16
metal-organic papers m790 Y.-X. Long et al. [Na 6 (NO 3 ) 2 (H 2 O) 13 ][Ni(C 14 H 18 N 2 O 8 )] 2 doi:10.1107/S1600536805009359 Acta Cryst. (2005). E61, m790–m792 Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Tridecaaquadinitratohexasodium(I) bis[(trans-cyclo- hexane-1,2-diyldinitrilotetraacetato)nickelate(II)] Yu-Xiang Long, a La-Sheng Long, a Rong-Bin Huang, a Lan-Sun Zheng a and Seik Weng Ng b * a State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People’s Republic of China, and b Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: [email protected] Key indicators Single-crystal X-ray study T = 295 K Mean (C–C) = 0.006 A ˚ R factor = 0.064 wR factor = 0.182 Data-to-parameter ratio = 15.8 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. # 2005 International Union of Crystallography Printed in Great Britain – all rights reserved In the title compound, [Na 6 (NO 3 ) 2 (H 2 O) 13 ][Ni(C 14 H 18 - N 2 O 8 )] 2 , the edta-like tetraanionic unit uses two N and four O atoms to chelate to the Ni atom so that the [Ni(C 14 H 18 N 2 O 8 )] 2 portion of the structure has the Ni atom in a cis–N 2 O 4 Ni octahedral geometry. The [Na 6 (NO 3 ) 2 - H 2 O) 13 ] 4+ portion exists as a chain consisting of edge-sharing NaO 6 octahedra; there are four independent Na atoms in the asymmetric unit. The vertices are derived from the O atoms of water molecules, the O atom of the nitrate group as well as the O atoms of the [Ni(C 14 H 18 N 2 O 8 )] 2 unit. The layer structure is consolidated by hydrogen bonds into a three-dimensional network. Two of the Na atoms and three of the water O atoms lie on special positions of site symmetry 2. Comment The trans-cyclohexane-1,2-diyldinitrilotetraacetate tetraanion behaves like the edta tetraanion in its chelating behavior; the anion uses its pair of N atoms and its four negatively charged carboxyl O atoms to chelate to first-row transition metal ions in, for example, potassium manganate(II) hydrate (Rettig & Trotter, 1973), tetraaquacopper(II) nickelate(II) trihydrate (Fuertes et al. , 1985, 1987), pentasodium aquavanadate(III) (Shimoi et al., 1991), oxonium cobaltate(III) tetrahydrate (Antsyshkina et al., 2000) and pentaaquasodium aqua- ferrate(III) (Seibig & van Eldik, 1998). A similar binding mode is observed in the present sodium nickelate(II), (I); the four negative charges of the two nick- elate ions are balanced by the charge of the cationic unit, which consists of six Na I atoms, two nitrate units and 13 water molecules. The [Na 6 (NO 3 ) 2 H 2 O) 13 ] 4+ cationic entity (Fig. 1) forms a chain motif of edge-sharing NaO 6 octahedra (Fig. 2). In the anionic [Ni(C 14 H 18 N 2 O 8 )] 2 entity, the chelated Ni Received 21 March 2005 Accepted 23 March 2005 Online 31 March 2005

metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

metal-organic papers

m790 Y.-X. Long et al. � [Na6(NO3)2(H2O)13][Ni(C14H18N2O8)]2 doi:10.1107/S1600536805009359 Acta Cryst. (2005). E61, m790–m792

Acta Crystallographica Section E

Structure ReportsOnline

ISSN 1600-5368

Tridecaaquadinitratohexasodium(I) bis[(trans-cyclo-hexane-1,2-diyldinitrilotetraacetato)nickelate(II)]

Yu-Xiang Long,a La-Sheng Long,a

Rong-Bin Huang,a Lan-Sun

Zhenga and Seik Weng Ngb*

aState Key Laboratory for Physical Chemistry of

Solid Surfaces, Xiamen University, Xiamen

361005, People’s Republic of China, andbDepartment of Chemistry, University of

Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study

T = 295 K

Mean �(C–C) = 0.006 A

R factor = 0.064

wR factor = 0.182

Data-to-parameter ratio = 15.8

For details of how these key indicators were

automatically derived from the article, see

http://journals.iucr.org/e.

# 2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

In the title compound, [Na6(NO3)2(H2O)13][Ni(C14H18-

N2O8)]2, the edta-like tetraanionic unit uses two N and four

O atoms to chelate to the Ni atom so that the

[Ni(C14H18N2O8)]2� portion of the structure has the Ni atom

in a cis–N2O4Ni octahedral geometry. The [Na6(NO3)2-

H2O)13]4+ portion exists as a chain consisting of edge-sharing

NaO6 octahedra; there are four independent Na atoms in the

asymmetric unit. The vertices are derived from the O atoms of

water molecules, the O atom of the nitrate group as well as the

O atoms of the [Ni(C14H18N2O8)]2� unit. The layer structure is

consolidated by hydrogen bonds into a three-dimensional

network. Two of the Na atoms and three of the water O atoms

lie on special positions of site symmetry 2.

Comment

The trans-cyclohexane-1,2-diyldinitrilotetraacetate tetraanion

behaves like the edta tetraanion in its chelating behavior; the

anion uses its pair of N atoms and its four negatively charged

carboxyl O atoms to chelate to first-row transition metal ions

in, for example, potassium manganate(II) hydrate (Rettig &

Trotter, 1973), tetraaquacopper(II) nickelate(II) trihydrate

(Fuertes et al., 1985, 1987), pentasodium aquavanadate(III)

(Shimoi et al., 1991), oxonium cobaltate(III) tetrahydrate

(Antsyshkina et al., 2000) and pentaaquasodium aqua-

ferrate(III) (Seibig & van Eldik, 1998).

A similar binding mode is observed in the present sodium

nickelate(II), (I); the four negative charges of the two nick-

elate ions are balanced by the charge of the cationic unit,

which consists of six NaI atoms, two nitrate units and 13 water

molecules. The [Na6(NO3)2H2O)13]4+ cationic entity (Fig. 1)

forms a chain motif of edge-sharing NaO6 octahedra (Fig. 2).

In the anionic [Ni(C14H18N2O8)]2� entity, the chelated Ni

Received 21 March 2005

Accepted 23 March 2005

Online 31 March 2005

Page 2: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

atom shows octahedral coordination (Fig. 3). The anionic and

cationic portions are linked into layers via dative Na—O

bonds, and the layers are linked into a three-dimensional

network structure by hydrogen bonds (Table 2).

Experimental

trans-Cyclohexane-1,2-diyldinitrilotetraacetic acid (0.036 g,

0.1 mmol) and nickel nitrate hexahydrate (0.058 g, 0.2 mmol) were

dissolved in a 1:1 water–ethanol mixture (20 ml). After the pH of the

solution was adjusted to 6 by the addition of several drops of 1 M

sodium hydroxide, the mixture was heated in Teflon-lined stainless

steel Parr bomb at 433 K for 50 h. The bomb was cooled to room

temperature at a rate of 5 K h�1. Light green crystals were isolated

from the solution in about 50% yield.

Crystal data

[Na6(NO3)2(H2O)13]-[Ni(C14H18N2O8)]2

Mr = 1298.20Monoclinic, C2=ca = 16.9182 (7) Ab = 29.388 (1) Ac = 10.6777 (4) A� = 107.174 (1)�

V = 5072.2 (4) A3

Z = 4

Dx = 1.700 Mg m�3

Mo K� radiationCell parameters from 8026

reflections� = 2.5–28.3�

� = 0.90 mm�1

T = 295 (2) KBlock, light green0.40 � 0.25 � 0.20 mm

Data collection

Bruker SMART APEX area-detector diffractometer

’ and ! scansAbsorption correction: multi-scan

SADABS (Bruker, 2002)Tmin = 0.641, Tmax = 0.840

14674 measured reflections

5669 independent reflections4889 reflections with I > 2�(I)Rint = 0.034�max = 27.5�

h = �21! 9k = �36! 38l = �13! 13

Refinement

Refinement on F 2

R[F 2 > 2�(F 2)] = 0.064wR(F 2) = 0.182S = 1.105669 reflections358 parametersH-atom parameters constrained

w = 1/[�2(Fo2) + (0.0885P)2

+ 18.9719P]where P = (Fo

2 + 2Fc2)/3

(�/�)max = 0.001��max = 1.60 e A�3

��min = �0.69 e A�3

Table 1Selected geometric parameters (A, �).

Ni1—O1 2.085 (3)Ni1—O3 2.034 (3)Ni1—O5 2.066 (3)Ni1—O7 2.040 (3)Ni1—N1 2.069 (3)Ni1—N2 2.062 (3)Na1—O2i 2.428 (4)Na1—O1w 2.468 (8)Na1—O2w 2.472 (4)Na2—O2i 2.608 (4)Na2—O2ii 2.363 (3)Na2—O2w 2.454 (4)Na2—O3w 2.398 (4)

Na2—O4w 2.319 (3)Na2—O5w 2.425 (3)Na3—O5 2.441 (3)Na3—O6iv 2.455 (3)Na3—O9 2.474 (5)Na3—O4w 2.384 (3)Na3—O5w 2.438 (3)Na3—O6w 2.373 (3)Na4—O6iv 2.600 (3)Na4—O6w 2.401 (3)Na4—O7w 2.22 (1)Na4—O8w 2.378 (7)

O1—Ni1—O3 94.5 (1)O1—Ni1—O5 114.2 (1)O1—Ni1—O7 86.2 (1)O1—Ni1—N1 80.3 (1)O1—Ni1—N2 162.2 (1)O3—Ni1—O7 178.4 (1)O3—Ni1—O5 89.4 (1)O3—Ni1—N1 83.5 (1)O3—Ni1—N2 95.5 (1)O5—Ni1—O7 89.0 (1)O5—Ni1—N1 164.4 (1)O5—Ni1—N2 80.7 (1)O7—Ni1—N1 98.1 (1)O7—Ni1—N2 84.2 (1)N1—Ni1—N2 86.2 (1)O2i—Na1—O2ii 80.6 (2)O2i—Na1—O1w 103.7 (2)O2i—Na1—O1wiii 171.6 (2)O2i—Na1—O2w 83.2 (1)O2i—Na1—O2wiii 78.1 (1)O1w—Na1—O1wiii 73.1 (5)O1w—Na1—O2w 109.4 (2)O1w—Na1—O2wiii 90.5 (3)O2w—Na1—O2wiii 155.4 (2)O2i—Na2—O2ii 78.2 (1)O2i—Na2—O2w 79.9 (1)O2i—Na2—O3w 78.2 (1)O2i—Na2—O4w 164.2 (1)O2i—Na2—O5w 87.7 (1)O2ii—Na2—O2w 79.7 (1)O2ii—Na2—O3w 83.2 (1)O2ii—Na2—O4w 111.5 (1)

O2ii—Na2—O5w 163.4 (1)O2w—Na2—O3w 154.5 (1)O2w—Na2—O4w 89.4 (1)O2w—Na2—O5w 106.4 (1)O3w—Na2—O4w 114.5 (1)O3w—Na2—O5w 85.6 (1)O4w—Na2—O5w 84.2 (1)O5—Na3—O6iv 93.6 (1)O5—Na3—O9 173.7 (2)O5—Na3—O4w 84.3 (1)O5—Na3—O5w 91.7 (1)O5—Na3—O6w 96.9 (1)O6iv—Na3—O9 88.8 (2)O6iv—Na3—O4w 97.5 (1)O6iv—Na3—O5w 174.7 (1)O6iv—Na3—O6w 85.5 (1)O9—Na3—O4w 89.6 (2)O9—Na3—O5w 85.9 (2)O9—Na3—O6w 89.1 (2)O4w—Na3—O5w 82.6 (1)O4w—Na3—O6w 176.8 (1)O5w—Na3—O6w 94.4 (1)O6iv—Na4—O6v 171.8 (2)O6iv—Na4—O6w 81.8 (1)O6iv—Na4—O6wvi 100.0 (1)O6iv—Na4—O7w 85.9 (1)O6iv—Na4—O8w 94.1 (1)O6w—Na4—O6wvi 155.4 (2)O6w—Na4—O7w 102.3 (1)O6w—Na4—O8w 77.7 (1)O7w—Na4—O8w 180

Symmetry codes: (i) 12� x; 1

2� y; 2� z; (ii) x� 12;

12� y; z� 1

2; (iii) �x; y; 32� z; (iv)

12� x; 1

2� y; 1� z; (v) 12þ x; 1

2� y; 12þ z; (vi) 1� x; y; 3

2� z.

Table 2Hydrogen-bonding geometry (A, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O1w—H1w1� � �O4vii 0.82 2.27 2.660 (9) 109O2w—H2w1� � �O11 0.82 2.00 2.797 (8) 165O2w—H2w2� � �O4iv 0.82 2.01 2.817 (6) 170O4w—H4w1� � �O6 0.82 2.08 2.800 (4) 147O4w—H4w2� � �O3iv 0.82 1.99 2.803 (4) 172O5w—H5w1� � �O7i 0.82 1.98 2.778 (4) 164O5w—H5w2� � �O8 0.82 2.27 3.053 (5) 159O6w—H6w1� � �O8i 0.82 2.01 2.789 (4) 159O6w—H6w2� � �O1 0.82 2.03 2.845 (4) 170O7w—H7w� � �O9vi 0.82 2.36 3.130 (7) 156O7w—H7w� � �O10vi 0.82 2.32 3.04 (1) 146O8w—H8w� � �O1 0.82 2.09 2.899 (4) 172

Symmetry codes: (i) 12� x; 1

2� y; 2� z; (iv) 12� x; 1

2� y; 1� z; (vi) 1� x; y; 32� z; (vii)

12� x; y� 1

2;32� z.

Carbon-bound H atoms were positioned geometrically (C—H =

0.95 A) and were allowed to ride on their parent C atoms, with the

metal-organic papers

Acta Cryst. (2005). E61, m790–m792 Y.-X. Long et al. � [Na6(NO3)2(H2O)13][Ni(C14H18N2O8)]2 m791

Figure 1ORTEPII plot (Johnson, 1976) plot of a portion of the water-coordinatedchain of Na atoms in (I). Atoms O2i, O2ii, O5, O6iv and O6v belong to[Ni(C14H18N2O8)]2� dianions. Displacement ellipsoids are drawn at the50% probability level and H atoms are not shown. Symmetry codes are asgiven in Table 1.

Page 3: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

displacement parameters set at 1.2 times Ueq of their parent atoms. A

somewhat longer C—H distance used as the default (0.97 A for the

methine and 0.96 A for the methylene distance) led to H� � �H inter-

actions of less than 2 A with the H atoms of the O1w water molecule.

Of the eight water molecules, H atom positions were similarly

generated for those connected to the Na atoms, except for the O1w

molecule. Molecules O7w and O8w each have only one independent

H atom; the OH group was rotated to fit the electron density; O—H =

0.82 A and Uiso(H) = 1.2Ueq(O). Those on the terminal O1w molecule

could not be generated, and were instead placed in chemically

sensible positions so that the atoms were at least 2 A from other H

atoms. The final difference Fourier map had a large peak at 2.1 A

from Na1 and 1.5 A from O1w on a special position; as the O1w atom

was not disordered, attempts to refine this peak as a disorder

component of the O1w atom did not lead to any meaningful outcome.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT

(Bruker, 2002); data reduction: SAINT; program(s) used to solve

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for

publication: SHELXL97.

We thank the National Natural Science Foundation of

China (grant Nos. 20471050, 20271044, 20273052 and

20021002) and the University of Malaya for supporting this

study.

References

Antsyshkina, A. S., Sadikov, G. G., Poznyak, A. L. & Sergienko, V. S. (2000).Zh. Neorg. Khim. 45, 65–70.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison,Wisconsin, USA.

Fuertes, A., Miravitlles, C., Escriva, E., Coronado, E. & Beltran, D. (1987). J.Chem. Soc. Dalton Trans. pp. 1847–1851.

Fuertes, A., Miravitlles, C., Escriva, E., Martinez-Tamayo, E. & Beltran, D.(1985). Transition Met. Chem. 10, 432–434.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge NationalLaboratory, Tennessee, USA.

Rettig, S. J. & Trotter, J. (1973). Can. J. Chem. 51, 1303–1312.Seibig, S. & van Eldik, R. (1998). Inorg. Chim. Acta, 279, 37–43.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Gottingen, Germany.Shimoi, M., Miyamoto, S. & Ogino, H. (1991). Bull. Chem. Soc. Jpn, 64, 249–

250.

metal-organic papers

m792 Y.-X. Long et al. � [Na6(NO3)2(H2O)13][Ni(C14H18N2O8)]2 Acta Cryst. (2005). E61, m790–m792

Figure 2ORTEPII plot (Johnson, 1976) of the chain of NaO6 octahedra.

Figure 3ORTEPII plot (Johnson, 1976) illustrating the geometry of the Ni atom inthe [Ni(C14H18N2O8)]2� anion. Displacement ellipsoids are drawn at the50% probability level and H atoms as spheres of arbitrary radii.

Page 4: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-1Acta Cryst. (2005). E61, m790–m792

supporting information

Acta Cryst. (2005). E61, m790–m792 [doi:10.1107/S1600536805009359]

Tridecaaquadinitratohexasodium(I) bis[(trans-cyclohexane-1,2-diyldinitrilotetra-

acetato)nickelate(II)]

Yu-Xiang Long, La-Sheng Long, Rong-Bin Huang, Lan-Sun Zheng and Seik Weng Ng

S1. Comment

The trans-cyclohexane-1,2-diyldinitrilotetraacetate tetraanion behaves largely like the edta tetraanion in its chelating

behavior; the anion uses its pair of N atoms and its four negatively charged carboxyl O atoms to chelate to first-row

transition metal ions in, for example, the potassium manganate(II) hydrate (Rettig & Trotter, 1973), tetraaquacopper(II)

nickellate(II) trihydrate (Fuertes et al., 1985, 1987), pentasodium aquavanatate(III) (Shimoi et al., 1991), oxonium

cobaltate(III) tetrahydrate (Antsyshkina et al., 2000) and pentaaquasodium aquaferrate(III) (Seibig & van Eldik, 1998). A

similar binding mode is noted in the present sodium nickellate(II), (I); the four negative charges of the two nickellate ions

are balanced by the charge of the cationic unit, which consists of six NaI atoms, two nitrate units and 13 water molecules.

The [Na6((NO3)2H2O)13]4+ cationic entity (Fig. 1) adopts a chain motif of edge-sharing NaO6 octahedra (Fig. 2). In the

anionic [Ni(C14H18N2O8)]2- entity, the chelated Ni atom shows octahedral coordination (Fig. 3). The anionic and cationic

portions are linked into layers via dative Na—O bonds, and the layers are linked into a three-dimensional network

structure by hydrogen bonds (Table 2).

S2. Experimental

trans-Cyclohexane-1,2-diyldinitrilotetraacetatic acid (0.036 g, 0.1 mmol) and nickel nitrate hexahydrate (0.058 g, 0.2

mmol) were dissolved in a 1:1 water–ethanol mixture (20 ml). After the pH of the solution was adjusted to 6 by the

addition of several drops of 1 M sodium hydroxide, the mixture was heated in Teflon-lined stainless-steel Parr bomb at

433 K for 50 h. The bomb was cooled to room temperature at a rate of 5 K h-1. Light-green crystals were isolated from

the solution in about 50% yield.

S3. Refinement

A dimensionless value (µ2r, r = equivalent radius of crystal) of 0.30 was used in the absorption correct step. The carbon-

bound H atoms were generated geometrically (C—H = 0.95 Å) and were allowed to ride on their parent C atoms, with

the displacement parameters set at 1.2 times the Ueq of their parent atoms. The somewhat shorter C—H distance was used

as the default (0.97 Å for the methine and 0.96 Å for the methylene distance) led to H···H interactions of less than 2 Å

with the H atoms of the O1w water molecule. Of the eight water molecules, H atoms were similarly generated for those

connected to the Na atoms, except for the O1w molecule. Molecules O7w and O8w each has only one independent H

atom; the OH group was rotated to fit the electron density; O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O). Those on the terminal

O1w molecule could not be generated, and were instead placed in chemically sensible positions so that the atoms were at

least 2 Å from other H atoms. The final difference Fourier map had a large peak at 2.1 Å from Na1 and 1.5 Å from O1w

on a special position; as the O1w atom was not disordered, attempts to refine this peak as a disorder component of the

O1w atom did not lead to any meaningful outcome.

Page 5: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-2Acta Cryst. (2005). E61, m790–m792

Figure 1

ORTEPII plot (Johnson, 1976) plot of a portion of the water-coordinated chain of Na atoms in (I). Atoms O2i, O2ii, O5,

O6iv and O6v belong to [Ni(C14H18N2O8)]2- dianions. Displacement ellipsoids are drawn at the 50% probability level and H

atoms are not shown. Symmetry codes are as given in Table 1.

Page 6: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-3Acta Cryst. (2005). E61, m790–m792

Figure 2

ORTEPII plot (Johnson, 1976) of the chain of NaO6 octahedra.

Page 7: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-4Acta Cryst. (2005). E61, m790–m792

Figure 3

ORTEPII plot (Johnson, 1976) illustrating the geometry of the Ni atom in the [Ni(C14H18N2O8)]2- anion. Displacement

ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii.

Tridecaaquadinitratohexasodium(I) bis[(trans-cyclohexane-1,2-diyldinitrilotetraacetato)nickellate(II)]

Crystal data

[Na6(NO3)2(H2O)13][Ni(C14H18N2O8)]2

Mr = 1298.20Monoclinic, C2/cHall symbol: -C 2yca = 16.9182 (7) Åb = 29.388 (1) Åc = 10.6777 (4) Åβ = 107.174 (1)°V = 5072.2 (4) Å3

Z = 4

F(000) = 2696Dx = 1.700 Mg m−3

Mo Kα radiation, λ = 0.71073 ÅCell parameters from 8026 reflectionsθ = 2.5–28.3°µ = 0.90 mm−1

T = 295 KBlock, light green0.40 × 0.25 × 0.20 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tubeGraphite monochromatorφ and ω scansAbsorption correction: multi-scan

SADABS (Bruker, 2002)Tmin = 0.641, Tmax = 0.840

14674 measured reflections5669 independent reflections4889 reflections with I > 2σ(I)Rint = 0.034θmax = 27.5°, θmin = 1.4°h = −21→9k = −36→38l = −13→13

Page 8: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-5Acta Cryst. (2005). E61, m790–m792

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.064wR(F2) = 0.182S = 1.105669 reflections358 parameters11 restraintsPrimary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrainedw = 1/[σ2(Fo

2) + (0.0885P)2 + 18.9719P] where P = (Fo

2 + 2Fc2)/3

(Δ/σ)max = 0.001Δρmax = 1.60 e Å−3

Δρmin = −0.69 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.27571 (3) 0.350103 (17) 0.75842 (4) 0.02723 (16)Na1 0.0000 0.07747 (10) 0.7500 0.0524 (7)Na2 0.08442 (10) 0.17461 (6) 0.70260 (16) 0.0366 (4)Na3 0.27968 (10) 0.21892 (6) 0.70554 (16) 0.0383 (4)Na4 0.5000 0.22418 (12) 0.7500 0.0608 (8)O1 0.39036 (17) 0.33740 (10) 0.8943 (3) 0.0355 (6)O2 0.45521 (17) 0.35951 (11) 1.0986 (3) 0.0397 (7)O3 0.32443 (19) 0.37353 (11) 0.6178 (3) 0.0408 (7)O4 0.3944 (3) 0.43143 (17) 0.5696 (4) 0.0759 (13)O5 0.22657 (17) 0.29525 (9) 0.6399 (3) 0.0332 (6)O6 0.13491 (19) 0.28215 (10) 0.4445 (3) 0.0378 (6)O7 0.22547 (18) 0.32511 (10) 0.8961 (3) 0.0361 (6)O8 0.1047 (2) 0.29760 (13) 0.8984 (3) 0.0529 (9)O9 0.3178 (4) 0.13851 (18) 0.7601 (5) 0.108 (2)O10 0.4069 (4) 0.1118 (2) 0.9314 (8) 0.160 (4)O11 0.2845 (4) 0.0877 (2) 0.8734 (6) 0.122 (2)O1w 0.0239 (5) 0.0100 (2) 0.8939 (11) 0.152 (3)H1w1 0.0680 0.0050 0.95110 0.183*H1w2 0.0000 −0.0144 0.8730 0.183*O2w 0.1275 (2) 0.09535 (13) 0.6918 (4) 0.0573 (9)H2w1 0.1706 0.0883 0.7477 0.069*H2w2 0.1273 0.0868 0.6186 0.069*O3w 0.0000 0.23382 (15) 0.7500 0.0463 (11)H3w1 0.0236 0.2496 0.8135 0.056*O4w 0.15342 (19) 0.19456 (10) 0.5525 (3) 0.0386 (7)H4w1 0.1301 0.2152 0.5039 0.046*H4w2 0.1601 0.1728 0.5088 0.046*O5w 0.19866 (18) 0.21267 (11) 0.8594 (3) 0.0383 (7)H5w1 0.2210 0.1969 0.9233 0.046*H5w2 0.1858 0.2375 0.8828 0.046*O6w 0.4026 (2) 0.24156 (11) 0.8674 (3) 0.0430 (7)H6w1 0.4110 0.2265 0.9348 0.052*H6w2 0.4023 0.2687 0.8848 0.052*O7w 0.5000 0.1488 (3) 0.7500 0.121 (3)

Page 9: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-6Acta Cryst. (2005). E61, m790–m792

H7w 0.5411 0.1395 0.7321 0.146*O8w 0.5000 0.3051 (2) 0.7500 0.0763 (18)H8w 0.4733 0.3144 0.7976 0.092*N1 0.3038 (2) 0.41479 (11) 0.8352 (3) 0.0303 (7)N2 0.15816 (18) 0.37473 (11) 0.6714 (3) 0.0265 (6)N3 0.3393 (4) 0.11366 (17) 0.8553 (5) 0.088 (2)C1 0.4029 (2) 0.36442 (14) 0.9903 (4) 0.0315 (8)C2 0.3471 (3) 0.40598 (14) 0.9742 (4) 0.0356 (9)H2a 0.3076 0.4013 1.0204 0.043*H2b 0.3795 0.4318 1.0110 0.043*C3 0.3591 (3) 0.41152 (17) 0.6416 (4) 0.0442 (10)C4 0.3594 (3) 0.43513 (16) 0.7673 (4) 0.0402 (9)H4a 0.4142 0.4348 0.8251 0.048*H4b 0.3440 0.4660 0.7481 0.048*C5 0.2224 (2) 0.43814 (13) 0.8139 (4) 0.0316 (8)H5 0.1979 0.4256 0.8756 0.038*C6 0.2282 (3) 0.48939 (16) 0.8380 (5) 0.0491 (12)H6a 0.2569 0.5031 0.7837 0.059*H6b 0.2585 0.4952 0.9268 0.059*C7 0.1417 (4) 0.51015 (18) 0.8084 (5) 0.0553 (13)H7a 0.1136 0.4972 0.8646 0.066*H7b 0.1461 0.5420 0.8241 0.066*C8 0.0933 (3) 0.50122 (16) 0.6667 (5) 0.0489 (11)H8a 0.1214 0.5143 0.6106 0.059*H8b 0.0403 0.5151 0.6480 0.059*C9 0.0832 (3) 0.45050 (15) 0.6408 (5) 0.0429 (10)H9a 0.0554 0.4457 0.5505 0.051*H9b 0.0496 0.4382 0.6899 0.051*C10 0.1658 (2) 0.42542 (14) 0.6772 (4) 0.0316 (8)H10 0.1935 0.4342 0.6155 0.038*C11 0.1676 (2) 0.30703 (13) 0.5409 (4) 0.0298 (8)C12 0.1352 (3) 0.35545 (14) 0.5379 (4) 0.0338 (8)H12a 0.1577 0.3737 0.4835 0.041*H12b 0.0767 0.3555 0.5021 0.041*C13 0.1476 (2) 0.32353 (14) 0.8549 (4) 0.0323 (8)C14 0.1045 (2) 0.35590 (14) 0.7458 (4) 0.0321 (8)H14a 0.0596 0.3404 0.6865 0.039*H14b 0.0822 0.3804 0.7825 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni1 0.0242 (3) 0.0303 (3) 0.0233 (2) 0.00208 (18) 0.00099 (18) −0.00342 (17)Na1 0.0527 (15) 0.0554 (17) 0.0424 (14) 0.000 0.0036 (12) 0.000Na2 0.0292 (8) 0.0406 (9) 0.0386 (9) −0.0039 (7) 0.0078 (6) −0.0029 (7)Na3 0.0325 (8) 0.0448 (9) 0.0360 (8) −0.0052 (7) 0.0075 (7) −0.0018 (7)Na4 0.0505 (16) 0.081 (2) 0.0543 (17) 0.000 0.0211 (13) 0.000O1 0.0306 (14) 0.0370 (15) 0.0325 (14) 0.0057 (11) −0.0004 (11) −0.0082 (11)

Page 10: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-7Acta Cryst. (2005). E61, m790–m792

O2 0.0289 (14) 0.0512 (18) 0.0304 (14) 0.0056 (12) −0.0044 (11) −0.0031 (12)O3 0.0425 (16) 0.0491 (18) 0.0328 (14) −0.0048 (14) 0.0138 (12) −0.0087 (13)O4 0.101 (3) 0.082 (3) 0.059 (2) −0.027 (3) 0.046 (2) −0.004 (2)O5 0.0319 (13) 0.0304 (14) 0.0327 (13) 0.0030 (11) 0.0024 (11) −0.0039 (11)O6 0.0427 (16) 0.0381 (16) 0.0289 (13) −0.0081 (13) 0.0050 (12) −0.0088 (12)O7 0.0359 (15) 0.0409 (16) 0.0272 (13) 0.0040 (12) 0.0025 (11) 0.0074 (11)O8 0.056 (2) 0.056 (2) 0.0388 (17) −0.0233 (17) 0.0016 (15) 0.0138 (15)O9 0.168 (6) 0.067 (3) 0.084 (4) 0.014 (4) 0.029 (4) 0.025 (3)O10 0.128 (6) 0.141 (7) 0.160 (7) 0.027 (5) −0.034 (5) −0.054 (6)O11 0.115 (5) 0.156 (6) 0.120 (5) 0.025 (4) 0.073 (4) 0.036 (5)O1w 0.121 (6) 0.081 (4) 0.226 (10) −0.032 (4) 0.007 (6) 0.023 (5)O2w 0.064 (2) 0.064 (2) 0.0453 (19) 0.0108 (18) 0.0178 (17) 0.0003 (16)O3w 0.041 (2) 0.038 (2) 0.050 (3) 0.000 −0.002 (2) 0.000O4w 0.0470 (16) 0.0364 (16) 0.0314 (14) −0.0042 (13) 0.0100 (13) −0.0041 (12)O5w 0.0369 (15) 0.0435 (17) 0.0303 (14) 0.0021 (12) 0.0031 (12) 0.0043 (12)O6w 0.0517 (18) 0.0421 (17) 0.0339 (15) −0.0029 (14) 0.0107 (13) 0.0015 (13)O7w 0.118 (8) 0.115 (7) 0.100 (7) 0.000 −0.016 (6) 0.000O8w 0.088 (5) 0.066 (4) 0.099 (5) 0.000 0.065 (4) 0.000N1 0.0303 (15) 0.0324 (16) 0.0234 (14) 0.0016 (13) 0.0006 (12) −0.0019 (12)N2 0.0255 (14) 0.0287 (16) 0.0215 (14) −0.0001 (12) 0.0011 (11) −0.0002 (11)N3 0.112 (5) 0.088 (4) 0.065 (3) 0.047 (4) 0.028 (4) −0.006 (3)C1 0.0224 (17) 0.038 (2) 0.0302 (18) 0.0009 (15) 0.0012 (14) 0.0006 (15)C2 0.038 (2) 0.037 (2) 0.0225 (17) 0.0061 (17) −0.0048 (15) −0.0055 (15)C3 0.043 (2) 0.053 (3) 0.038 (2) −0.004 (2) 0.0133 (19) −0.002 (2)C4 0.040 (2) 0.040 (2) 0.038 (2) −0.0079 (18) 0.0088 (18) −0.0056 (18)C5 0.0343 (19) 0.0312 (19) 0.0255 (17) 0.0034 (15) 0.0030 (15) 0.0000 (14)C6 0.056 (3) 0.034 (2) 0.046 (2) 0.008 (2) −0.002 (2) −0.0085 (19)C7 0.069 (3) 0.043 (3) 0.046 (3) 0.020 (2) 0.005 (2) −0.003 (2)C8 0.055 (3) 0.039 (2) 0.045 (2) 0.015 (2) 0.003 (2) 0.008 (2)C9 0.038 (2) 0.039 (2) 0.043 (2) 0.0096 (18) −0.0015 (18) 0.0061 (18)C10 0.0315 (19) 0.034 (2) 0.0255 (17) 0.0021 (15) 0.0021 (15) 0.0021 (14)C11 0.0279 (18) 0.034 (2) 0.0263 (17) −0.0065 (15) 0.0066 (14) −0.0046 (14)C12 0.034 (2) 0.038 (2) 0.0231 (17) 0.0013 (16) −0.0023 (15) −0.0009 (15)C13 0.036 (2) 0.033 (2) 0.0246 (17) −0.0032 (16) 0.0052 (15) −0.0012 (15)C14 0.0275 (18) 0.034 (2) 0.0332 (19) −0.0008 (15) 0.0068 (15) 0.0035 (15)

Geometric parameters (Å, º)

Ni1—O1 2.085 (3) O3w—H3w1 0.8200Ni1—O3 2.034 (3) O4w—H4w1 0.8200Ni1—O5 2.066 (3) O4w—H4w2 0.8200Ni1—O7 2.040 (3) O5w—H5w1 0.8200Ni1—N1 2.069 (3) O5w—H5w2 0.8200Ni1—N2 2.062 (3) O6w—H6w1 0.8200Na1—O2i 2.428 (4) O6w—H6w2 0.8200Na1—O2ii 2.428 (4) O7w—H7w 0.8200Na1—O1w 2.468 (8) O8w—H8w 0.8200Na1—O1wiii 2.468 (8) N1—C2 1.471 (5)

Page 11: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-8Acta Cryst. (2005). E61, m790–m792

Na1—O2w 2.472 (4) N1—C4 1.474 (6)Na1—O2wiii 2.472 (4) N1—C5 1.494 (5)Na2—O2i 2.608 (4) N2—C12 1.475 (5)Na2—O2ii 2.363 (3) N2—C14 1.479 (5)Na2—O2w 2.454 (4) N2—C10 1.495 (5)Na2—O3w 2.398 (4) C1—C2 1.522 (5)Na2—O4w 2.319 (3) C2—H2a 0.9500Na2—O5w 2.425 (3) C2—H2b 0.9500Na3—O5 2.441 (3) C3—C4 1.510 (6)Na3—O6iv 2.455 (3) C4—H4a 0.9500Na3—O9 2.474 (5) C4—H4b 0.9500Na3—O4w 2.384 (3) C5—C6 1.527 (6)Na3—O5w 2.438 (3) C5—C10 1.537 (5)Na3—O6w 2.373 (3) C5—H5 0.9500Na4—O6iv 2.600 (3) C6—C7 1.530 (7)Na4—O6v 2.600 (3) C6—H6a 0.9500Na4—O6w 2.401 (3) C6—H6b 0.9500Na4—O6wvi 2.401 (3) C7—C8 1.516 (7)Na4—O7w 2.22 (1) C7—H7a 0.9500Na4—O8w 2.378 (7) C7—H7b 0.9500O1—C1 1.264 (5) C8—C9 1.517 (7)O2—C1 1.240 (5) C8—H8a 0.9500O3—C3 1.252 (6) C8—H8b 0.9500O4—C3 1.249 (6) C9—C10 1.526 (6)O5—C11 1.268 (5) C9—H9a 0.9500O6—C11 1.251 (4) C9—H9b 0.9500O7—C13 1.261 (5) C10—H10 0.9500O8—C13 1.234 (5) C11—C12 1.522 (6)O9—N3 1.216 (6) C12—H12a 0.9500O10—N3 1.192 (6) C12—H12b 0.9500O11—N3 1.258 (6) C13—C14 1.514 (5)O1w—H1w1 0.8200 C14—H14a 0.9500O2w—H2w1 0.8200 C14—H14b 0.9500O2w—H2w2 0.8200

O1—Ni1—O3 94.5 (1) Na2—O4w—H4w2 112.2O1—Ni1—O5 114.2 (1) Na3—O4w—H4w2 112.2O1—Ni1—O7 86.2 (1) H4w1—O4w—H4w2 109.8O1—Ni1—N1 80.3 (1) Na2—O5w—Na3 93.52 (11)O1—Ni1—N2 162.2 (1) Na2—O5w—H5w1 113.0O3—Ni1—O7 178.4 (1) Na3—O5w—H5w1 113.0O3—Ni1—O5 89.4 (1) Na2—O5w—H5w2 113.0O3—Ni1—N1 83.5 (1) Na3—O5w—H5w2 113.0O3—Ni1—N2 95.5 (1) H5w1—O5w—H5w2 110.4O5—Ni1—O7 89.0 (1) Na3—O6w—Na4 98.58 (12)O5—Ni1—N1 164.4 (1) Na3—O6w—H6w1 112.1O5—Ni1—N2 80.7 (1) Na4—O6w—H6w1 112.1O7—Ni1—N1 98.1 (1) Na3—O6w—H6w2 112.1

Page 12: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-9Acta Cryst. (2005). E61, m790–m792

O7—Ni1—N2 84.2 (1) Na4—O6w—H6w2 112.1N1—Ni1—N2 86.2 (1) H6w1—O6w—H6w2 109.7O2i—Na1—O2ii 80.6 (2) Na4—O7w—H7w 109.5O2i—Na1—O1w 103.7 (2) Na4—O8w—H8w 109.5O2i—Na1—O1wiii 171.6 (2) C2—N1—C4 111.6 (3)O2i—Na1—O2w 83.2 (1) C2—N1—C5 113.4 (3)O2i—Na1—O2wiii 78.1 (1) C4—N1—C5 115.6 (3)O2ii—Na1—O1w 171.6 (2) C2—N1—Ni1 103.1 (2)O2ii—Na1—O1wiii 103.7 (2) C4—N1—Ni1 106.4 (2)O2ii—Na1—O2w 78.1 (1) C5—N1—Ni1 105.5 (2)O2ii—Na1—O2wiii 83.2 (1) C12—N2—C14 110.3 (3)O1w—Na1—O1wiii 73.1 (5) C12—N2—C10 114.7 (3)O1w—Na1—O2w 109.4 (2) C14—N2—C10 114.2 (3)O1w—Na1—O2wiii 90.5 (3) C12—N2—Ni1 104.1 (2)O1wiii—Na1—O2w 90.5 (3) C14—N2—Ni1 106.9 (2)O1wiii—Na1—O2wiii 109.4 (2) C10—N2—Ni1 105.7 (2)O2w—Na1—O2wiii 155.4 (2) O10—N3—O9 125.9 (6)O2i—Na2—O2ii 78.2 (1) O10—N3—O11 118.0 (6)O2i—Na2—O2w 79.9 (1) O9—N3—O11 116.1 (5)O2i—Na2—O3w 78.2 (1) O2—C1—O1 125.9 (4)O2i—Na2—O4w 164.2 (1) O2—C1—C2 116.6 (4)O2i—Na2—O5w 87.7 (1) O1—C1—C2 117.6 (3)O2ii—Na2—O2w 79.7 (1) N1—C2—C1 111.3 (3)O2ii—Na2—O3w 83.2 (1) N1—C2—H2a 109.4O2ii—Na2—O4w 111.5 (1) C1—C2—H2a 109.4O2ii—Na2—O5w 163.4 (1) N1—C2—H2b 109.4O2w—Na2—O3w 154.5 (1) C1—C2—H2b 109.4O2w—Na2—O4w 89.4 (1) H2a—C2—H2b 108.0O2w—Na2—O5w 106.4 (1) O4—C3—O3 125.0 (5)O3w—Na2—O4w 114.5 (1) O4—C3—C4 117.1 (4)O3w—Na2—O5w 85.6 (1) O3—C3—C4 117.9 (4)O4w—Na2—O5w 84.2 (1) N1—C4—C3 114.6 (4)O5—Na3—O6iv 93.6 (1) N1—C4—H4a 108.6O5—Na3—O9 173.7 (2) C3—C4—H4a 108.6O5—Na3—O4w 84.3 (1) N1—C4—H4b 108.6O5—Na3—O5w 91.7 (1) C3—C4—H4b 108.6O5—Na3—O6w 96.9 (1) H4a—C4—H4b 107.6O6iv—Na3—O9 88.8 (2) N1—C5—C6 114.7 (3)O6iv—Na3—O4w 97.5 (1) N1—C5—C10 108.7 (3)O6iv—Na3—O5w 174.7 (1) C6—C5—C10 113.0 (3)O6iv—Na3—O6w 85.5 (1) N1—C5—H5 106.6O9—Na3—O4w 89.6 (2) C6—C5—H5 106.6O9—Na3—O5w 85.9 (2) C10—C5—H5 106.6O9—Na3—O6w 89.1 (2) C5—C6—C7 110.4 (4)O4w—Na3—O5w 82.6 (1) C5—C6—H6a 109.6O4w—Na3—O6w 176.8 (1) C7—C6—H6a 109.6O5w—Na3—O6w 94.4 (1) C5—C6—H6b 109.6O6iv—Na4—O6v 171.8 (2) C7—C6—H6b 109.6

Page 13: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-10Acta Cryst. (2005). E61, m790–m792

O6iv—Na4—O6w 81.8 (1) H6a—C6—H6b 108.1O6iv—Na4—O6wvi 100.0 (1) C8—C7—C6 109.9 (4)O6iv—Na4—O7w 85.9 (1) C8—C7—H7a 109.7O6iv—Na4—O8w 94.1 (1) C6—C7—H7a 109.7O6v—Na4—O6w 100.0 (1) C8—C7—H7b 109.7O6v—Na4—O6wvi 81.8 (1) C6—C7—H7b 109.7O6v—Na4—O7w 85.9 (1) H7a—C7—H7b 108.2O6v—Na4—O8w 94.1 (1) C7—C8—C9 110.5 (4)O6w—Na4—O6wvi 155.4 (2) C7—C8—H8a 109.5O6w—Na4—O7w 102.3 (1) C9—C8—H8a 109.5O6w—Na4—O8w 77.7 (1) C7—C8—H8b 109.5O6wvi—Na4—O7w 102.3 (1) C9—C8—H8b 109.5O6wvi—Na4—O8w 77.7 (1) H8a—C8—H8b 108.1O7w—Na4—O8w 180 C8—C9—C10 112.5 (4)C1—O1—Ni1 110.5 (2) C8—C9—H9a 109.1C1—O2—Na2v 142.6 (3) C10—C9—H9a 109.1C1—O2—Na1i 121.9 (3) C8—C9—H9b 109.1Na2v—O2—Na1i 86.98 (10) C10—C9—H9b 109.1C1—O2—Na2i 121.3 (3) H9a—C9—H9b 107.8Na2v—O2—Na2i 83.04 (11) N2—C10—C9 114.2 (3)Na1i—O2—Na2i 81.73 (10) N2—C10—C5 107.7 (3)C3—O3—Ni1 114.8 (3) C9—C10—C5 113.0 (3)C11—O5—Ni1 111.9 (2) N2—C10—H10 107.2C11—O5—Na3 128.5 (2) C9—C10—H10 107.2Ni1—O5—Na3 119.58 (12) C5—C10—H10 107.2C11—O6—Na3iv 110.0 (2) O6—C11—O5 125.0 (4)C11—O6—Na4iv 140.4 (3) O6—C11—C12 117.4 (3)Na3iv—O6—Na4iv 91.41 (10) O5—C11—C12 117.6 (3)C13—O7—Ni1 112.1 (2) N2—C12—C11 110.4 (3)N3—O9—Na3 139.7 (4) N2—C12—H12a 109.6Na1—O1w—H1w1 124 C11—C12—H12a 109.6Na2—O2w—Na1 84.06 (14) N2—C12—H12b 109.6Na2—O2w—H2w1 114.6 C11—C12—H12b 109.6Na1—O2w—H2w1 114.6 H12a—C12—H12b 108.1Na2—O2w—H2w2 114.6 O8—C13—O7 124.2 (4)Na1—O2w—H2w2 114.6 O8—C13—C14 118.3 (4)H2w1—O2w—H2w2 111.7 O7—C13—C14 117.5 (3)Na2iii—O3w—Na2 86.96 (17) N2—C14—C13 114.6 (3)Na2iii—O3w—H3w1 114.2 N2—C14—H14a 108.6Na2—O3w—H3w1 114.2 C13—C14—H14a 108.6Na2—O4w—Na3 97.72 (12) N2—C14—H14b 108.6Na2—O4w—H4w1 112.2 C13—C14—H14b 108.6Na3—O4w—H4w1 112.2 H14a—C14—H14b 107.6

O3—Ni1—O1—C1 112.1 (3) O1—Ni1—N1—C4 81.8 (3)O7—Ni1—O1—C1 −69.4 (3) O3—Ni1—N1—C5 109.5 (2)N2—Ni1—O1—C1 −11.7 (6) O7—Ni1—N1—C5 −70.1 (2)O5—Ni1—O1—C1 −156.6 (3) N2—Ni1—N1—C5 13.5 (2)

Page 14: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-11Acta Cryst. (2005). E61, m790–m792

N1—Ni1—O1—C1 29.5 (3) O5—Ni1—N1—C5 46.3 (6)N2—Ni1—O3—C3 94.5 (3) O1—Ni1—N1—C5 −154.9 (2)O5—Ni1—O3—C3 175.0 (3) O3—Ni1—N2—C12 54.7 (2)N1—Ni1—O3—C3 8.9 (3) O7—Ni1—N2—C12 −123.7 (2)O1—Ni1—O3—C3 −70.7 (3) O5—Ni1—N2—C12 −33.8 (2)O3—Ni1—O5—C11 −70.3 (3) N1—Ni1—N2—C12 137.7 (2)O7—Ni1—O5—C11 109.7 (3) O1—Ni1—N2—C12 178.4 (4)N2—Ni1—O5—C11 25.4 (3) O3—Ni1—N2—C14 171.4 (2)N1—Ni1—O5—C11 −7.8 (6) O7—Ni1—N2—C14 −7.0 (2)O1—Ni1—O5—C11 −164.9 (3) O5—Ni1—N2—C14 83.0 (2)O3—Ni1—O5—Na3 112.52 (16) N1—Ni1—N2—C14 −105.5 (2)O7—Ni1—O5—Na3 −67.49 (15) O1—Ni1—N2—C14 −64.9 (5)N2—Ni1—O5—Na3 −151.80 (17) O3—Ni1—N2—C10 −66.5 (2)N1—Ni1—O5—Na3 175.0 (4) O7—Ni1—N2—C10 115.1 (2)O1—Ni1—O5—Na3 17.90 (19) O5—Ni1—N2—C10 −155.0 (2)O6w—Na3—O5—C11 167.8 (3) N1—Ni1—N2—C10 16.5 (2)O4w—Na3—O5—C11 −15.2 (3) O1—Ni1—N2—C10 57.2 (5)O5w—Na3—O5—C11 −97.6 (3) Na3—O9—N3—O10 −77.6 (8)O6iv—Na3—O5—C11 81.9 (3) Na3—O9—N3—O11 102.6 (7)O6w—Na3—O5—Ni1 −15.53 (17) Na2v—O2—C1—O1 26.5 (8)O4w—Na3—O5—Ni1 161.47 (16) Na1i—O2—C1—O1 161.9 (3)O5w—Na3—O5—Ni1 79.10 (15) Na2i—O2—C1—O1 −97.7 (4)O6iv—Na3—O5—Ni1 −101.38 (15) Na2v—O2—C1—C2 −155.7 (4)N2—Ni1—O7—C13 18.1 (3) Na1i—O2—C1—C2 −20.3 (5)O5—Ni1—O7—C13 −62.6 (3) Na2i—O2—C1—C2 80.1 (4)N1—Ni1—O7—C13 103.4 (3) Ni1—O1—C1—O2 163.1 (4)O1—Ni1—O7—C13 −177.0 (3) Ni1—O1—C1—C2 −14.7 (5)O6w—Na3—O9—N3 50.7 (8) C4—N1—C2—C1 −75.5 (4)O4w—Na3—O9—N3 −126.4 (8) C5—N1—C2—C1 151.9 (3)O5w—Na3—O9—N3 −43.8 (8) Ni1—N1—C2—C1 38.3 (4)O6iv—Na3—O9—N3 136.1 (8) O2—C1—C2—N1 165.0 (4)O4w—Na2—O2w—Na1 −152.39 (11) O1—C1—C2—N1 −17.1 (5)O2ii—Na2—O2w—Na1 −40.37 (11) Ni1—O3—C3—O4 178.4 (5)O3w—Na2—O2w—Na1 8.3 (3) Ni1—O3—C3—C4 −1.0 (5)O5w—Na2—O2w—Na1 123.80 (11) C2—N1—C4—C3 129.1 (4)O2i—Na2—O2w—Na1 39.29 (9) C5—N1—C4—C3 −99.5 (4)O2i—Na1—O2w—Na2 −42.40 (11) Ni1—N1—C4—C3 17.4 (4)O2ii—Na1—O2w—Na2 39.33 (11) O4—C3—C4—N1 168.7 (5)O2wiii—Na1—O2w—Na2 −1.90 (7) O3—C3—C4—N1 −11.9 (6)O1wiii—Na1—O2w—Na2 143.2 (2) C2—N1—C5—C6 79.6 (4)O1w—Na1—O2w—Na2 −144.6 (3) C4—N1—C5—C6 −51.0 (5)O4w—Na2—O3w—Na2iii 152.24 (12) Ni1—N1—C5—C6 −168.3 (3)O2ii—Na2—O3w—Na2iii 41.63 (8) C2—N1—C5—C10 −152.8 (3)O5w—Na2—O3w—Na2iii −126.19 (10) C4—N1—C5—C10 76.6 (4)O2w—Na2—O3w—Na2iii −6.4 (2) Ni1—N1—C5—C10 −40.7 (3)O2i—Na2—O3w—Na2iii −37.64 (7) N1—C5—C6—C7 177.8 (4)O2ii—Na2—O4w—Na3 −174.51 (12) C10—C5—C6—C7 52.4 (5)O3w—Na2—O4w—Na3 93.22 (12) C5—C6—C7—C8 −59.6 (6)

Page 15: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-12Acta Cryst. (2005). E61, m790–m792

O5w—Na2—O4w—Na3 10.79 (12) C6—C7—C8—C9 61.2 (6)O2w—Na2—O4w—Na3 −95.80 (14) C7—C8—C9—C10 −55.5 (6)O2i—Na2—O4w—Na3 −48.6 (5) C12—N2—C10—C9 76.7 (4)O5w—Na3—O4w—Na2 −10.77 (12) C14—N2—C10—C9 −52.0 (4)O5—Na3—O4w—Na2 −103.28 (13) Ni1—N2—C10—C9 −169.2 (3)O6iv—Na3—O4w—Na2 163.87 (12) C12—N2—C10—C5 −157.0 (3)O9—Na3—O4w—Na2 75.16 (18) C14—N2—C10—C5 74.4 (4)O4w—Na2—O5w—Na3 −10.47 (12) Ni1—N2—C10—C5 −42.8 (3)O2ii—Na2—O5w—Na3 −172.9 (4) C8—C9—C10—N2 171.7 (4)O3w—Na2—O5w—Na3 −125.71 (11) C8—C9—C10—C5 48.1 (5)O2w—Na2—O5w—Na3 77.23 (14) N1—C5—C10—N2 57.6 (4)O2i—Na2—O5w—Na3 155.98 (12) C6—C5—C10—N2 −173.9 (4)O6w—Na3—O5w—Na2 −168.72 (12) N1—C5—C10—C9 −175.4 (3)O4w—Na3—O5w—Na2 10.22 (12) C6—C5—C10—C9 −46.9 (5)O5—Na3—O5w—Na2 94.19 (11) Na3iv—O6—C11—O5 −80.6 (4)O9—Na3—O5w—Na2 −79.92 (17) Na4iv—O6—C11—O5 160.7 (3)O5w—Na3—O6w—Na4 161.22 (15) Na3iv—O6—C11—C12 98.2 (3)O5—Na3—O6w—Na4 −106.49 (14) Na4iv—O6—C11—C12 −20.5 (6)O6iv—Na3—O6w—Na4 −13.45 (14) Ni1—O5—C11—O6 169.3 (3)O9—Na3—O6w—Na4 75.39 (19) Na3—O5—C11—O6 −13.8 (6)O7w—Na4—O6w—Na3 −71.16 (11) Ni1—O5—C11—C12 −9.5 (4)O8w—Na4—O6w—Na3 108.84 (11) Na3—O5—C11—C12 167.3 (3)O6wvi—Na4—O6w—Na3 108.84 (11) C14—N2—C12—C11 −76.4 (4)O6v—Na4—O6w—Na3 −159.10 (14) C10—N2—C12—C11 153.0 (3)O6iv—Na4—O6w—Na3 12.78 (14) Ni1—N2—C12—C11 38.0 (4)O3—Ni1—N1—C2 −131.4 (3) O6—C11—C12—N2 160.7 (3)O7—Ni1—N1—C2 49.0 (3) O5—C11—C12—N2 −20.3 (5)N2—Ni1—N1—C2 132.6 (3) Ni1—O7—C13—O8 155.7 (4)O5—Ni1—N1—C2 165.4 (4) Ni1—O7—C13—C14 −24.8 (4)O1—Ni1—N1—C2 −35.7 (2) C12—N2—C14—C13 109.7 (4)O3—Ni1—N1—C4 −13.9 (3) C10—N2—C14—C13 −119.5 (3)O7—Ni1—N1—C4 166.5 (2) Ni1—N2—C14—C13 −2.9 (4)N2—Ni1—N1—C4 −109.9 (3) O8—C13—C14—N2 −161.4 (4)O5—Ni1—N1—C4 −77.1 (5) O7—C13—C14—N2 19.1 (5)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, y, −z+3/2; (iv) −x+1/2, −y+1/2, −z+1; (v) x+1/2, −y+1/2, z+1/2; (vi) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O4vii 0.82 2.27 2.660 (9) 109O2w—H2w1···O11 0.82 2.00 2.797 (8) 165O2w—H2w2···O4iv 0.82 2.01 2.817 (6) 170O4w—H4w1···O6 0.82 2.08 2.800 (4) 147O4w—H4w2···O3iv 0.82 1.99 2.803 (4) 172O5w—H5w1···O7i 0.82 1.98 2.778 (4) 164O5w—H5w2···O8 0.82 2.27 3.053 (5) 159O6w—H6w1···O8i 0.82 2.01 2.789 (4) 159

Page 16: metal-organic papers - COnnecting REpositories · 2016. 6. 20. · E61, m790–m792 Y.-X. Long et al. [Na 6(NO 3) 2(H 2O) 13][Ni(C 14H 18N 2O 8)] 2 m791 Figure 1 ORTEPII plot (Johnson,

supporting information

sup-13Acta Cryst. (2005). E61, m790–m792

O6w—H6w2···O1 0.82 2.03 2.845 (4) 170O7w—H7w···O9vi 0.82 2.36 3.130 (7) 156O7w—H7w···O10vi 0.82 2.32 3.04 (1) 146O8w—H8w···O1 0.82 2.09 2.899 (4) 172

Symmetry codes: (i) −x+1/2, −y+1/2, −z+2; (iv) −x+1/2, −y+1/2, −z+1; (vi) −x+1, y, −z+3/2; (vii) −x+1/2, y−1/2, −z+3/2.