Microstrip Bandstop and Lowpass Filters (1)

Embed Size (px)

Citation preview

  • 7/28/2019 Microstrip Bandstop and Lowpass Filters (1)

    1/5

    Microstrip Bandstop and Lowpass Filters

    2013 CST AG - http://www.cst.com Page 1 of 5

    Microstrip Bandstop and Lowpass Filters

    A 3-section folded line bandstop filter was designed for a maximally flat response at a center frequency of 1.5 GHz and with a

    fractional bandwidth, D= 0.3. The filter was implemented in a microstrip platform with a permittivity of the substrate r=2.2 and a

    substrate height h=31 mil. The thickness of the metallization layer is 0.31 mil.

    The physical parameters of the folded line filter sections were optimized using the Agilent ADS circuit simulation software to

    provide the closest values of the lowpass filter prototype values g's and electrical lengths for a given set of filter specifications.

    By cascading the folded line filter sections, the overall filter response was obtained. The layout generated by Agilent

    momentum was exported to CST MWS.

    The artwork, substrate layers and metallization layers can be exported from Agilent momentum to CST MWS through a single

    menu.

    Figure 1: Bandstop filter model imported into CST MWS from Agilent momentum

    The overall footprint of the folded line bandstop filter only measured 1015.1 sq.mm. The smallest normalized width defined as

    the ratio of the smallest width in the design to the substrate height is conveniently larger (0.5). This facilitated practical

    realization of the folded line bandstop filter with less stringent dimensional tolerances.

  • 7/28/2019 Microstrip Bandstop and Lowpass Filters (1)

    2/5

    Microstrip Bandstop and Lowpass Filters

    2013 CST AG - http://www.cst.com Page 2 of 5

    Figure 2: Response comparison for the folded line bandstop filter

    Figure 2 shows a comparison of the circuit simulation results using Agilent ADS with the full wave EM simulation results using

    CST MWS and Agilent momentum. The time domain solver was used in the case of CST MWS. Further validation is provided

    with the help of the measured results. The S-parameters are shown between 0.5 to 2.5 GHz. The bandstop behavior can be

    clearly seen between 1.4 to 1.6 GHz.

    Figure 3: Surface current in the stopband at 1.5 GHz

  • 7/28/2019 Microstrip Bandstop and Lowpass Filters (1)

    3/5

    Microstrip Bandstop and Lowpass Filters

    2013 CST AG - http://www.cst.com Page 3 of 5

    Figure 4: Surface current in the lower passband at 1.0 GHz

    Similarly, a 3-section folded line lowpass filter was designed for a maximally flat response with a cut-off frequency of 1.5 GHz.

    The folded line lowpass filter was also implemented in a microstrip platform with a permittivity of the substrate r=2.2 and

    substrate height h=31 mil. The thickness of the metallization layer is 0.31 mil. The layout of the folded line lowpass filter is

    shown in figure 5. The overall footprint of the folded line lowpass filter only measured 534.8 sq.mm. The largest normalized

    width defined as the ratio of the largest width in the design to the substrate height is conveniently smaller (3.63). This facilitated

    practical realization of the folded line lowpass filter.

    Figure 5: 3D view of the folded line lowpass filter

    Figure 6 shows a comparison of the circuit simulation results for the folded line lowpass filter using Agilent ADS with the full

    wave EM simulation results using CST MWS and Agilent momentum. The time domain solver was used in the case of CST

    MWS. Further validation is provided with the help of the measured results. The S-parameters are shown between 0.5 to 2.5

    GHz.

  • 7/28/2019 Microstrip Bandstop and Lowpass Filters (1)

    4/5

    Microstrip Bandstop and Lowpass Filters

    2013 CST AG - http://www.cst.com Page 4 of 5

    Figure 6: Response comparison for the folded line lowpass filter

    Figure 7: Surface current in the passband at 1.0 GHz

  • 7/28/2019 Microstrip Bandstop and Lowpass Filters (1)

    5/5

    Microstrip Bandstop and Lowpass Filters

    2013 CST AG - http://www.cst.com Page 5 of 5

    Figure 8: Surface current in the stopband at 2.0 GHz

    References

    [1] H. Peddibhotla and R.K. Settaluri, Compact Folded-line Bandstop and Lowpass Filters, Micro. Optical Tech. Letters, vol. 42,

    issue 1, pp.44-46,May 2004.

    [2] H. Peddibhotla and R.K. Settaluri, Miniaturized High Performance Lowpass and Bandstop Filters for Wireless Applications,

    Proc. IMAPS Conf. on Ceramic Interconnect Tech., Apr. 2003.