage.rpackageversion2.3‐1.Retrievedfromhttp://cran.r‐project.org/package=vegan

Osborne, A. J. L., Clark, S. J.,Morris, R. J.,Williams, I.H., Riley, J. R.,Smith, A. D., … Edwards, A. S. (1999). A landscape‐scale of bum-ble bee foraging study range and constancy using harmonicradar. Journal of Applied Ecology, 36(4), 519–533. https://doi.org/10.1046/j.1365‐2664.1999.00428.x

Pescott, O. L.,Walker, K. J., Pocock,M. J. O., Jitlal,M., Outhwaite,C.L.,Cheffings,C.M.,…Roy,D.B.(2015).Ecologicalmonitoringwith citizen science: Thedesign and implementationof schemesfor recording plants in Britain and Ireland. Biological Journal of the Linnean Society, 115(3), 505–521. https://doi.org/10.1111/bij.12581

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core DevelopmentTeam.(2015).Linearandnonlinearmixedeffectsmodels.rpackageversion3.1‐122.

Potts,S.G.,Imperatriz‐Fonseca,V.,Ngo,H.T.,Aizen,M.A.,Biesmeijer,J.C.,Breeze,T.D.,…Vanbergen,A.J.(2016).Safeguardingpollinatorsandtheirvaluestohumanwell‐being.Nature,540(7632),220–229.https://doi.org/10.1038/nature20588

Powney, G. D., Carvell, C., Edwards, M., Morris, R. K. A., Roy, H. E.,Woodcock,B.A.,&Isaac,N.J.B.(2019).Widespreadlossesofpolli-natinginsectsinBritain.Nature Communications,10(1),1018.https://doi.org/10.1038/s41467‐019‐08974‐9

RCoreTeam.(2016).R: A language and environment for statistical comput-ing.Vienna,Austria:RFoundationforStatisticalComputing.

Rhoades,P.,Griswold,T.,Waits,L.,Bosque‐Pérez,N.A.,Kennedy,C.M.,&Eigenbrode,S.D.(2017).Samplingtechniqueaffectsdetectionofhabitat factors influencingwild bee communities. Journal of Insect Conservation,https://doi.org/10.1007/s10841‐017‐0013‐0

Roulston, T., Smith, S. A., & Brewster, A. L. (2007). A compari-son of pan trap and intensive net sampling techniques for doc-umentung a bee (Hymenoptera: Apiformes) fauna. Journal of the Kansas Entomological Society, 80(2), 179–181. https://doi.org/10.2317/0022‐8567(2007)80[179:acopta]2.0.co;2

Roy, H. E., Baxter, E., Saunders, A., & Pocock, M. J. O. (2016). Focalplant observations as a standardised method for pollinator

monitoring:Opportunitiesandlimitationsformassparticipationcit-izen science. PLoS ONE, 11(5), 1–14. https://doi.org/10.1371/journal.pone.0155571

Skaug,H.,Fournier,D.,Bolker,B.,Magnusson,A.,&Nielsen,A.(2015).glmmADMB: A generalized linear mixed models using ‘AD ModelBuilder’_.rpackageversion0.8.3.2.

Sutherland,W.J.,Roy,D.B.,&Amano,T.(2015).Anagendaforthefu-tureofbiologicalrecordingforecologicalmonitoringandcitizensci-ence. Biological Journal of the Linnean Society,115(3),779–784.https://doi.org/10.1111/bij.12576

Vanbergen, A. J., Baude, M., Biesmeijer, J. C., Britton, N. F., Brown,M. J. F.,Brown,M.,…Wright,G.A. (2013). Threats to anecosys-tem service: Pressures on pollinators. Frontiers in Ecology and the Environment,11(5),251–259.https://doi.org/10.1890/120126

Westphal, C., Bommarco, R., Carre, G., Lamborn, E., Morison, N.,Petanidou,T.,…Steffan‐Dewenter, I. (2008).Measuringbeediver-sity in different habitats European habitats and BiogeographicalRegions. Ecological Monographs, 78(4), 653–671. https://doi.org/10.1890/07‐1292.1

Wood,T.J.,Holland,J.M.,&Goulson,D.(2015).Acomparisonoftech-niques for assessing farmland bumblebee populations. Oecologia,177(4),1093–1102.https://doi.org/10.1007/s00442‐015‐3255‐0

Zuur,A.F.,Hilbe,J.M.,&Ieno,E.N.(2013).Abeginner'sguidetoGLMandGLMMwithr:AfrequentistandBayesianperspectiveforecolo-gists.HighlandStatistics.

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:O'ConnorRS,KuninWE,GarrattMPD,etal.Monitoringinsectpollinatorsandflowervisitation:Theeffectivenessandfeasibilityofdifferentsurveymethods.Methods Ecol Evol. 2019;10:2129–2140. https://doi.org/10.1111/2041‐210X.13292