34
Discrete Mathematics Unit 2 Sikkim Manipal University Page No: 41 Unit 2 Mathematical Induction Structure 2.1 Introduction Objectives 2.2 Progressions 2.3 Principle of Mathematical Induction 2.4 Summation of series using n, n 2 and n 3 . 2.5 Arithmetico – Geometric series (A.G.P) 2.6 Summation of series by the Method of Differences and partial fractions Self Assessment Questions 2.7 Summary 2.8 Terminal Questions 2.9 Answers 2.1 Introduction Here we discussed ways in which statement can be linked to form a logically valid argument. The principle of Mathematical induction has a very special place in mathematics because of its simplicity and vast amount of applications. This unit acts as foundations on which all mathematical knowledge is built. Objectives At the end of this unit the student should able to: Identify different types of progressions State and apply the concept of mathematically induction Find the sum of the series

MC0063(a) Unit2 Final

Embed Size (px)

DESCRIPTION

File

Citation preview

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:41

    Unit2 MathematicalInduction

    Structure

    2.1 Introduction

    Objectives

    2.2 Progressions

    2.3 PrincipleofMathematicalInduction

    2.4 Summationofseriesusing n, n2and n3.

    2.5 ArithmeticoGeometricseries(A.G.P)

    2.6 Summation of series by the Method of Differences and partial

    fractions

    SelfAssessmentQuestions

    2.7 Summary

    2.8 TerminalQuestions

    2.9 Answers

    2.1Introduction

    Herewediscussedwaysinwhichstatementcanbelinkedtoformalogically

    validargument.TheprincipleofMathematical inductionhasaveryspecial

    place in mathematics because of its simplicity and vast amount of

    applications. This unit acts as foundations on which all mathematical

    knowledgeisbuilt.

    Objectives

    Attheendofthisunitthestudentshouldableto:

    Identifydifferenttypesofprogressions

    Stateandapplytheconceptofmathematicallyinduction

    Findthesumoftheseries

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:42

    2.2Progressions

    2.2.1Definition

    Afunction RN:f iscalledasequenceofrealnumbersdenotedby

    ( ) { } ( ) ( ) ( ) { } ....nf....2f,1fnf = Where ( ) nf is called the nth term of thesequence.Asequencemayalsobedenotedby ( ) na or ( ) nu where na or

    nu isthe nthtermofthesequence.

    2.2.2Definition

    If ( ) nu isasequence, then un =u1 +u2 ++un+ iscalledaserieswhichmaybefiniteorinfiniteaccordingasthenumberoftermsinitisfinite

    orinfinite.

    2.2.3ArithmeticProgression(A.P.)

    Asequenceoftheform ,...d1na......,d2a,da,a - + + + iscalled

    an P.A . whose first term is a, common difference is d and nth term

    denotedby d1natn - + = .

    If nS denotesthesumofthefirstn termsoftheabove P.A ,then

    ( ) ( ) d1na......daaSn - + + + + + = [ ] ( ) la

    2nord1na2

    2n + - + =

    where = l thelastterm ntd1na = - + =

    Observations:

    i) 1nn ttd - - = isindependentof n ,aconstant.

    ii) If each term of an P.A is multiplied or added by a constant the

    resultingsequenceisalsoin P.A

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:43

    iii) If the corresponding terms of two P.A s are added, the resulting

    sequenceisalsoin P.A .

    iv) If b,A,a are in P.A , thenA is called thearithmeticmeanbetween

    theextremes banda isgivenby2

    baA

    + =

    v) If b,x...,x,x,a n21 arein P.A , then n21 x...,x,x arethe n AMs

    between banda ,andtheirsum ( ) ba2nSn + =

    2.2.4GeometricProgression(G.P.)

    A sequence of the form ...,ar.......ar,ar,a 1n2 - is called a P.G .

    Whosefirsttermisa ,commonratiois randthe nth term 1nn art - = .

    If nS denotesthesumofthefirstn termsoftheabove P.G ,then

    1nn ar.........araS

    - + + + =

    1r,1r

    1raor

    r1

    r1a nn

    -

    -

    -

    -

    =

    OrSn 1rifna = = .

    Also ( ) 1r1ralr

    r1lra

    Sn - -

    = - -

    = where = l thelastterm 1nn art - = =

    If < nand1r , then the sum S of infinite P.G isr1

    aS -

    =

    0rSince n

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:44

    Observations:

    i) att

    r1n

    n = = -

    termindependentof an = constantratio

    ii) If each term of a P.G is multiplied by a constant, the resulting

    sequenceisalsoin P.G

    iii) If b,G,a arein P.G ,theGiscalledthegeometricmeanbetweenthe

    extremesa andb andisgivenby abG = .

    iv) If b,x......x,x,a n21 arein P.G ,then n21 x.......x,x arethe

    n M.G sbetweena andb andthe

    v) 1kk

    thabaM.Gk +

    =

    vi) Alsoproductofthe n G.Ms ( )2nab =

    2.2.5HarmonicProgression(H.P.)

    Asequenceoftheform ,d1na

    1,...,d2a

    1,da

    1,a1

    - + + +

    isa P.H whosenth term ( ) d1na1

    tn - +

    =

    Observations:

    i) Thereisnoformulatofindthesumofthefirst n termsofthe P.H

    ii) If b,H,a are in P.H ., then H is the harmonicmeanbetween the

    extremesa andb andisgivenbyba

    ab2H +

    =

    iii) Problems on P.H . are solved by dealing with the corresponding

    P.A .

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:45

    2.2.6Example Findthe nthtermofthefollowingseries

    (a) 1+3+5+7+..

    (b) 7+315+..

    (c) 1+23 +2+

    25+...

    (d) 1+3+9+27+..

    Solution:theseriesgivenin

    (a) Formsan P.A inwhich

    ( ) 1n221n1tand2d,1a n - = - + = = = .(b) Forms an P.A in which

    ( ) ( ) n41141n7t,4d,7a n - = - - + = - = = (c) Formsan P.A inwhich

    ( ) ( ) .1n21

    211n1t,

    21d,1a n + = - + = = =

    (d) Formsa P.G inwhich 1n1nn 33.1t,3r,1a - - = = = =

    2.2.7Example:Findthe thn termofthefollowingseries

    (a) + + + 222 531 . (b) 1.4 + 4.7 + 7.10 +

    (c) + + + 11.8

    18.5

    15.2

    1 ..

    Solution:Thegivenseriesareneitherin P.A ., P.G .norin P.H .These

    arespecialtypesofseries.

    In(a) + + + 222 531 .,thebasesineachtermnamely1,3,5,form

    an P.A . whose nth term 1n2 - = by Ex. 1(a) above. Hence, nth term

    ofthegivenseriesis ( ) 2n 1n2t - = i.e., ( ) 2222 1n2.......531 - + + + + .In(b)1.4+4.7+7.10+.., thefirstfigure ineachtermviz.,1,4,7, ...

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:46

    forms an P.A whose nth term ( ) 2n331n1 - = - + = and the secondfigure in each term viz., 4, 7, 10, forms an P.A . whose nth term

    ( ) 1n331n4 + = - + = . Hence nth term of the given series is ( ) ( ) 1n32n3tn + - =

    In (c) + + + 11.81

    8.51

    5.21 , in each term numerator is 1 and in

    denominator thecorrespondingfiguresare2.5,5.8,8.11,...As before the

    first figure in each term viz 2, 5, 8, forms an P.A whose nth term

    ( ) 1n331n2 - = - + = andthesecondfigure ineachtermviz.,5,8,11,formsan P.A .whose nth term ( ) 2n331n5 + = - + = .Hencethe nthtermofthegivenseriesis

    ( )( ) 2n31n31

    tn + -

    =

    2.2.8Example: Ifthe thp termofan P.A is q and thq termis p ,show

    that ( ) thqp + termiszero.Solution: Let ...,d2a,da,a + + be the given P.A whose nth term

    ( ) .d1natn - + = Byhypothesis,wehave

    ( ) ( ) pd1qatandqd1pat qp = - + = = - + = Solvingtheseequations,weget

    1d,1qpa - = - + =

    Hence ( ) d1qpat qp - + + = + ( ) ( ) ( ) 11qp1qp - - + + - + = 0 =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:47

    2.2.9 Example: If ththth r,qp terms of an P.A are respectively a, b, c

    provethat ( ) ( ) ( ) 0qpcprbrqa = - + - + - Solution:LetA andD bethefirsttermandcommondifferencerespectively

    ( ) )i(aD1pAtHence p = - + = ( ) )ii(bD1qAtq = - + = ( ) )iii(cD1rAtr = - + =

    Multiplying (i), (ii), and (iii) respectively by pr,rq - - and qp - and

    addingweget

    ( ) ( ) ( ) { } qpprrqAqpcprbrqa - + - + - = - + - + - ( )( ) ( )( ) ( )( ) { } qp1rpr1qrq1pD - - + - - + - - +

    ( ) ( ) ( ) 0qpcprbrqaTherefore = - + - + - 2.2.10Example:The4th,7thand10th termsof P.G .area,b,crespectively

    showthat acb2 =

    Solution:LetAbethefirsttermandRthecommonratioofthegiven P.G .,

    where 1nn ARt - =

    Thenbyhypothesis,

    ct,bt,at 1074 = = =

    i.e. cAR,bAR,aAR 963 = = =

    Now, acARARRAb 931222 =

    = =

    2.3PrincipleofMathematicalInduction

    Mathematical induction is the process of proving a general theorem or

    formulainvolvingthepositiveinteger n fromparticularcases.

    Aproofbymathematicalinductionconsistsofthefollowingtwosteps.

    (i) Showbyactualsubstitutionthatthetheoremistruefor 1n =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:48

    (ii)Assumingthetheoremtobetruefor mn = ,provethatitisalsotruefor

    1mn + =

    Notethatherem isaparticularvalueof n .From(i)thetheoremistruefor

    1n = and from (ii) it is true for 211n = + = since it is true for 2n = it

    follows from (iii) that it is also true for 312n = + = and so on. Hence

    theoremistrueforallpositiveintegralvaluesof n .

    2.3.1Example:Provebymathematicalinductionthatthesumofthefirst n

    naturalnumbersis ( ) 2

    1nn +

    Solution

    Thatistoprovethat1+2+3+.+ = n ( ) 2

    1nn +

    (i) For 1n = ,leftside=1,rightside ( )

    12

    111 =

    + =

    Hencetheresultistruefor 1n =

    (ii) Nowassumethattheresulttobetruefor mn = ,then1+2+3+.

    ( ) 2

    1mmm

    + = (Inductionhypothesis)

    We now show that the above result is true for 1mn + = . Adding the

    ( ) th1m + termviz., 1m + tobothsidesweobtain.

    1+2+3+.+ ( ) ( ) ( ) 1m2

    1mm1mm + +

    + = + +

    ( ) ( ) ( ) 2

    2m1m1

    2

    m1m

    + + =

    + + =

    ( ) ( ) 2

    11m1m + + + =

    Whichisthesameasthegivenresultfor 1mn + =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:49

    Hence by mathematical induction, the result is true for all + ve integral

    valuesof n .

    2.3.2Example:Provebymathematicalinductionthat

    ( )( ) 6

    1n21nnn......321 2222

    + + = + + + +

    Solution:

    (i) If 1n = ,leftside 112 = = .

    rightside ( )( )

    16

    3.2.1

    6

    11.2111 = =

    + + =

    Hencetheresultistruefor 1n = .

    (ii) Nowassumethattheresulttobetruefor mn =

    Then ( ) ( )

    6

    1m21mmm.........321 2222

    + + = + + +

    (inductionhypothesis)

    Adding the ( ) th1m + term i.e. ( ) 21m + to both sides of the aboveequation,weget,

    ( ) ( ) ( ) ( ) 22222 1m6

    1m21mm1mm.......21 + +

    + + = + + + + +

    ( ) ( ) ( ) { } 1m61m2m6

    1m + + +

    + =

    ( )

    + +

    + = 6m7m2

    6

    1m 2

    ( )( ) ( ) 6

    3m22m1m + + + =

    ( ) ( ) ( ) ( ) 6

    11m211m1m + + + + + =

    Thereforetheresultistruefor 1mn + = .Hencebymathematicalinduction

    thegivenresultistrueforallpositiveintegers n .

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:50

    2.3.3Example:Provebymathematicalinductionthat

    ( ) 4

    1nnn........321

    223333 + = + + + +

    Solution:

    (i) For 1n = ,leftside 113 = =

    rightside ( )

    144.1

    4111 22

    = = +

    =

    Henceitistruefor 1n =

    (ii) Assumetheresulttobetruefor mn =

    Then ( )

    4

    1mmm........321

    223333 + = + + + +

    (inductionhypothesis)

    Addingthe ( ) th1m + termviz., ( ) 31m + tobothsides,

    ( ) ( ) ( ) 322

    3333 1m4

    1mm1mm........21 + +

    + = + + + + +

    ( )

    + +

    + = 4m4m

    4

    1m 22

    ( ) ( ) 4

    2m1m 22 + + =

    ( ) ( ) 4

    11m1m 22 + + + =

    Therefore The result is true for 1mn + = . Hence by mathematical

    inductionthegivenresultisestablishedforall+veintegers.

    2.3.4Example:Provebymathematicalinduction

    ( ) ( ) 4n6n

    2n31n3

    1......

    11.8

    1

    8.5

    1

    5.2

    1

    + =

    + - + + + +

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:51

    Solution:

    (i) If 1n = ,leftside10

    1

    5.2

    1 = =

    rightside10

    1

    41.6

    1 =

    + =

    Thereforetheresultistruefor 1n =

    (ii) Assumetheresulttobetruefor mn =

    Then

    ( ) ( ) 4m6m

    2m31m3

    1.....

    11.8

    1

    8.5

    1

    5.2

    1

    + =

    + -

    + + + +

    Addingthe ( ) th1m + term,viz., ( ) ( ) 5m32m3

    1

    + + tobothsides.

    Wehave,

    ( )( ) 5m32m31

    ......8.5

    1

    5.2

    1

    + + + + +

    ( )( ) 5m32m31

    4m6

    m

    + + +

    + =

    ( ) ( ) ( ) 5m32m32

    25m3m

    + +

    + + =

    ( ) ( ) 5m32m322m5m3 2

    + +

    + + =

    ( )( ) ( ) ( ) 5m32m32

    2m31m

    + +

    + + =

    10m61m

    + +

    =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:52

    Thisisthevalueof4n6

    n

    + when 1m + issubstitutedfor n

    Thereforethepropositionistrueforall+veintegralvaluesof n

    2.3.5Example:Provebymathematicalinductionthat n2n > forallpositive

    integern

    Solution:

    Let ( ) nP be the given proposition. Now ( ) 1P implies 2 > 1which is true.Hence ( ) 1P istrueLetusassumethat ( ) mP istrue.Thatis m2m > (inductionhypothesis)Consider m22.22 m1m > = + byinductionhypothesis.

    Weknowthat 1mmmm2 + + = forall Nm

    1m2Therefore 1m + > +

    Hence ( ) 1mP + istrue.Thereforebyinduction ( ) nP istrueforall n .2.3.6Example:Showbyinductionthat ( ) ( ) 1n21nn + + isdivisibleby6.Solution:

    Let ( ) ( ) ( ) 1n21nnnP + + = Now ( ) ( ) ( ) 61211.11P = + + = whichisdivisibleby6.Assumethat ( ) mP isdivisibleby6.

    i.e., ( ) ( ) 1m21mm + + isdivisibleby6.i.e. ( ) ( ) k61m21mm = + + forsomeintegerk.

    Consider

    P(m+1)=(m+1)[(m+1)+1][2(m+1)+1]

    ( ) ( ) ( ) 3m22m1m + + + =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:53

    ( )( ) ( ) 21m22m1m + + + + = ( ) ( ) ( ) ( ) ( ) 2m1m21m22m1m + + + + + + =

    ( )( ) ( ) ( ) ( ) ( ) 2m1m21m21m21m21mm + + + + + + + + = ( ) ( ) 3m31m2k6 + + + = byinductionhypothesis ( ) 21m6k6 + + =

    Sinceeachterm ontheR.H.Sisdivisibleby6theirsumisalsodivisibleby6.

    Hence ( ) 1mP + isdivisibleby6.Thereforebyinduction ( ) nP isdivisibleby6forall Nn

    Example 2.3.7: Using the principle of mathematical induction show that

    110 1n2 + - isdivisibleby11forall Nn

    Solution:

    Let ( ) 110nP 1n2 + = -

    Now ( ) 111101P 12 = + = - ,whichisdivisibleby11.

    Assume that ( ) 110mP 1m2 + = - which is divisible by 11. Therefore ( ) k11110mP 1m2 = + = - forsomeintegerk.

    Consider ( ) ( ) 1101101mP 1m211m2 + = + = + + - +

    ( ) ( ) 1m221m2 101010mP1mPTherefore - + - = - + 1m221m2 101010 - - - =

    - = - 11010 21m2

    ,9910 1m2 = - whichisclearlydivisibleby11.

    Therefore ( ) ( ) 9910mP1mP 1m2 + = + -

    9910k11 1m2 + = -

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:54

    Therefore ( ) 1mP + isdivisibleby11.Hencebytheprincipleofmathematicalinduction ( ) nP isdivisibleby11forall n .

    2.4Summationofseriesusing n, n2and n3.

    Nowweknowthefollowingresults:

    ( )

    + = = + + + +

    2

    1nnnn..........321

    ( ) ( )

    + + = = + + + +

    6

    1n21nnnn......321 22222

    ( ) ( ) 4

    1nn

    2

    1nnnn....321

    22233333 + =

    + = = + + +

    2.4.1Note: ( ) = 23 nnThefollowingexampleswillillustratesomesimpleapplicationsoftheabove

    resultstofindthesumoftheseries.

    2.4.2Example: Findthesumof

    (i) 3333 20.....321 + + + + , (ii) 3333 30....232221 + + + +

    Solution:

    Weknowthat ( )

    +

    = + + + + = 4

    1nnn....321n

    2233333 .

    Therefore,onputting ,20n = weget

    ( ) ( ) 223333 21202120......321 = + + + +

    44100 = (i)

    andonputting 30n = ,weget

    ( ) ( ) 22333333 31304130.......2120......321 = + + + + + + +

    216225 = (ii)

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:55

    From(i)and(ii),weget

    Therefore 4410021622530.....2221 333 - = + + +

    172125 =

    2.4.3Example:Findthesumofthesquaresofthefirst n oddintegers.

    Solution:

    Thefirstn oddintegersare1,3,5,7 ( ) 1n2 - .Therefore ( ) 2222n 1n2.....531S - + + + + =

    ( ) 21n2 - =

    + - =

    + - = 1n4n41n4n4 22

    ( ) ( ) ( ) n

    2

    1nn4

    6

    1n21nn4 +

    + -

    + + =

    ( ) ( ) ( ) { } 31n61n21n23n + + - + + =

    - = 1n4

    3n 2

    2.4.4Example: Sumtontermstheseries.

    ......7.55.33.1 222 + + +

    Solution:

    Herethenthtermoftheseries ( ) ( ) 21n21n2 + - = .Therefore, ( ) ( ) 2222n 1n21n2.....7.55.33.1S + - + + + + =

    ( ) ( ) + - = 21n21n2

    - - + = 1n2n4n8 23

    - - + = 1n2n4n8 23

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:56

    ( ) ( ) ( ) ( ) n

    21nn2

    61n21nn4

    41nn8 22

    - +

    - + +

    + +

    =

    ( ) ( ) ( ) ( )

    - + - + + + + = 31n31n21n21nn6

    3n 2

    - - - = + + + + = 33n32n6n4n6n12n6

    3n 223

    - - + = 4n9n16n6

    3n 23

    2.4.5Example: Sumthefollowingserieston terms

    .....4.33.22.1 222 + + +

    Solution:

    Herethenthtermoftheseriesis ( ) 1nnt 2n + = .Therefore, ( ) 1nn......4.33.22.1S 2222n + + + + + =

    ( ) + = 1nn2

    + = 23 nn

    + = 23 nn

    ( ) ( )( ) 6

    1n21nn4

    1nn 22 + + +

    + =

    ( ) ( ) ( ) [ ] 1n221nn312

    1nn + + +

    + =

    ( ) 12

    2n7n31nn 2

    + + +

    =

    ( ) ( ) ( ) 12

    1n32n1nn + + + =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:57

    2.4.6Example: Sumtheseries1.2+3.5+5.8+.ton terms.

    Solution:

    Here,the nth termoftheseriesis ( )( ) 31n212n1tn - + - + = ( ) ( ) 1n31n2 - - =

    Let nS denotethesumto n termsofthegivenseries.

    Therefore, - - = )1n3()1n2(Sn

    + - = 1n5n6 2

    + - = 1n5n6 2

    ( )( ) ( ) n

    2

    1nn.5

    6

    1n21nn.6 +

    + -

    + + =

    ( )( ) ( ) n1nn251n21nn + + - + + =

    ( )( ) ( ) [ ] 21n51n21n22n + + - + + =

    - + = 1nn4

    2n 2

    2.4.7Example: Findthesumton termsoftheseries

    1.2.3+2.3.4+3.4.5+.

    Solution:

    Herethenthtermoftheseriesis ( )( ) 2n1nntn + + = .Therefore, = nn tS

    ( ) ( ) + + = 2n1nn

    + + = n2n3n 23

    + + = n2n3n 23

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:58

    ( ) ( )( ) ( ) 2

    1nn.2

    61n21nn

    .34

    1nn 22 + +

    + + +

    + =

    ( ) ( ) ( ) ( ) 1

    1nn2

    1n21nn4

    1nn 22 + +

    + + +

    + =

    ( ) ( ) ( ) [ ] 41n221nn.4

    1nn + + + +

    + =

    ( ) 4

    6n5n1nn 2

    + + +

    =

    ( ) ( ) ( ) 4

    3n2n1nn + + + =

    2.4.8Example: Findthesumton bracketsoftheseries

    (1)+(1+2)+(1+2+3)+

    Solution:

    Forthegivenseries, nthbracket n....321 + + + + =

    ( ) n

    21n

    21

    2

    1nn 2 + = +

    =

    Thereforesumton terms = + n21n

    21 2

    ( ) ( ) ( ) 4

    1nn

    12

    1n21nn + +

    + + =

    ( ) ( ) [ ] 31n212

    1nn + +

    + =

    ( ) ( ) 6

    2n1nn + + =

    2.4.9Example: Findthesumofthefollowingserieston terms.

    ....531

    321

    31

    21

    11

    333333 +

    + +

    + + +

    +

    + +

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:59

    Solution:

    The nth termofthegivenseriesis

    ( )

    ( )

    ( ) [ ] ( )

    4

    1n

    1n212n

    4

    1nn

    1n2....531

    n......321t

    2

    22

    3333

    n +

    = - +

    +

    = - + + + +

    + + + + =

    41n

    21n

    411n2n

    41 22 + + =

    + + = .

    Therefore ( ) ( ) ( )

    n41

    2

    1nn.

    21

    6

    1n21nn.

    41Sn +

    + +

    + + =

    ( )( ) ( ) [ ] 61n61n21n24n + + + + + =

    + + = 13n9n2

    24n 2

    2.5ArithmeticoGeometricseries(A.G.P)

    Aseriesoftheform

    ( ) ( ) ( ) ...rd1na...rd2arda1.a n2 + - + + + + + + + Inwhicheach term is theproduct of corresponding terms inanarithmetic

    andgeometricseriesiscalledanArithmeticoGeometricseries.

    Forexample

    i) Theseries + + + + 32 x7x5x31 ...formsanA.G.P.sinceeachtermis

    the corresponding terms of the A. P 1, 3, 5, 7 and the G.P

    32 x,x,x,1 ,

    ii) Since1, 4, 7, 10 ,are inA.Pand2,4,8,16are inG.P the

    series1x2+4x4+7x8+10x16+..i.e.,2+16+56+160+

    ...formsanA.G.P.

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:60

    iii) The series ......647

    165

    431 + + + + formsanA.G.P since 1, 3, 5, 7

    areinA.Pand32 4

    1,4

    1,41,1 ,.areinG.P.

    2.5.1ThesumoftheFirstntermsofanArithmeticoGeometricseries

    ThefirstntermsofthegeneralA.G.Pare

    ( ) ( ) ( ) 1n2 rd1na,...,rd2a,rda,a - - + + + LetSnbethesumofntermsofthisseries.Then,wehave

    ( ) ( ) ( ) ( ) 1n2n2n rd1nard2na....rd2ardaaS - - - + + - + + + + + + + = Multiplyingbothsidesbyr,

    ( ) ( ) ( ) n1n2n rd1nard2na.....rd2aarS.r - + + - + + + + + = -

    Bysubtraction

    ( ) ( ) n1n2n rd1nadr...........drdraSr1 - + -

    + + + + = - -

    ( ) n2n rd1nar.....r1dra - + -

    + + + + = -

    ( ) n1n

    rd1nar1

    r1dra - + -

    -

    -

    + =

    -

    ( ) ( ) ( )

    r1

    rd1na

    r1

    dr

    r1

    drr1

    aSThereforen

    2

    n

    2n -

    - + -

    - -

    - +

    - = (1)

    Ifrisnumericallylessthan1,then nas0rn

    ThereforeS,thesumtoinfinityis ( ) 2r1

    drr1

    a

    - +

    - (2)

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:61

    2.5.2Example:

    sum nto...............x7x5x31 32 + + + + terms.

    Solution

    Here1,3,5,7..areinA.Pwhosenth term ( ) 21n1 - + = 1n2 - =

    and1, 2x,x ,areinG.P.whosenth term 1nx.1 - = .Hence,nth termof

    thegivenseriesis ( ) .x1n2t 1nn - - = Let nS bethesumof n termsofthegivenseries.Then,wehave

    ( ) ( ) 1n2n32n x1n2x3n2.....x7x5x31S - - - + - + + + + + = Multiplybothsidesbythecommonratiox

    ( ) ( ) n1n32n x1n2x3n2.....x5x3xS.x - + - + + + + = - Bysubtraction,

    ( ) ( ) n1n2n x1n2x2.....x2x21x1S - - + + + = - -

    ( ) n2n2 x1n2x.....xx1x21 - -

    + + + + + = -

    ( ) n1n

    x1n2x1

    x1x21 - -

    -

    -

    + =

    -

    Therefore ( ) ( )

    x1x1n2

    x1

    x1x2

    x11S

    n

    2

    1n

    n - -

    - -

    -

    + -

    =

    -

    Aliter:

    Here xr,2d,1a = = = .HenceusingtheformulaforSngivenin(1),we

    have

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:62

    ( ) ( ) ( )

    x1

    x1n2

    x1

    x2

    x1

    x2x1

    1Sn

    2

    n

    2n -

    - -

    - -

    - +

    - =

    If x isnumericallylessthan1,then nas0xn

    ThereforeS,thesumtoinfinity ( ) 2x1

    x2x1

    1

    - +

    - =

    2.5.3Example:sum ......a3a21 2 + + + tonterms.Alsofindthesumto

    infinity,if 1a <

    Solution

    Let nS bethesumtontermsofthegivenseries.Then

    1n2n a.n.....a3a21S

    - + + + + =

    Multiplyingbythecommonratioa bothsides

    n2n na....a2aS.a + + + =

    Bysubtraction,

    ( ) n1n2n naa.....aa1Sa1 - + + + + = - -

    nn

    naa1a1

    - -

    - =

    Therefore ( ) a1na

    a1

    a1S

    n

    2

    n

    n - -

    -

    - =

    If ,1a < then 0an as n

    Therefore,thesumtoinfinityis ( ) 2a11

    -

    2.5.4Example: Sum .....647

    165

    431 + + + + toinfinity

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:63

    Solution:

    LetSbethesumtoinfinityofthegivenseries.Then

    + + + + = 32 4

    7

    4

    5431S ..

    Multiplyingbothsidesbyc.r.41

    32 4

    5

    4

    341S

    41 + + = +.

    Subtracting,weget

    + + + + =

    - infinityot.....

    4

    2

    4

    2

    4

    21S

    4

    11

    32

    211

    4

    21

    4

    2

    1 = + =

    -

    + =

    i.e. 2S43 = Therefore

    38S =

    2.5.5Example: Sumtontermstheseries

    .....9

    10

    9

    7941

    32 + + + + andshowthat

    thesumtoinfinityoftheseriesis6499 .

    Solution:

    Let nS bethesumofthegivenseries.Then

    Sn= .....9

    10

    9

    7941

    32 + + + +

    1nn 9

    2n3

    9

    5n3 -

    - +

    - +

    Multiplyingbythec.r.91 bothsides,

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:64

    n1n32n 9

    2n3

    9

    5n3........

    9

    7

    9

    491S

    91 - +

    - + + + + =

    -

    Bysubtraction,

    n1n32n 9

    2n3

    9

    3......9

    3

    9

    3931S

    911

    - -

    + + + + + =

    -

    -

    n2n2 9

    2n3

    9

    1......9

    1911

    931

    - -

    + + + + + =

    -

    n

    1n

    9

    2n3

    911

    9

    11.

    931

    - -

    -

    - + =

    -

    n1nn 9

    2n3

    9

    11

    8

    31S

    9

    8Therefore

    - -

    - + =

    -

    8

    9

    9

    2n3

    9

    11

    64

    27

    8

    9STherefore

    n1nn

    - -

    - + =

    -

    .9.8

    2n3

    9.64

    36499

    1n2n

    - + - =

    - -

    Since < nas,191 ,thesecondtermontherighttendstozero.

    Therefore S ,thesuminfinityis6499 .

    2.6SummationofseriesbytheMethodofDifferences

    Let .....uuuuu 4321n + + + + = be given series in which the law offormationoftheseriesisnotgiven.Insuchcaseweobtainanewseriesby

    subtractingeachtermfromthesucceedingtermofthegivenseriesnamely

    ( ) ( ) ( ) ......uuuuuu 342312 + - + - + -

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:65

    Which is called the series of the first order of differences which may be

    eitheran P.A ora P.G .Thesedifferencesmaybeconvenientlydenotedby

    n1nn321 uuuwhere......uuu - = + + + + D D D D

    ThisiscalledtheMethodofDifferences.

    2.6.1Example: Findthenth termandsumton termsoftheseries

    ......114805230144 + + + + + +

    Solution

    Thegivenseriesis4+14+30+52+80+114+..inwhichthelawofa

    seriesisnotgiven.Theseriesofthefirstorderofdifferencesis

    (144)+(3014)+(5230)+(8052)+(11480)+..

    i.e.,10+16+22+28+34+.

    Whichformsan P.A whosefirstterm=10c.d=6

    LetSnbethesumtofirst n termsoftheseries

    = \ nS 4+14+30+52+80+114+..+ nu

    Also nS =4+14+30+52+80++ n1n uu + -

    Bysubtraction,0=4+[10+16+22+28+..to 1n - terms] nu -

    ( ) [ ] 62n202

    1n4un - +

    - + =

    ( ) ( ) 4n31n4 + - + = nn3 2 + =

    Therefore

    + = = nn3uS 2nn

    + = nn3 2

    ( ) ( ) ( ) 2

    1nn6

    1n21nn.3

    + +

    + + =

    ( ) ( ) ( ) 21nn2

    2n21nn + =

    + + =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:66

    2.6.2Example: Findthenth termandthesumtofirst n termsoftheseries

    6+13+24+39+58+..

    Solution:

    Thegivenseriesis6+13+24+39+58+...Theseriesofthefirstorder

    ofdifferencesis

    (136)+(2413)+(3924)+(5839)+

    i.e.,7+11+15+19+

    WhichformsanA.P.whosefirstterm=7c.d.=4.

    LetSn bethesumtofirst n termsoftheseries.

    Therefore = nS 6+13+24+39+58+..+ nu

    AlsoSn=6+13+24++ n1n uu + -

    Bysubtraction,

    0=6+[7+11+15+to 1n - terms] nu -

    Therefore ( ) [ ] 42n142

    1n6un - +

    - + =

    ( ) ( ) 3n21n6 + - + = 3nn2 2 + + =

    Therefore

    + + = = 3nn2uS 2nn

    + + = 13nn2 2

    ( ) ( ) ( ) n3

    21nn

    61n21nn

    .2 + +

    + + +

    =

    + + = 23n9n4

    6n 2

    2.6.3Example: Find thesum to n termsof theseries1+4+13+40+

    ..

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:67

    Solution:

    Thegivenseriesis

    1+4+13+40+.

    Theseriesofthefirstorderofdifferencesis

    (41)+(134)+(4013)+..

    i.e.,3+9+27+..

    whichformsaG.P.whosefirsttermis3andc.r.=3

    LetSn bethesumtofirst n termsoftheseries.Then,

    Sn=1+4+13+40+..+ nu

    Also, Sn=1+4+13+.. n1n uu + -

    Subtracting,0=1+(3+9+27+.to 1n - terms) nu -

    Therefore23

    231

    13

    1331u

    n1n

    n - + = -

    -

    + =

    -

    - = 13

    21 n

    Therefore n21

    13

    133.

    211

    213

    21S

    n

    nn - -

    -

    = - =

    n2113

    43 n -

    - =

    2.6.4SummationofseriesbyPartialFractions

    Lettheseriesbedenotedby

    n321 u......uuu + + + +

    andits nth termby nu anditssumby nS .

    Thesumoftheseriescaneasilybefoundbyexpressing nu asthedifference

    oftwoquantitiesintheform n1nn vvu - = + ,where nv isafunctionofn

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:68

    Byputting n.......3,2,1n = successivelyintherelation

    Wehave

    n1nn vvu - = +

    121 vvu - =

    232 vvu - =

    343 vvu - =

    ..

    and n1nn vvu - = +

    Addinguptheserelations,wehave

    11nn vvS - = +

    Wedetermine nv eitherbyinspectionorusingpartialfractions.

    2.6.5Example: sumtontermstheseries

    .....11.8

    18.5

    15.2

    1 + + +

    Solution:

    Here the nth term of 2, 5, 8,. is ( ) 1n331n2 - = - + and thenth termof5,8 ,11,is 5+ ( ) 2n331n + = - .Let nu bethe nthtermofthegivenseries.Then

    ( ) ( ) 2n31n31un

    + - =

    Byinspection,wehave

    +

    - -

    = 2n3

    11n3

    131un

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:69

    Byputting n.....3,2,1n = successivelyintheaboveresult,wehave

    - =

    51

    21

    31u1

    - =

    71

    51

    31u2

    - =

    111

    81

    31u3

    .

    +

    - -

    = 2n3

    11n3

    131un

    Addinguptheseresults,wehave

    +

    - = 2n3

    1.2

    131Sn

    ( ) 4n6n

    2n32

    n3.31

    + =

    + =

    2.6.6Example: Sumtontermstheseries

    ......31.22

    122.13

    113.4

    1 + +

    Solution

    Here the nth termof 4,13,22,.. is ( ) 5n991n4 - = - + and thenth termof13,22,31,..is 13+(n1)9=9n+4

    Thereforenth termofthegivenseriesis

    ( ) ( ) 4n95n91un

    + - =

    ThereforeByinspection, ( )

    + -

    - =

    4n9

    15n9

    191un

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:70

    Byputting n =1,2,3, n successivelyintheaboveresult,wehave

    - =

    131

    41

    91u1

    - =

    221

    131

    91u2

    - =

    311

    221

    91u3

    .

    +

    - -

    = 4n9

    15n9

    191un

    Addinguptheseresults,wehave

    +

    - = 4n9

    141

    91Sn

    ( ) 4n9444n9

    .91

    + - +

    =

    ( ) 4n94n

    + =

    2.6.7Example:Sumtontermstheseries

    ( ) ( ) ( ) ( ) ( ) ( ) 1nana1.....

    3a2a

    12a1a

    1

    + + + + +

    + + +

    + +

    Solution:

    Here,the nth termoftheseriesis

    ( ) ( ) 1nana1un

    + + + =

    Byinspection,1na

    1na

    1un + + -

    + =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:71

    Byputtingn =1,2,3, n successively,intheaboveresult,wehave

    2a1

    1a1u1 +

    - +

    =

    3a

    1

    2a

    1u2 +

    - +

    =

    4a1

    3a1u3 +

    - +

    =

    1na

    1

    na

    1un + +

    - +

    =

    Addingweget ( ) ( ) 1na1an

    1na1

    1a1Sn

    + + + =

    + + -

    + =

    SelfAssessmentQuestions

    1) Findthen thtermoftheseries1+ + + + 81

    41

    21 .

    2) If ththth r,qp terms of a P.G are x, y, z respectively, prove that

    1z.y.x qpprrq = - - -

    3) Showbymethod of mathematicalinductionthat 1n22n4 53 + + + is

    divisibleby14,forallpositiveintegralvaluesofn .

    4) Find the sum of n terms of the series

    ......3n32n21n 323232 +

    - +

    - +

    -

    5) Findthesumton termsoftheseries

    .....2

    1.

    11.814

    2

    1.8.5

    1121.

    5.28

    32 + + +

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:72

    2.7Summary

    InthisunitwestudiedthedifferenttypesprogressionslikeA.P.,G.P.and

    H.P.ThePrincipleofMathematicalinductionwasstudiednextwithavariety

    ofproblems.Summing theseriesofhigherpowersofn,with theconcepts

    beingused to find sumofAGseries.Themethodofdifferencesand the

    methodpartialfractionsisalsobeingusedheretosumtheseries.

    2.8TerminalQuestions

    1. Defineprogression

    2. Brieflyexplainsummationofseriesbythemethodofdifferences

    2.9Answers

    SelfAssessmentQuestions

    1. Formsa P.G inwhich1n

    1n

    n2

    121.1t,

    21r,1a

    -

    -

    =

    = = =

    2. Let A bethefirsttermand R thecommonratioof the P.G .Thenby

    hypothesis,wehave

    zARtyARtxARt 1rr1q

    q1p

    p = = = = = = - - -

    Raisingtheseequationsrespectivelybythepowers qp,pr,rq - - -

    andmultiplying,weget

    ( ) ( ) ( )( ) ( ) ( ) qp1rqppr1q

    .prrq1prqqpprrq

    R.A.R

    A.R.Az.y.x - - - - -

    - - - - - - - =

    ( )( ) ( )( ) ( ) ( ) qp1xpr1qrq1pqpprrq R.A - - + - - + - - - + - + - =

    1R.A 00 = =

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:73

    3. Let ( ) 1n22n4 53nP + + + = Now ( ) 611485412572953531P 361224 = = + = + = + = + + Therefore ( ) 1p isdivisibleby14.Letusassumethat ( ) 1m22m4 53mP + + + = isdivisibleby14.

    Consider ( ) ( ) ( ) 11m221m4 531mP + + + + + = + ( ) 3m26m4 531mP + + + = +

    Therefore

    ( ) ( ) 1m23m22m46m4 5533mP1mP + + + + - + - = - +

    - +

    - = + + 155133 21m242m4

    1m22m4 5.243.80 + + + =

    ( ) ( ) 1m22m4 51014310145 + + + + + = 1m22m4 5143145 + + + =

    + + + + 1m22m4 5310

    SinceeachtermontheR.H.Sisdivisibleby14theirsumisalsodivisibleby14.

    Therefore ( ) ( ) mP1mP - + isdivisibleby14.Therefore ( ) ( ) k14mP1mP = - + forsomeintegerkTherefore ( ) ( ) k14mp1mP + = +

    Since ( ) mP isdivisibleby14, ( ) 1mP + isdivisibleby14.Hencebyinduction ( ) nP isdivisibleby14forallpositiveintegers n .

    4.

    + + + + - + + + + = 33332222n n....321n.n....n3n2nS

    ( )

    + + + + - + + + + = 33332 n.....321n.....321n

    ( ) ( ) 4

    1nn

    2

    1nn.n

    222 + -

    + =

    - = 1nn

    41 22

  • DiscreteMathematics Unit2

    SikkimManipalUniversity PageNo:74

    5. Herethenthtermof8,11,14,is ( ) 5n331n8 + = - + n th termof2,5,8,is2+ ( ) 1n331n - = - n th termof5,8,11,..is5+ ( ) 2n331n + = - n th termof 32 2,2,2 .is n2 =

    Thereforen th termoftheseriesis

    ( ) ( ) nn 21.

    2n31n3

    5n3u

    + -

    + =

    ByPartialFractions,

    nn 2

    1.2n3

    11n3

    2u

    +

    - -

    =

    n1n 2

    1.2n3

    1

    2

    1.1n3

    1 +

    - -

    = -

    Byputtingn =1,2,3successivelyintheaboveresult,wehave

    21.

    51

    2

    1.21u

    01 - =

    22 2

    1.81

    21.

    51u - =

    323 2

    1.111

    2

    1.81u - =

    ..

    n1nn 2

    1.2n3

    1

    2

    1.1n3

    1u +

    - -

    = -

    Byadding,

    nn 2

    1.2n3

    121S

    + - =

    TerminalQuestions

    1. RefertoSection2.2

    2. RefertoSection2.6