31
Mean-field theories and quasi-stationary simulations of epidemic models on complex networks Ang ´ elica S. Mata, Silvio C. Ferreira Departamento de F´ ısica - Universidade Federal de Vic ¸osa [email protected] Complex Systems Foundations and Applications Rio de Janeiro, October 29th - November 1st

Mean-field theories and quasi-stationary simulations of ...compsyst/Tsallis70_Atualizacao/Apresentacoes/Dia_4/... · Mean-field theories and quasi-stationary simulations of epidemic

Embed Size (px)

Citation preview

Mean-field theories and quasi-stationarysimulations of epidemic models on complex

networks

Angelica S. Mata, Silvio C. FerreiraDepartamento de Fısica - Universidade Federal de Vicosa

[email protected] Systems Foundations and Applications

Rio de Janeiro, October 29th - November 1st

Outline

IntroductionPair quenched mean-field theoryQuasi-stationary simulationsNature of epidemics on complex networksProspects

Vicosa - Minas Gerais

Universidade Federal de Vicosa

How do we get sick?

Network

Ravasz et al., Science 297 1551 (2002).

Basic network properties

32

1

4

k

log

P(k

)

log k

ij

lij = 3

Small-world (SW): <l>~log N

Scale-free (SF): P(k)~k-γ

〈k2〉 → ∞ for 2 < γ < 3 - Scale-free

Epidemic dynamicsStates: Susceptible (S), Infected (I), Removed (R) and so forth . . .

S

R

I

The susceptible-infected-susceptible (SIS) model

n

INFECTION

1

CURE

Absorbing-state and phase transitions

λ

ρ

ActiveAbsorbing

λc

Competing mean-field theories

Heterogeneous mean-fieldtheory (HMF)[Pastor-Satorras and Vepignani, PRL 863200 (2001)]

k=5 k=3

dρk

dt= −ρk + λk(1− ρk )

∑k ′

P(k ′|k)ρ′k ⇒ λc =〈k〉〈k2〉

Quenched mean-field theory (QMF)[Chakrabarti at al., ACM Trans. Inf. Syst. Secur. 10 1 (2008)]

dρi

dt= −ρi + λ(1− ρi )

∑j

Aijρj ⇒ λc =1

Λm,

where Λm is the largest eigenvalue of the adjacency matrix Ai,j

Thresholds for P(k) ∼ k−γ

HMFλc =

〈k〉〈k2〉

→{

const . > 0 γ > 30 γ ≤ 3

Conclusion: Scale-free networks (γ < 3) do not have a threshold inthe thermodynamical limit (N →∞) while networks with finite 〈k2〉 do.

QMF [Castallano and Pastor-Satorrras, PRL 105, 218701 (2010)]

λc =1

Λm'{

1/√

kmax γ > 2.5〈k〉/〈k2〉 2 < γ ≤ 2.5

Conclusion: does not exist a finite threshold for SIS in the limitN →∞ for any network with diverging cutoff.

Quenched pair-approximation

Mata and Ferreira, EPL 103 48003 (2013))

Simple QMF theory assumes that the probability that a vertex isoccupied or empty does not depend on the states of itsneighbors.

φi,j ≈ (1− ρi )ρj

Pair approximation is the simplest MF theory that includesdynamical correlations.

Dynamical equation for a pair of vertices are investigated.

Notation and normalization conditions

Infected vertex→ 1Heath vertex→ 0

ρi = [1i ]

[0i ] = 1− ρi

ψij = [1i ,1j ]

ωij = [0i ,0j ]

φij = [0i ,1j ]

φij = [1i ,0j ]

ψij = ψji

ωij = ωji

φij = φji

ψij + φij = ρj

ψij + φij = ρi

ωij + φij = 1− ρi

ωij + φij = 1− ρj

Dynamical equations

dρi

dt= −ρi + λ

∑j

φijAij

dφij

dt= −φij − λφij + ψij + λ

∑l∈N (j)

l 6=i

[0i0j1l ]− λ∑

l∈N (i)l 6=j

[1l0i1j ]

Pair approximation [ben Avraham and Kohler, PRA 45, 8358 (1992)]

[Ai ,Bj ,Cl ] ≈[Ai ,Bj ][Bj ,Cl ]

[Bj ]

dφij

dt= −(1 + λ)φij +ψij + λ

∑l

ωijφjl

1− ρj(Ajl − δil )− λ

∑l

φij φli

1− ρi(Ail − δlj )

Thresholds

Performing a linear stability analysis around the fixed pointρi = φij = ψij = 0 and using a quasi-static approximation forlong times we find

dρi

dt=∑

j

Lijρj

with the Jacobian

Lij = −(

1 +λ2ki

2λ+ 2

)δij +

λ(2 + λ)

2λ+ 2Aij .

The critical point is obtained when absorbing state ρi = 0 losesstability or, equivalently, when the largest eigenvalue of Lijvanishes.

Analytical results for simple networks

(c)(b)(a)

Absorbing states and finite sizes

The absorbing configuration is the unique actual stationary statefor finite size systems.

Quasi-stationary approach: the averages are restricted to anensemble of active configurations.

P(σ) =P(σ, t)Ps(t)

, t →∞

Quasi-stationary simulations

Oliveira and Dickman, PRE 71 016129 (2005)

QS simulations in complex networks

Finite-size effect are strongly enhanced by the small-worldproperty.QS state is a suitable framework to handle absorbing states oncomplex networks:Contact processFerreira, Ferreira, Pastor-Satorras PRE 83, 066113 (2011)Ferreira, Ferreira, Castellano, Pastor-Satorras PRE 84, 066102 (2011)Ferreira and Ferreira EPJB (2013) [arXiv:1307.6186 (2013)]

Epidemic spreadingFerreira, Castellano, Pastor-Satorras et al. PRE 86 041125 (2012)Mata and Ferreira EPL 103 48003 (2013)

Infinitely many absorbing statesSander, Ferreira, Pastor-Satorras et al. PRE 87, 022820 (2013)

Metapopulation dynamicsMata,Ferreira, Pastor-Satorras PRE 88 042820 (2013).

Numerical determination of the thresholds

Ferreira, Castellano, Pastor-Satorras, PRE 86 041125 (2012).

Modified susceptibility:

χ = N〈ρ2〉 − 〈ρ〉2

〈ρ〉∼ Nϑ, ϑ > 0

Validating the method: annealed networks

101

102

103

χ

104

4 x 104

16 x 104

64 x 104

256 x 104

1024 x 104

a)

Thresholds for annealed networks

103

104

105

106

107

N

10-3

10-2

10-1

λp(N) [γ=2.25]

λc

HMF [γ=2.25]

λp(N) [γ=3.50]

λc

HMF [γ=3.50]

b)

Simple homogeneous case: RRN

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

λ

100

101

102

103

104

χ

N=103

N=104

N=105

N=106

N=107

103

104

105

106

107

N

0.19

0.20

0.21

0.22

λp

λc

qmfλc

pqmf

Star/Wheel graphs

10-4

10-3

10-2

10-1

λ

101

102

103

104

χ

N = 103

N = 104

N = 105

N = 106

N = 107

103

104

105

106

107

N

10-4

10-3

10-2

10-1

thre

shold

λp(N)

λc

qmf

λc

pqmf

Quenched networks: γ < 2.5

103

104

105

106

107

N

10-3

10-2

10-1

100

threshold

HMFQMFPQMF

λp

10-2

10-110

0

101

102

103

χ

103

104

105

106

107

N

-0.03

-0.02

-0.01

0

λ−

λp

λ

Quenched networks: 2.5 < γ < 3

103

104

105

106

107

N

10-2

10-1

threshold

HMFQMFPQMF

λp

(2/kmax

)0.5

10-110

0

101

102

χ

104

105

106

107

108

N

-0.02

-0.01

0

0.01

0.02

λ−

λp

λ

Quenched networks: γ > 3 and kmax = 〈kmax〉

103

104

105

106

107

108

N

10-2

10-1

100

threshold

HMFQMFPQMF

λp

(2/kmax

)0.5

10-2

10-1

λ

101

102

χ

103

104

105

10610

7

108

3x107

The nature of the epidemic thresholds

The peak at low infection rate reproduced by the PQMF theory isassociated to a localized epidemics.

Goltsev et al., PRL 109 128702 (2012).

The second peak if associated to an endemic phase where allvertices are infected at some time.

Boguna, Castellano, Pastor-Satorras PRL 111, 068701 (2013).

Lifespan method [B,C,P-S, op cit.]

0 0.05 0.1 0.15 0.2 0.25

λ

100

101

102

103

104

105

106

107

τ

103

3x103

104

3x104

105

3x105

106

3x106

107

3x107

108

103

104

105

106

107

108

N

10-2

10-1

100

λc

χτ

Prospects

Acknowledgments

CollaboratorsStudentsApplied statistical physics groupGISCSupporting agencies