57
12.458 Lecture 8 Molecular Fossils from Land Plants Readings and talks for Monday Nov 8 th : Murray et al., OG 1998 Speelman OG 2009 Topics for presentaJons Monday Nov 8: Biomarkers from ferns? Azolla or Anabaena Biomarkers for lichens mosses primiJve plants like ginko structures and origins of fernenes lupanes and taraxastanes, Perylene isotopic composiJon of leaf wax isotopic composiJon of plant terpenes

Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

12.458  Lecture  8    

Molecular  Fossils  from  Land  Plants    Readings  and  talks  for  Monday  Nov  8th:  

 Murray  et  al.,  OG  1998  Speelman  OG  2009    Topics  for  presentaJons  Monday  Nov  8:  Biomarkers  from  ferns?  Azolla  or  Anabaena  Biomarkers  for  lichens  mosses    primiJve  plants  like  ginko  structures  and  origins  of  fernenes  lupanes  and  taraxastanes,  Perylene  isotopic  composiJon  of  leaf  wax  isotopic  composiJon  of  plant  terpenes          

Page 2: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

VIRIDAEPLANTAE  

hRp://tolweb.org/tree?group=Green_plants  

Richard  M.  McCourt,    R.  L.  Chapman,    M.  A.  Buchheim  and    Brent  D.  Mishler  

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 3: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

VIRIDAEPLANTAE  

hRp://tolweb.org/tree?group=Green_plants  

•  Green  plants  as  defined  here  includes  a  broad  assemblage  of  photosyntheJc  organisms  that  all  contain  chlorophylls  a  and  b,  store  their  photosyntheJc  products  as  starch  inside  the  double-­‐membrane-­‐bounded  chloroplasts  in  which  it  is  produced,  and  have  cell  walls  made  of  cellulose  (Raven  et  al.,  1992).  In  this  group  are  several  thousand  species  of  what  are  classically  considered  green  algae,  plus  several  hundred  thousand  land  plants.    

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 4: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

VIRIDAEPLANTAE-­‐  CHLOROPHYCEAE  

hRp://tolweb.org/tree?group=Green_plants  

Chlorellales,  especially  Chlorella  are  an  important  group  because  of  their  role  as  endosymbionts  inside  the  Jssues  of  sponges,  ciliates  and  formams.  Green  algae  produce  bioplymers,  algeanans,  which  are  recalcitrant,  non-­‐hydrolysable  biopolymers  and  feedstock  for  crude  oil.    

http://tolweb.org/tree?group=Green_plants

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 5: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Figure   1.   Ternary   diagram  s h o w i n g   t h e   r e l a J v e  percentages   of   C27,   C28,   and  C29   sterols   among   modern  members   of   the   Plantae,  including   green   algae,   red  algae,  and  glaucocystophytes.  Early   divergent   species   are  shown   in   black.   Individual  t a x a   a n d   a s s o c i a t e d  references   are   given   in   Table  S1  in  SupporJng  InformaJon.  

Courtesy  Elsevier,  Inc.,  hRp://www.sciencedirect.com.  Used  with  permission.  

Page 6: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Figure  2.  The  mean  fracJonal  contents  of  C27–29  sterols  across  green  algal  classes,  with  populaJon  standard  deviaJons.  

Courtesy  Elsevier,  Inc.,  hRp://www.sciencedirect.com.  Used  with  permission.  

Page 7: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Figure  3.  The  mean   fracJonal  contents   of   C27–29   sterols  across   marine   species   of   red  and   g reen   a l gae ,   w i th  p o p u l a J o n   s t a n d a r d  deviaJons.   For   comparison,  the  mean  values  from  analysis  of   total   (marine   plus   non-­‐marine)   data   for   each   group  also  are  displayed.  

Courtesy  Elsevier,  Inc.,  hRp://www.sciencedirect.com.  Used  with  permission.  

Page 8: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Figure   4.   C28/C29   sterol   raJos   for   all   green  algal   species   in   the   dataset   (black).   For  comparison,   all   early   divergent   taxa   are  shown   in  a  separate  area  on  the  right  side  and   are   color-­‐coded   according   to   phylum:  green   =   green   algae,   red   =   red   algae,  b l u e   =   g l a u c o c y s t o p h y t e s .   O n e  glaucocystophyte  highlighted  in  Fig.  1  does  not   appear   here,   because   the   raJo   is  undefined;   and   two   green   algal   species  have  C28/C29   raJos  =  0.  The   red  point  next  to   the   arrow   is   off-­‐scale   (C28/C29  raJo  =  7.2).  The  green  arrow  in  the  column  of   prasinophytes   points   to   Halosphaera,  the   only   prasinophyte   with   a   microfossil  record.  The  gray  box  indicates  the  range  of  C28/C29   sterane   raJos   found   in   bitumens  and   petroleums   from   Ediacaran   and  Paleozoic  rocks.  

Courtesy  Elsevier,  Inc.,  hRp://www.sciencedirect.com.  Used  with  permission.  

Page 9: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

C28/C29  Sterane  RaJos:  The  Rise  of  Modern  Plankton  

Page 10: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Paul  Kenrick  and  Peter  Crane  hHp://tolweb.org/tree?group=Embryophytes&contgroup=Green_plants  

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 11: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Oldest  evident  land  plant  =  Late  Ordovician  spore  

Oldest N. Hemisphere vascular plant = Late Silurian Cooksonia

These  images  have  been  removed  due  to  copyright  restricJons.  

Page 12: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Earliest Land Plants - Lycopsids

Baragwanathia  longifolia  Upper  Silurian  and  Lower  Devonian  of  Australia  To  the  led  a  fossil,  to  the  right  a  reconstrucJon  of  a  part  of  the  plant.The  sporangia  are  in  the  axils  of  the  leaves.  Drawing  J.  Hulst  

hRp://www.xs4all.nl/~steurh/eng/ebaragw.html  

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 13: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Ferns  Kathleen  M.  Pryer  and  Alan  R.  Smith  

hRp://tolweb.org/tree?group=Filicopsida&contgroup=Embryophytes#JtlefigcapJon  

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 14: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

FERNS date back to at least the Middle Devonian. They include four living groups: Marattiales, Ophioglossales, Psilotales and leptosporangiate ferns. Some early groups that are now extinct, including the Stauropteridales and Zygopteridales. The chart below shows the stratigraphic ranges over which each group is known to have existed. The green taxa on the right side of the chart are groups of ferns; the blue taxa to the left are Sphenophytes or Sphenopsids; and the purple Cladoxylopsida in the center are a closely related group. Of all living ferns, only the Psilotales has no fossil record

FERNS  

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 15: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Biomarkers  for  Azolla  or  Anabaena????  

Courtesy  Elsevier,  Inc.,  hRp://www.sciencedirect.com.  Used  with  permission.  

Page 16: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Conifers  

Coniferales

Araucariaceae Cretaceous to Recent 36 extant species Southern Hemisphere

Cephalotaxaceae Jurassic to Recent 5 extant species Northern Hemisphere

Cupressaceae Triassic to Recent 157 extant species both Hemispheres

Pinaceae Cretaceous to Recent 250 extant species Northern Hemisphere

Podocarpaceae Triassic to Recent 131 extant species Southern Hemisphere

Cheirolepidaceae Triassic to Cretaceous extinct Global

Palissyaceae Triassic to Jurassic extinct Global

Utrechtiaceae Carboniferous to Permian extinct Global

Taxales

Taxaceae Jurassic to Recent 9 extant species Northern Hemisphere

Page 17: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

hRp://www.ucmp.berkeley.edu/plants/plantaefr.gif  

Time  Chart  for    Land  Plants  

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 18: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Diterpanes from Conifers? Abundances in rocks and oils track evolution of vascular plants and possibly green algae (David Zinniker PhD Thesis, Stanford, 2003/4)

PIMARANE  LABDANE  

ISOPIMARANE   FICHTELITE  

Page 19: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Diterpanes

PHYLLOCLADANE  ent-­‐BEYERANE  

KAURANE  

CH3

H

CH3

H

ent-­‐16α(H)  

ent-­‐16β(H)  

Page 20: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Bicyclic Sesquiterpanes: possible bacteriohopane degradation products

EUDESMANE  DRIMANE  

Page 21: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Diagnostic Plant Triterpanes

HO  

oleanane    

bicadinane    

polycadinene    resin  

angiosperms/dipterocarps?  

 angiosperm  β-­‐amyrin  

Page 22: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

This  image  has  been  removed  due  to  copyright  restricJons.  

The Molecular Fossil Record of Oleanane and Its Relation to Angiosperms

J. Michael Moldowan, Jeremy Dahl, Bradley J. Huizinga, Frederick J. Fago, Leo J. Hickey, Torren M. Peakman, David Winship Taylor

Oleanane has been reported in Upper Cretaceous and Tertiary source rocks and theirrelated oils and has been suggested as a marker for flowering plants. Correspondence of oleanane concentrations relative to the ubiquitous microbial marker 17 -hopane withangiosperm diversification (Neocomian to Miocene) suggests that oleanane concentra-tions in migrated petroleum can be used to identify the maximum age of unknown orunavailable source rock. Rare occurrences of pre-Cretaceous oleanane suggest either

that a separate lineage leads to the angiosperms well before the Early Cretaceous or that other plant groups have the rarely expressed ability to synthesize oleanane precursors.

α

SCIENCE VOL. 265 5 AUGUST 1994••

Page 23: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

AGSOstd_vial2B  1  mg  +  50  ng  D4,  1/85  ul  

55.00   56.00   57.00   58.00   59.00   60.00   61.00   62.00   63.00   64.00   65.00   66.00   67.00   68.00   69.00   70.00  Time  0  

100  %  0  

100  %  0  

100  %  0  

100  %  0  

100  %  

03100229   2:  MRM  24  Channels  EI+    426.421  >  191.179  

6.03e7  65.12  

63.92  63.04   64.09  65.38  

65.84  66.07  66.87  03100229   2:  MRM  24  Channels  EI+    

412.406  >  191.179  1.34e8  63.04  

62.81  60.84  60.13   61.72   63.20  63.82   65.12  64.77  

03100229   2:  MRM  24  Channels  EI+    398.39  >  191.179  

1.53e8  61.24  

55.63   59.79   61.36  63.04  62.23  

03100229   2:  MRM  24  Channels  EI+    384.374  >  191.179  

2.05e7  61.24  58.92  

56.54  55.91   58.15  57.61   58.61  59.12   60.23  59.77   60.86  61.36  62.23   63.04  03100229   2:  MRM  24  Channels  EI+    

370.359  >  191.179  6.20e7  57.38  

55.63  56.13  56.54  

58.25  58.11  

58.53  59.20  

bicadinane  isomer  

bicadinane  isomers  best  revealed  in    412à369  and  426à  381  GC-­‐MS-­‐MS  

oleananes  18α  +  18β

Page 24: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Angiosperm  Origins:  The  two  compeJng  hypotheses  for  angiosperm  origins  paint  very  different  pictures  about  the  biology  of  the  earliest  flowering  plants.      The  Paleoherb  Hypothesis  suggests  that  the  basal  lineages  were  herbs  with  rapid  lifecycles.    Magnoliid  Hypothesis  suggests  that  the  basal  lineages  were  small  trees  with  slower  lifecycles.  (  Dicots=tricolpate  dicots;  Magnol=magnoliids;  Mono=monocots;  Palherbs=paleoherbs  )    

Page 25: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

http://www.ucmp.berkeley.edu/anthophyta/anthophytafr.html#origin

•  The  Woody  Magnoliid  Hypothesis  -­‐-­‐  CladisJc  analyses  by  Doyle  and  Donoghue  favor  an  early  angiosperm  with  morphology  similar  to  living  members  of  the  Magnoliales  and  Laurales.    

•  These  groups  are  small  to  medium-­‐sized  trees  with  long  broad  leaves  and  large  flowers  with  indeterminate  numbers  perianth  parts.  The  carpels  are  imperfectly  fused,  and  make  a  physical  intermediate  between  a  folded  leaf  and  fused  pisJl.  This  hypothesis  is  also  favored  by  molecular  studies,  and  so  currently  is  favored  by  systemaJc  botanists.    

•  It  suggests  that  the  earliest  angiosperms  were  understory  trees  and  shrubs,  and  that  the  flower  was  NOT  the  key  innovaeon  for  the  rapid  diversificaeon  of  angiosperms.  In  fact  woody  magnoliids  are  not  parecularly  diverse,  even  today.    

•  The  Paleoherb  Hypothesis  -­‐-­‐  The  alternaJve  view  is  an  herbaceous  origin  for  the  angiosperms.  This  view  has  been  championed  in  recent  years  by  Taylor  and  Hickey,  paleobotanists  whose  cladisJc  analysis  of  angiosperms  suggests  a  very  different  scenario  from  that  previously  described.  In  their  analysis,  the  basal  angiosperms  are  tropical  paleoherbs,  a  group  of  flowering  plants  with  uncomplicated  flowers  and  a  mix  of  monocot  and  dicot  features.  

•  The  implicaeon  here  is  that  the  key  innovaeons  of  flowers  and  a  rapid  life  cycle  were  present  in  the  earliest  angiosperms.  It  has  been  suggested  that  changes  in  climate  or  geography  provided  opportuniees  for  these  early  angiosperms  to  diversify.    

Page 26: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Accepted  species  tree  for  seven  plant  model  species.  Names  of  clades  are  indicated  at  internal  nodes.  See  text  for  discussion  of  strength  of  evidence  for  this  phylogeny.  Sanderson  and  McMahon  BMC  Evolu7onary  Biology  2007  7(Suppl  1):S3      doi:10.1186/1471-­‐2148-­‐7-­‐S1-­‐S3    

This  image  has  been  removed  due  to  copyright  restricJons.  

Page 27: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Key  results:  Based  on  the  analysis  for  which  we  set  fossils  to  fit  lognormal  priors,  we  obtained  an  esJmated  age  of  the  angiosperms  of  167–199  Ma  (Early  Jurassic)  and  the  following  age  esJmates  for  major  angiosperm  clades:  Mesangiospermae  (139–156  Ma);  Gunneridae  (109–139  Ma);  Rosidae  (108–121  Ma);  Asteridae  (101–119  Ma).    •  Conclusions:  With  the  excepJon  of  the  age  of  the  angiosperms  themselves,  these  age  esJmates  are  generally  younger  than  other  recent  molecular  esJmates  and  very  close  to  dates  inferred  from  the  fossil  record.  

AJB  Advance  Access  Published  online  ahead  of  print  July  19,  2010;  doi:10.3732/ajb.0900346  American  Journal  of  Botany    Research  Arecle  The  age  and  diversificaeon  of  the  angiosperms  re-­‐revisited1  Charles  D.  Bell2,5,  Douglas  E.  Soles3  and  Pamela  S.  Soles4    

Page 28: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Courtesy  Elsevier,  Inc.,  hRp://www.sciencedirect.com.  Used  with  permission.  

Page 29: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Anderson’s Resin Classification Scheme

C  l  a  s  s  I  

p  o  l  y  m  e  r  i  c      l  a  b  d  a  n  o  i  d      d  i  t  e  r  p  e  n  e  s  ;  +      o  c  c  l  u  d  e  d      s  e  s  q  u  i  -­‐  ,      d  i      a  n  d      t  r  i  t  e  r  p  e  n  o  i  d  s  A  g  a  t  h  i  s  /  A  r  a  u  c  a  r  i  a      -­‐      B  a  l  t  i  c      a  m  b  e  r  H  y  m  e  n  a  e  a      -­‐      D  o  m  i  n  i  c  a  n  ,      M  e  x  i  c  a  n      a  m  b  e  r  

I  I   p  o  l  y  m  e  r  i  c      s  e  s  q  u  i  t  e  r  p  e  n  e  s  ;  p  o  l  y  c  a  d  i  n  e  n  e  +      o  c  c  l  u  d  e  d      s  e  s  q  u  i  -­‐      a  n  d      t  r  i  t  e  r  p  e  n  o  i  d  s  D  a  m  m  a  r  /  D  i  p  t  e  r  o  c  a  r  p  a  c  e  a  e      -­‐      S  E      A  s  i  a  

I  I  I   p  o  l  y  s  t  y  r  e  n  e  I  V   n  o  n  -­‐  p  o  l  y  m  e  r  i  c      c  e  d  r  a  n  e      s  e  s  q  u  i  t  e  r  p  e  n  o  i  d  s  V   n  o  n  -­‐  p  o  l  y  m  e  r  i  c      a  b  i  e  t  a  n  e  /  p  i  m  a  r  a  n  e      d  i  t  e  r  p  s  

Page 30: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Semantics

•  resins - solid, discrete organic materials derived from higher plant resins - modern samples

•  amber = resinite - fossil samples

•  balsam, elemi, incense, dammar, sandaracs, mastics and copals-common

resins from specific taxa

Page 31: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Resin Characterisation Tools •  1960’s IR, C, H, O, plus volatiles & extracts

•  recently- bulk 13C, D and 18O data

GC-MS of extractables pyrolysis-GC-MS of polymers

•  this study- ditto plus Compound Specific Isotope Analysis plus data on other

recalcitrant products leaf wax, leaf biopolymer

Page 32: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Australian Coastal Resinites

R  e  s  i  n   P  e  d  i  g  r  e  e   δ 1  3  C  B  a  l  e  s      B  a  y  ,      K  a  n  g  a  r  o  o      I  s   D  E          A  G  S  O      #      6  1  8  3   -­‐  2  7  .  3  N  o      T  w  o      R  o  c  k  s      S  A   D  E          A  G  S  O      #      6  1  8  4   -­‐  2  8  .  0  T  h  r  e  e      M  i  l  e      R  o  c  k  s      S  A   D  E          A  G  S  O      #      6  1  8  7   n  d  L  a  k  e      B  o  n  n  e  y      S  A   D  E          A  G  S  O      #      6  1  8  6   n  d  B  r  u  n  e  i      r  e  s  i  n  i  t  e   B  e  l  a  i  t      F  m          #      6  1  8  2   -­‐  2  6  .  2  G  i  p  p  s  l  a  n  d      r  e  s  i  n  i  t  e   Y  a  l  l  ou  n  r            #            1982     -­‐  2  2  .  3  K  a  u  r  i      r  e  s  i  n   S  A      m  u  s  e  u  m  #  6  2  8  1   -­‐  2  4  .  9  R  e  c  e  n  t      d  a  m  m  a  r   F  l  u  k  a      l  a  b      g  r  a  d  e   -­‐  2  8  .  0  

Page 33: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

COOH  

CH  2  

+  

“leaf  resins”    e.g.  

phyllocladenes,  pimaradienes  

+  “resin  acids”,  

 e.g.  abieJc  acid  

labdatriene  polymer  

Thermal  dissociaJon  

ReducJon,  defuncJonalisaJon,  intra-­‐molecular  cyclisaJon  

H  

CH   3  

labdanes  

isopimaranes  

phyllocladanes  

fichtelites,  simonellite  

Class  I  “Conifer”  Resins  and  Associated  Diterpenoids  

+  

Page 34: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Thermal  dissociaJon  reducJon,  intra-­‐molecular  

cyclisaJon  

polycadinene  

cadinanes   bicadinanes  

trans-­‐trans-­‐trans  T,  T1,  R  

cis-­‐cis-­‐trans  W  

Class  II  “Angiosperm”  Resins  

Page 35: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Kauri  Resinite  (Class  I)  -­‐  Pyrolysate  

 -­‐24.6  ‰    -­‐24.8‰  

bicyclic  hydrocarbons,  various  isomers  &    

homologues  

R  

CH  2  

labdatriene    polymer  

bulk  resinite    -­‐  24.9  ‰  

Page 36: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Bulk  Carbon  Isotope  ComposiJon  of    Modern  &  Fossil  Resins  

Mean  +/-­‐  1  SD  

-­‐34.0  

-­‐30.0  

-­‐26.0  

-­‐22.0  

-­‐18.0  

 -­‐  22.8  ‰    

-­‐  25.5  ‰  -­‐  27.3  ‰

 -­‐  31.0  ‰

Class  I   Class  II  

n  =  13   n  =  17   n  =  18  n  =  31  

Fossil   Recent   Fossil   Recent  

Page 37: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

min  10   20   30   40   50   60   70  

Drybanolops  lanceolata  #9105  resin  =  -­‐28.6  ‰  #9099  

13C  Heterogeneity  within    an  Angiosperm  

-­‐40.6  ‰  

-­‐40.6  ‰  

-­‐42.3  ‰  

leaves  vs  trunk  resin  

Page 38: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

min  10   20   30   40   50   60   70  

Shorea  leprosula  #9106  

resin  =  -­‐32.7  ‰  #9096  

13C  Heterogeneity  within  an  Angiosperm  

-­‐37.2  ‰  C32  

-­‐34.8  ‰  C31  

-­‐32.5‰  C29  

-­‐32.3  ‰  C33   -­‐38.4  ‰  

C33  

-­‐34.9  ‰  C30  

leaves  vs  trunk  resin  

Page 39: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

min  10   20   30   40   50   60   70  

Agathis  borneensis  #9107  resin  =  -­‐26.3  ‰  #9097  

13C  Heterogeneity  within  a  Gymnosperm  

-­‐36.6‰  

-­‐35.7‰  

C29  

C31  

-­‐35.4  ‰  C33  

tetracyclic    diterpenoids  

 sesquiterpenoids  

-­‐32.3‰  

-­‐31.5‰  

-­‐33.6‰  -­‐31.3‰  

-­‐34.1‰  

-­‐30.4‰  

-­‐33.3‰  -­‐34.3‰  

leaves  vs  trunk  resin  

Page 40: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

min  10   20   30   40   50   60   70  

13C  Heterogeneity  within  a  Gymnosperm  

Araucaria  heterophylla    #9128  

resin  =  -­‐27.2  ‰    #9127  

-­‐30.2  ‰  

-­‐30.3  ‰  

-­‐29.3  ‰  -­‐29.1  ‰  

-­‐31.1  ‰  

phyllocladane  H  

CH3  

leaves  vs  trunk  resin  

Page 41: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Gippsland  Basin-­‐Late  Cretaceous  Tuna  #2  Sediment-­‐Br/Cyc  

-­‐28.6  ‰  

 -­‐23.0  ‰  

-­‐28.7  ‰  -­‐25.9  ‰  

H   H  pristane  plants  

C30-­‐hopane  plants  +  bacteria  

C31-­‐hopane  heterotrophic  

bacteria  

-­‐  29.1  ‰  

phytane    plants  +?  

n-­‐alkanes  leaf  waxes  &  biopolymers  

     

-­‐  28.7  to  -­‐  31.2  ‰    Cn  

phyllocladane  conifer  resins  

H  

CH3  

Page 42: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Brunei  Resinite    (Class  II)  Pyrolysate  

 -­‐  25.7  ‰    -­‐  26.6  ‰  

 -­‐  26.4  ‰  

bulk  resinite  -­‐  26.2  ‰  

cct  

Rt  bicadinanes  cadinanes  

Page 43: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

NZ  Taranaki  Basin-­‐Maui  Oil-­‐Br/Cyc  

 -­‐25.9  ‰  

 -­‐28.7‰     isopimarane  conifers  ?  

pristane  plants  

n-­‐alkanes  leaf  waxes,  leaf  biopolymers  

       

Cn  

-­‐  25.5  to  -­‐  29.9  ‰  phytane      -­‐30.5‰  

Page 44: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

S.  Sumatra  Basin  Oil  -­‐  Br/Cyc  

 -­‐29.8  ‰  

 -­‐27.9  ‰    -­‐27.9  ‰  

cct   Rt  

bicadinanes  pristane  

n-­‐alkanes  leaf  waxes,  leaf  biopolymers  

 -­‐  26.6  to  -­‐  33.6  ‰  Cn  

phytane      -­‐33.9  ‰  

Page 45: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Gippsland  Basin-­‐Dolphin  oil-­‐B/C  

H  CH  3  

~    -­‐27.8  ‰  

pristane  plants  

phyllocladane  conifer  resins  

-­‐  24.3‰  

n-­‐alkanes  leaf  waxes,  leaf  biopolymers  

   

-­‐  26.7  to  -­‐  30.3  ‰  

Cn  phytane  plants  &  methanogens?  -­‐41.5  ‰  

Page 46: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Plants  opJmise  stomatal  conductance  to  maximise  access  to  CO2  &  minimise  loss  of  water  ∴ water  conservaJve  plants  have  

isotopically  ‘heavier’  carbon    

Conifer  Needle  leaf  morphology  Water  conservaJve  

Restricted  access  to  CO2  Discriminates  less  against  13C  δ13C  values  for  wood  typically:  

Angiosperm  Broad  leaf  morphology  Less  water  conservaJve  Less  restricted  access  to  CO2  Discriminates  more  against  13C  δ13C  values  for  wood  typically:      ~  -­‐  21  ‰ ~  -­‐  24  ‰  

Average  3  ‰  

 difference  in  δ13C  

*Data  from  Stuiver  and  Braziunas,    1987  for  40º  laJtude,  modern  plants  

Page 47: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Fluvio-­‐Deltaic  oils  -­‐  n-­‐alkane  isotope  profiles  

n-­‐alkane  

Average  for  all  Fluvio-­‐Deltaic  oils  

mostly  angiosperm  OM?  

Average  for  Gippsland  oils  

mostly  conifer    OM  ?  

7   11   15   19   23   27   31   33  

δ13C  

-­‐  34  

-­‐  32  

-­‐  30  

-­‐  28  

-­‐  26  

-­‐  24  

Page 48: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

oleanane/hopane  

δ13 C  Sats  

Gippsland  Basin,  Oz  

Taranaki  Basin,  NZ  

Oils  with  Conifer  vs  Angiosperm  OM  Carbon  Isotopes  vs  Oleanane/Hopane    

-­‐29.0  

-­‐28.0  

-­‐27.0  

-­‐26.0  

0.0   0.2   0.4   0.6   0.8  

Affected  by  migraJon  contaminaJon  

Maui  

McKee  

Page 49: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Hopane  Strong  Marine  

Influence  

Moderate  Marine  Influence  

LiRle  Marine  Influence  

Picenes  

Angiosperms  

GCMS  of  C30  Triterpanes  

Oleananes  

Oleanoid  Triterpanes  

Page 50: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Catagenesis  of  POLYCADINENE  from  Dipterocarps  and  other  higher  plants  produces  many  compounds  found  in  oils,  e.g.....  

Bicadinanes  

Diaroma7c  Secobicadinanes  

Diaroma7c  Secotricadinanes  

Cadalenes  

Compounds  “W”,  “T”,  “R”  

Page 51: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

-­‐  33  -­‐  31  -­‐  29  -­‐  27  -­‐  25  -­‐  23  -­‐  21  -­‐  19  -­‐  17  -­‐  15  

13   15   17   19   21   23   25   27   29   31  

Ol/Hop  =  0.29  

Ol/Hop  =  0.14  

n-­‐alkane  

Galoc,  P’Pines  

Kora,  NZ  

Land  plant  input  to  marine  oils:  biomarkers  vs.  isotopes  

δ13C ‰"

Page 52: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

n-alkane"

δ13C ‰"

Maui (FD 5)"

Average FD"

Average Gippsland"

McKee (FD 4)"

N-­‐alkane  isotope  profiles  for  fluvio-­‐deltaic  (FD)  oils  

-35"

-33"

-31"

-29"

-27"

-25"

7" 9" 11"13"15"17"19"21"23"25"27"29"31"33"

Conifer  

Angiosperm  

Mixed  

Page 53: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

oleanane/hopane  

δ13 C  Sats  

Gippsland  Basin,  Oz  

Taranaki  Basin,  NZ  

Oils  with  Conifer  vs  Angiosperm  OM  Carbon  Isotopes  vs  Oleanane/Hopane    

-­‐29.0  

-­‐28.0  

-­‐27.0  

-­‐26.0  

0.0   0.2   0.4   0.6   0.8  Data  from  AGSO/Geomark  Biodegraded  oils  excluded  

Affected  by  migraJon  contaminaJon  

Maui  

McKee  

Page 54: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Summary

•  Conifer resins have more 13C than angiosperm resins •  Ditto for derived biomarkers •  Significant variability within single plants and within resin types

Page 55: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

•  Gymnosperm-Angiosperm balance likely an important control on δ13C of terrestrial-C •  Secular change in terrestrial-C best studied using taxon-specific biomarkers; rigorous age control will be required • Resin studies useful for understanding oil composition & hydrocarbon origins

Summary

Page 56: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

Applying  carbon  isotope  raJos    (δ 13C)  in  deltaic  petroleum  systems  

• Carbon  isotope  raJos  of  whole  oils  or  oil  fracJons  (saturates,  aromaJcs  etc)  are  not  very  useful  for  deltaic  oils/sediments  because:    • The  δ13C  values  are  more  affected  by  secondary  processes  than  those  of  marine  or  lacustrine  samples      • There  is  sJll  an  inadequate  understanding  of  the  fundamental  factors  controlling  the  carbon  isotope  composiJon  of  land-­‐plant  derived  oils  

Page 57: Molecular Biogeochemistry, Lecture 8dspace.mit.edu/.../contents/lecture-notes/MIT12_158F10_lec8.pdf · derived from higher plant resins - modern samples • amber = resinite - fossil

MIT OpenCourseWarehttp://ocw.mit.edu

12.158 Molecular Biogeochemistry Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.