22
Discrete Mathematics Unit 5 Sikkim Manipal University Page No: 121 Unit 5 Partially Ordered Sets and Lattices Structure 5.1 Introduction Objectives 5.2 Relation Matrices 5.3 Partial Ordered Sets 5.4 Lattices 5.5 Duality 5.6 Modular and Distributive lattices Self Assessment Questions 5.7 Summary 5.8 Terminal Questions 5.9 Answers 5.1 Introduction There are various types of relations defined on a set. In this unit our interest is partially ordered relation which is defined on a set, referred as a partially ordered set. This would lead to the concepts of lattices and Boolean algebras. We discuss the different properties of partial order relations on a set, observed the properties of lattices using its axioms. Some of the lattice ordered diagrams which have applications to several algebraic systems. Objectives At the end of the unit the student must be able to: Write the relation matrix for the given relation. Diagram representation of partial ordered sets. Know the structure of a lattice and modular lattice. Representation of lattice diagrams.

MC0063(A)-Unit5-fi

Embed Size (px)

DESCRIPTION

File

Citation preview

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:121

    Unit5 PartiallyOrderedSetsandLatticesStructure

    5.1 Introduction

    Objectives

    5.2 RelationMatrices

    5.3 PartialOrderedSets

    5.4 Lattices

    5.5 Duality

    5.6 ModularandDistributivelattices

    SelfAssessmentQuestions

    5.7 Summary

    5.8 TerminalQuestions

    5.9 Answers

    5.1Introduction

    Therearevarioustypesofrelationsdefinedonaset.Inthisunitourinterest

    ispartiallyorderedrelationwhichisdefinedonaset,referredasapartially

    ordered set. This would lead to the concepts of lattices and Boolean

    algebras.Wediscussthedifferentpropertiesofpartialorderrelationsona

    set,observedthepropertiesoflatticesusingitsaxioms.Someofthelattice

    ordereddiagramswhichhaveapplicationstoseveralalgebraicsystems.

    Objectives

    Attheendoftheunitthestudentmustbeableto:

    Writetherelationmatrixforthegivenrelation.

    Diagramrepresentationofpartialorderedsets.

    Knowthestructureofalatticeandmodularlattice.

    Representationoflatticediagrams.

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:122

    5.2RelationMatrices

    5.2.1Definition

    ArelationRbetweenthesetsA1,A2,,An isasubsetofA1 A2 An.

    Thisrelation R iscalledannaryrelation(twoaryiscalledbinary,three

    aryiscalledternary).Ingeneral,arelation meansbinaryrelationonaset

    S(meansasubsetof S S).

    Arelation R on S issaidtobe

    i) reflexiveif(a,a) R forall a S

    ii) symmetricif(a,b) R implies(b,a) R

    iii) antisymmetricif(a,b) R and(b,a) R a=b

    iv) transitiveif(a,b) R, (b,c) R implies(a,c) R

    5.2.2Definition:

    LetSbeafinitesetwithnumberofelementsn,and S={xi /1 i n}.

    If R isarelationonS,thentherelationmatrixof R isthen nmatrix

    (ji

    s )nn wherej

    i ji

    1 , ) Rs

    0

    if(x x

    otherwise

    =

    .

    5.2.3 Example

    Suppose S ={a,b,c,d}and R ={(a,a),(b,b),(c,d),(a,b),(d,a)}.

    ThentherelationmatrixofR isgivenby

    00011000

    0010

    0011

    .

    5.2.4Observation

    i) Suppose A = (ji

    s )nn with eachji

    s is equal to 0 or 1. Write

    S={xi /1 i n} anddefinearelation RonSas(xi,xj)isanelement

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:123

    ofR ji

    s =1.Then A istherelationmatrixof R.

    ii) A relation R is reflexive each of the diagonal elements of the

    relationmatrixisequalto1. A relationR issymmetric therelation

    matrixissymmetric.

    5.3PartiallyOrderedSets

    5.3.1Definition

    A partiallyorderedset(POset)isasetSwitharelation R on S whichis

    reflexive,antisymmetricandtransitive.

    Notethatif(a,b) R,thenwewrite a b.If a b and a b,then

    wewrite a>b.

    5.3.2Example

    i) The relations and are the partial orderings on the set of real

    numbers.

    ii) LetXbethepowersetofthesetA. Thentherelationinclusionisa

    partialorderingonX.

    5.3.3Definition

    AfinitePOsetcanbediagrammedontheplane.If S isaPOsetand a,b

    arein S suchthat a>bandthereisno c in S suchthat a>c and

    c>b,thenwesaythata covers b.

    5.3.4Example

    If a covers b, then represent thepoint corresponding to a, above the

    pointfor b andjointhepoints(ThisfactisillustratedinthefollowingFig1).

    NowconsidertheFig2.Inthis,wecanobservethat:

    D covers E B covers C F covers C A covers F.

    Also note that B joined to E by a sequence of line segments all going

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:124

    downwards.

    Sowehave B E.

    SuppInthisexample, infig2, theelementEisin level0,elementDis in

    level1,elementCisinlevel2,elementsFandBareinlevel3andelement

    Aisinlevel4.

    5.3.5Definition

    Theelementsinlevel1arecalledatoms.

    5.3.6HasseDiagram

    Supposethereareni elementsof leveli for i=0,1,2, . Arrangen0

    pointsforelementsoflevel0horizontally.Arrangen1pointsforelementsof

    level1horizontallybutbelowthoseoflevel0.Afterarranging n(i1) points

    for theelementsof level(i1),arrangeni pointsfor theelementsof leveli

    horizontally,butbelowthoseoflevel(i1).Finally,jointheelementspiand

    pj bya line segment if pi covers pj. Thediagramobtained is called the

    Hassediagram.

    5.3.7Definition

    i) AnelementxofaPosetS issaidtobeaminimalelementifitsatisfies

    thefollowingcondition:y S and x y y=x.

    ii) Anelement aofS issaid tobeamaximalelement if itsatisfies the

    followingcondition:b S and b a b=a.

    a

    b

    acoversb

    A

    BF

    C

    D

    E

    Fig1Fig2

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:125

    5.3.8Definition

    APOset S issaidtobeatotallyordered(orordered)setiffor a,b in S

    exactlyoneoftheconditions: a > b, a = b,or b > a holds.

    5.3.9Problem

    InafinitePOset S,showthatthereisalwaysatleastonemaximalelement

    andoneminimalelement.

    Solution:(Formaximalelement):Inacontraryway,supposeScontainsno

    maximalelement.Let x1 S.Since x1 isnotmaximal,thereexists x2 in

    Ssuchthatx2 > x1.Since x2 isnotmaximal,thereexists x3 in S such

    that x3 > x2. If we continue this process, we get an infinite sequence of

    distinct elements x1, x2, x3,, such that xi+1 > xi foreach i. This is a

    contradictiontothefactthat S containsonlyafinitenumberofelements

    (since S isafinitePOset).Henceweconcludethat Scontainsamaximal

    element.

    5.3.10Definition

    Achain inaPOset isasequencea0,a1,,an ofelementsof the POset

    suchthatai>ai+1.Thelengthofthischainisn.

    5.3.11Definition

    Let(P, )beaPOsetand A P.Anelement x P iscalledalower

    boundfor A if a x,forall a A.Alowerbound xof A iscalleda

    greatestlowerboundofA if x y foralllowerbounds y of A.

    Anelement x P iscalledanupperboundforAif x a,forall a A.

    Anupperbound x iscalledaleastupperboundofAif b a forallupper

    boundsb of A.

    5.3.12Note

    LetR bethesetofall realnumbers, f A R. If A hasa lower

    bound,thenitsgreatestlowerboundiscalledinfimumanditisdenotedby

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:126

    inf A. If A has an upper bound, then its least upper bound is called its

    supremum anditisdenotedbysupA.

    Forany subset A of R (the set of all realnumbers), wehave that

    infA = minA andsupA =maxA.

    5.4Lattices

    5.4.1Definition

    ApartiallyorderedsetLissaidtobea lattice ifforanypairofelements x, y L,

    glb{x,y}(thegreatestlowerboundofx andy isdenotedbyx y),andlub

    {x, y}exist(theleastupperboundof x and y isdenotedby x y).

    5.4.2Examples

    i) LetZ+ bethesetofpositiveintegers.DefinearelationDon Z+ by

    aDb a divides bforanya,b Z+ .Then(Z+,D)isalattice,in

    which,a b =gcd{a,b}anda b =lcm{a, b}.

    ii) The set L = {1,2,3,4,6,12}, the factors of 12 under the relation

    divisibilityformsalattice.

    iii) LetX beanonemptysetandconsider(P(X), ),thepowersetwith

    the inclusionrelation. Thenforany A,B in P(X), wehavethat

    A B = A B and A B = A B.

    5.4.3Definition

    Let(L, )bealattice.Ifeverynonemptysubsetof L hasgreatestlower

    boundandleastupperbound,then L issaidtobeacompletelattice.

    5.4.4Examples

    i) LetP bethesetofallintegerswithusualordering.Clearlyitisalattice.

    Thesetofallevenintegersisasubsetof P andithasnoupperbound

    orlowerbound.Hence P isnotacompletelattice.

    ii) If P={i/1 i n}and istheusualorderingofintegers,then P

    isacompletelattice.

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:127

    5.4.5Note

    AtotallyorderedsetSisapartiallyorderedsetinwhicheither a b or

    b a holdsforall a,b in S.

    5.4.6Example

    i) Thesetofallnaturalnumbersformsatotallyordered setunderusual.

    ii) Thesetofallnaturalnumberswithadividesbisnotatotallyordered

    set.

    5.4.7Note

    Let(A, )beaPOset.(i) A hasatmostonegreatestandonesmallest

    element. (ii) There may be none, one, or several maximal (or minimal)

    elementsinaPOset.(iii)Everygreatestelementismaximal.(iv)Every

    smallestelementisminimal.

    5.4.8Example

    ConsiderthePOset(A, )=(R, )whereRisthesetofrealnumbers

    and" "istheusualorderonthesetofallrealnumbers.

    i) Write B =theinterval[0,3).ThenitisclearthatinfB =0and

    supB =3.

    ii) Write C =theinterval(0,3].ThenitisclearthatinfC=0and

    supC =3.

    iii) From(i)and(ii),wecanunderstandthattheinfimum(orsupremum)of

    aset X mayormaynotbeintheset X.

    iv) Consider D =N,thesetofnaturalnumbers.ItisclearthatinfD =1,

    butsupD doesnotexist.

    5.4.9Note

    i) Everychainislatticeordered.

    ii) Let(L, )bealatticeorderedsetand x, y L.Thenwehavethe

    following: x y sup{x,y}= y inf{x,y}= x.

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:128

    5.4.10Definition

    A lattice (L, , ) isaset L withtwobinaryoperations (calledas

    meetor product)and (calledasjoinorsum)whichsatisfythefollowing

    laws,forall x,y,z L:

    x y = y x,and x y = y x (Commutativelaws).

    x (y z)=(x y) z,andx (y z)=(x y) z (Associativelaws).

    x (x y)= xand x (x y)= x(Absorptionlaws).

    5.4.11Note

    Let(L, , )beanalgebraiclatticeandx L.

    i) x x = x

    ii) x x = x

    5.4.12Remark

    Suppose(L, )beanalgebraiclattice.Nowweverifythat

    x y = y x y = x forany x, y L.

    i) Suppose x y = y. Then x y = x (x y) (by the

    supposition)=x (byabsorptionlaw)

    ii) Supposex y = x.Then x y=(x y) y (bysupposition)=

    y (y x)(bycommutativelaw)= y (byabsorptionlaw).

    By(i)and(ii),wehavethatx y = y x y = x.

    5.4.13Problem

    Letaandbbetwoelements ina lattice(L,).Showthata b=b ifand

    onlyifa b=a.

    Solution:Part(i):Supposea b=b.Now

    a=a (a b) (byabsorptionlaw)

    =a b (supposition).

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:129

    Part(ii):

    Supposea b=a.

    Now

    b=b (b a) (byabsorption)

    =b (a b)(bycommutative)

    =b a(supposition)

    =a b(bycommutative)

    5.4.14Theorem

    Thefollowingtwoconditionsareequivalent.

    i) (L,)isapartiallyorderedsetinwhicheverypairofelementsa,binL,

    thelub{a,b}andglb{a,b}exist.

    ii) (L, , )beanalgebraicsystemsatisfyingcommutative,associative,

    absorptionandidempotentlawswithabifandonlyifa b=a.

    5.5Duality

    Duality:Theprincipleofdualityisanimportantconceptthatappearsinmany

    differentplacesandcontexts.Webeginwithsomesimpleillustration.Inthe

    United States, all passenger cars have the drivers seat at the left front.

    Consequently,weobservetrafficregulationssuchasthefollowing.

    Carsalwaystravelontherightsideofastreet

    Carsmaymakerightturnsataredlight.

    However,sinceallpassengercarsinIndiahavethedriversseatattheright

    front,theyobservetrafficregulationssuchasthese:

    Carsalwaystravelontheleftsideofastreet

    Carsmaymakeleftturnsataredlight.

    5.5.1DualityPrinciple

    Any expression involving the operations and which is valid in any

    lattice(L, , )remainsvalidifwereplace by ,and by everywherein

    theexpression.

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:130

    5.5.2Definition

    IfalatticeL containsasmallest(greatest,respectively)elementwithrespect

    to , thenthisuniquelydeterminedelement iscalledthezeroelement(unit

    element, respectively). The zero element is denoted by 0, and the unit

    elementisdenotedby1.Theelements0and1arecalleduniversallower

    anduniversalupperboundsrespectively.Iftheelements0and1exist,then

    wesaythatthelattice L isaboundedlattice.

    5.5.3Note

    (i)Ifalattice L isbounded(by0and1),thenevery x L satisfies

    0 x 1,0 x =0,0 x = x,1 x = x,and1 x =1.

    5.5.4Problem

    Supposethat L isalattice.Showthat

    i) Ifx1, x2,xn L,then x1 x2 xn Land x1 x2 xn L.

    ii) If L isafinitelattice,then L isbounded.

    Solution:

    i) Let x1, x2,xn L.Weprovethat x1 x2 xn L,byusing

    themathematicalinduction.If n=2,thensince L isalattice,weget

    that x1 x2 L.Nowassumetheinductionhypothesisthat x1, x2,

    xn1 L

    x1 x2 xn1 L.Supposethat x1, x2,xn L

    x1 x2 xn1 L and xn L (byinductionhypothesis)

    x1 x2 xn1 xn L (bythedefinitionoflattice).

    Bymathematicalinduction,weconcludethat x1 x2 xn L for

    anyinteger n and x1, x2,xn L.

    Inasimilarway,wecanprovethat x1 x2 xn L.

    ii) Supposethat L isafinitelatticewith m elements.

    Thenwecan take L = {x1, x2, xm}. By (i), x1 x2 xm ,

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:131

    x1 x2 xm L.Itisclearthat x1 x2 xm xi and xi

    x1 x2 xm for1 i m.

    Therefore x1 x2 xmisanupperboundforLandx1 x2 xmisalowerboundfor L.Thisshowsthat L isbounded.

    5.5.5Problem

    LetLbealattice,andx,y,z L.Then Lsatisfiesthefollowingdistributive

    inequalities:

    i) x (y z) (x y) (x z)

    ii) x (y z) (x y) (x z)

    Solution:

    i) Weknowthat x y x,and x y y y z.

    Sox y isalowerboundfor x and y z

    x y x (y z).

    Now x z x and x z z y z

    x z isalowerboundfor x and y z

    x z x (y z).

    Thereforex (y z)isanupperboundfor x yandx z.

    Thus(x y) (x z) x (y z).Thiscompletestheprooffor(i).

    ii) Weknowthat x x y and x x z

    x isalowerboundfor x y and x z

    x (x y) (x z).

    Also y z y x y andy z y x z

    y z isalowerboundfor x y and x z

    y z (x y) (x z).

    Therefore(x y) (x z)isanupperboundfor x and y z.

    Thus x (y z) (x y) (x z).

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:132

    5.6ModularandDistributiveLattices

    5.6.1Definition

    A lattice (L, , ) is called amodular lattice if it satisfies the following

    condition: x z x (y z)=(x y) z forall x, y, z L.

    Thisconditioniscalledas modularidentity.

    5.6.2Example

    ConsiderthelatticeL1={0,a,b,c,1}whoseHassediagramisgiven.This

    latticeL1 isamodularlattice.Thislatticecalledasdiamondlattice.

    5.6.3Example

    Consider the lattice L2 = {0,a,b,c,1} whoseHassediagram isgiven.

    ThislatticeL2 isnotamodularlattice.Since b c,bymodularlaw,

    wehavethat b (a c)=(b c) c b 0=1 c b = c,a

    contradiction.HenceL2 isnotamodularlattice.

    1

    0

    a cb

    0

    1

    b

    ac

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:133

    5.6.4Problem

    Alattice(L, , )isModularlattice

    x {y (x z)}=(x y) (x z)forall x,y,z L.

    Solution:SupposeL isamodularlatticeand x,y,z L.Since x x

    z,bymodularlaw,wehavethat x {y (x z)}=(x y) (x z).

    Converse:Suppose x {y (x z)}=(x y) (x z)forall x, y,

    z L.

    Let x,y, z L and x z.Then x z = z.

    Now x (y z)= x {y (x z)}(since z = x z)

    =(x y) (x z)(bytheconversehypothesis)

    =(x y) z.

    Thisshowsthat L isamodularlattice.

    5.6.5Definition

    Alattice L issaidtobeadistributivelatticeifitsatisfiesthefollowinglaws:

    (i)a (b c)=(a b) (a c),and(ii)a (b c)=(a b) (a c),for

    alla,b,c L.Thesetwolawsarecalledthedistributivelaws.

    5.6.6Example

    i) ForanysetX,thelattice(P(X), , )isadistributivelattice.

    ii) Everychainisadistributivelattice.

    1

    a

    b c

    0

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:134

    iii) Considerthelatticegivenbythediagram

    Nowb(cd)=b a=b,and(bc) (bd)=e e=e.Thereforethisisnot

    adistributivelattice.

    5.6.7Problem

    Provethatthefollowingpropertiesofalattice L areequivalent:

    i) a (b c)=(a b) (a c)forall a, b, c L

    ii) (a b) c = (a c) (b c)forall a, b, c L

    iii) (a b) (b c) (c a)=(a b) (b c)(ca)forall a, b, c L.

    Solution:(i) (ii):Supposea (b c)=(a b) (a c)foralla,b,c L

    (ac)(bc)=[(ac)b] [(ac)c] (by(i))

    =[(ac)b]c (bycommutativeandabsorptionlaws)

    =[(a b) (c b)] c (by(i))

    =(a b) [(c b) c] (byassociativelaw)

    =(a b) c (byabsorptionlaw).

    Thisproves(ii).

    (ii) (iii):Suppose(ii).

    (a b) (b c) (c a)=(a b) [(b c) (c a)]

    ={a[(bc)(ca)]}{b[(bc)(ca)]}(by(ii))

    ={a (b c)} {b (c a)}(bycommutative,associativeandabsorption)

    ={(a b) (a c)} {(b c) (b a)}(by(ii))

    =(a b) (b c) (c a)(byidempotentlaw)

    a

    e

    b dc

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:135

    (iii) (i): Supposethat a c.Then ab c b (ab)(cb)=

    (cb)..(A)Also a c= c.Now(a c) (b c)

    =(a c) [(a b) (c b)] (by(A))

    =(a b) (b c) (c a)

    =(a b) (b c) (c a)(by(iii))

    =(a b) (b c) c (since a c)

    =(a b) c (byabsorptionlaw).

    Nowweprovedthat(a b) c=(a c) (b c).

    Thisshowsthat(i)istrue.Thiscompletestheproof.

    5.6.8Problem

    IfLisadistributivelattice,thenitisamodularlattice.

    Solution:Assumethat L isadistributivelattice.Let x, y, z L and x z.

    Wehavethat(x y) (y z) (z x)=(x y) (y z) (z x).

    Since x z,wehavethat x z = x and x z = z,andso

    (x y) (y z) x =(x y) (y z) z .

    Thisimplies x (y z)=(x y) z (byabsorptionlaws).

    Thisshowsthat L isamodularlattice.

    Theconverseof theaboveproblemisnottrue.That is, thereexistmodular

    lattices which are not distributive. The following example is a modular

    lattice,butnotdistributive.1

    0

    a cb

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:136

    5.6.9Problem

    Foragivenlattice L,thefollowingtwoconditionsareequivalent:

    (a) x(yz)=(x y)(xz),and

    (b) x (y z)=(x y)(x z)forallx,y,z L.

    Solution:Supposethat x (y z)=(x y) (x z)(i).Now

    (x y) (x z)=[(x y) x] [(x y) z](by(i))

    =x [(x y) z] (by commutative and absorptionlaws)

    =x [z (x y)] (bycommutativelaw)

    =x [(z x) (z y)] (by(i))

    =[x (z x)] [z y] (byassociativelaw)

    =x (z y) (by commutative andabsorption law)

    Supposethat x (y z)=(x y) (x z)(ii).

    Now(x y) (x z)= [(x y) x] [(x y) z](by (ii))

    = [(x y) z](bycommutativeandabsorptionlaws)

    = x [z (x y)] (bycommutativelaw)

    = x [(z x) (z y)] (by(ii))

    =[x (z x)] [z y] (byassociativelaw)

    = x (z y) (bycommutativeandabsorptionlaw).

    Therefore x (z y)=(x y) (x z).

    Thiscompletestheproof.

    5.6.10Definition:

    AlatticeLwith0and1iscalledcomplementedifforeachx L thereexists

    atleastoneelementysuchthatx y=0and x y=1.Eachsuch y is

    calledacomplementof x.Wedenotethecomplementof x by x1.

    5.6.11Example

    i) Inaboundedlattice,1isacomplementof0,and0isacomplementof1

    ii) Everychainwithmorethantwoelementsisnotacomplementedlattice.

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:137

    iii) The complement need not be unique. For example, in the diamond

    lattice, both the two elements b and c, are complements for the

    element a.

    5.6.12Problem

    Inadistributivelattice,ifanelementhasacomplement,thenitisunique.

    Solution:

    Supposethatanelementahastwocomplements,saybandc.Thatis,

    a b=1,a b=0,a c=1,a c=0.

    Wehaveb=b 1 (since1istheuniversalupperbound)

    =b (a c) (sincea c=1)

    =(b a) (b c) (bythedistributivelaw)

    =(a b) (b c) (since iscommutative)

    =0 (b c) (sincea b=0)

    =(a c) (b c) (sincea c=0)

    =(a b) c (bydistributivelaw)

    =1 c (sincea b=1)

    =c (since1istheuniversalupperbound).

    Thereforethecomplementisunique.

    5.6.13Definition

    Let L bealatticewithzero.Anelement a L issaidtobeanatomif

    a 0andifitsatisfiesthefollowingcondition:bL,0

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:138

    2. Determine which of the following are equivalence relations and / or

    partialorderingrelationsforthegivensets

    i) S={linesintheplane}xRy xisparalleltoy

    ii) N={setofnaturalnumbers}xRy |xy| 5.

    3. Determinewhichofthefollowingarepartialorder?

    i) R1={(a,b) ZxZ/|ab| 1}onZ

    ii) R2={(a,b) ZxZ/|a| |b|}onZ

    iii) R3={(a,b) ZxZ/adividesbinZ}onZ

    iv) R4={(a,b) ZxZ/ab 0}

    4. DefinearelationRonZ,thesetofallintegersas:aRb a+biseven

    foralla,b Z. IsRapartialorderrelationonZ?

    5. Let A= {1, 2, 3, 4, 5, 6}. The relation | (divides) isa partial order

    relationonA.DrawtheHassediagramof(A,|).

    6. Let S = {a, b, c}. Define on P(S), the power set of S as set

    inclusion.DrawtheHassediagramforthepartiallyorderedset(P(S), ).

    7. Findtheatomsinthefollowinglattice.

    5.7Summary

    Thestructuresofpartial orderedsetsand latticesareuseful in sortingand

    searchprocedures,andconstructionsoflogicalrepresentationsforcomputer

    circuits. The diagrammatic forms of lattices are useful in search, path

    a

    g

    b

    e

    c

    d

    f

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:139

    procedures.Weobservedtheinterrelationsbetweenthealgebraicstructures

    POsets and Lattices and obtained some of their important equivalences.

    TheseconceptsarebasefortheBooleanalgebraandlogicalcircuits.

    5.8TerminalQuestions

    1. Consider thepartialorderedsetS = {1, 2, 3,4,5,6,7, 8}under the

    relationwhoseHassediagramsshownbelow. Consider thesubsets

    S1={1,2},S2={3,4,5}ofA.Find(i).Allthelowerandupperbounds

    of S1andS2

    (ii).glbS1,lubS1,glbS2,lubS2.

    2. Verifywhetherornotthefollowingaremodularlattices.

    3 21o o

    4

    6

    oo

    o o

    o

    o

    8

    7

    5

    u

    c ba

    0

    o

    o

    o oo

    (i)

    a

    u

    o

    o

    o

    (ii)0

    o

    o

    o

    (ii)

    a

    o

    c

    b

    o

    0

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:140

    3. ConsiderthelatticeA={0,a1,a2,a3,a4,a5,1}givenbelow.

    i) IsAisadistributivelattice

    ii) Whatarethecomplementsofa1anda2

    3. Writethecomplementsa,bandc fromthegivenlattice.

    5.9Answers

    SelfAssessmentQuestions

    1. (i) No(ii).No

    2. (i) It is anequivalance relation, but not partial orderingasR isnot

    antisymmetric.

    (ii) Nottransitiveandsoitisneither.

    3. (i) No,(ii).No,(iii).No,(iv).Yes.

    4. Notapartialorderrelation. (Reason:1R3(since1+3 iseven),3R1

    (since3+1iseven),but13).

    0

    b

    a

    c

    1

    o

    o

    oo

    o

    a1

    a4

    a3oo

    o o

    o

    o

    o

    1

    a5

    a2

    0

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:141

    5.

    6.

    7. eandfareatoms

    TerminalQuestions

    1. UpperboundsofS1are3,4,5,6,7and8

    LowerboundsofS1arenone.

    glb(S1):none

    lub(S1):none

    UpperboundsofS2are6,7and8

    LowerboundsofS2are1,2and3

    glb(S2)=3

    lub(S2)=none.

    2. (i) Modularlattice

    4

    5

    o

    o

    6

    32

    1

    o

    o

    o o

    {a,b}

    {a} {b}{c}

    {a,c}{b,c}

    {a,b,c}

    f

    o

    o

    oo

    o

    o

    o

    o

  • DiscreteMathematics Unit5

    SikkimManipalUniversity PageNo:142

    (ii) Notamodularlattice,sinceforb c,bymodularlaw

    b (a c)=(b c) c b 0=c c b=c,acontradiction.

    3. (i) Aisnotadistributivelattice.

    (ii) Thecomplementofa1anda2area5anda4 respectively.

    4. Complementof a = cComplement of b = cComplement of c are a

    andb.