Matrix Analysis Stuff

Embed Size (px)

Citation preview

  • 8/10/2019 Matrix Analysis Stuff

    1/76

    Influence line for statically indeterminate structures

    No.1 Prepare an influence line for the vertical reaction at b of given beam.

    EI Constant

    20

    No.2. Prepare an influence line for the vertical reaction at a of given beam.

    EI Constant

    15

    No.3 Compute the ordinates at interval of 2.5 ft of the influence line for the reaction at Afor the beam shown. (EI constant)

    No.4. Compute the ordinates at interval of 3 ft of the influence line for the reaction at B forthe beam shown. (EI constant)

    No.5. Prepare an influence line for the moment at support b of given continuous beam.

    No.6. Prepare an influence line for the moment at support c of given continuous beam.

    No.7. Prepare an influence line for the moment at support b of given continuous beam.

    No.8. Assuming x sectional area 'A' for all members to be constant. Prepare an influencelines for the forces in the redundant bars of given truss.

    ab

    a b

  • 8/10/2019 Matrix Analysis Stuff

    2/76

    2

    No.9. Assuming x sectional area 'A' of all members to be constant. Prepare an influencelines for the forces in the redundant bars of given truss.

    No.10. Prepare an influence line for the moment at support d of given continuous beam.

    Analysis of shear - wall structures

    No.11. Find the approximate values of the end moments in a column and a shear wall in a

    structure which has the same plan as in fig shown and has four stories of equal heighth = b. The frame is subjected to a horizontal force in the x direction of magnitude p/2at top floor and p at each of the other floor levels. The properties of members are asfollows: for any column I = 17 x 10 -6b4, for any beam I = 34 x 10 -6b4, and for anywall I = 87 x 10-3b4. Take E = 2.3 G. The area of wall cross section = 222 x 10-3b2.Consider shear deformation in the wall only.

  • 8/10/2019 Matrix Analysis Stuff

    3/76

    3

    Introduction to Structural Dynamics

    No.12. A weightless cantilever of length L and constant flexural rigidity EI carries a weightW at its end. Neglecting the moment of inertia I of the mass about its center. (a) Findthe natural angular frequency and the natural period of vibration of the system. (b) Ifthe motion is initiated by displacing the mass in a direction perpendicular to thecantilever by a distance of WL3 and then leaving the system to vibrate freely,

    3EIwhat is the max: displacement? What is the displacement at any time t?

    No.13. Compute the natural angular frequency of vibration in sidesway for the frame in thefig: and calculate the natural period of vibration. Idealize the frame as a one-degree-of- freedom system. Neglect the axial and shear deformations and the weight of thecolumns. If initially the displacement is 1 in and the velocity is 10 in /sec, what is theamplitude and what is the displacement at t = 1sec?

  • 8/10/2019 Matrix Analysis Stuff

    4/76

    4

    No.14.(a) A one-story building is idealized as a rigid girder supported by weightlesscolumns as shown in fig: In order to evaluate the dynamic properties of thisstructure, a free vibration test is made, in which the roof system ( rigid girder ) isdisplaced laterally by a hydraulic jack and then released. During the jackingoperation, it is observed that a force of 20 kip is required to displaced the girder0.2 in. After the instantaneous release of this initial displacement, the max:

    displacement on the return swing is only 0.16 in and the period of thisdisplacement cycle is T =1.4 sec.

    No.14 (b) The weight W of the building of fig: is 200 kip and the building is set into freevibration by releasing it (at time t = 0) from a displacement of 1.2 in. If the max:displacement on the return swing is 0.86 in at time t = 0.64 s, determine: (a) thelateral spring stiffness. (b) the damping ratio and ( c ) the damping coefficient.

    No.15. Assume that the mass and stiffness of the structure of fig: are as follows: m = 2ks2/in,

    s = 40 k /in. If the system is set into free vibration with initial conditions D (o) = 0.7in and D (o) = 5.6 in/s, determine the displacement and velocity at t = 1.0 sec,assuming (a) c = 0 ( undamped system), (b) c = 2.8 ks/in.

    No.16. Determine the max: steadystate sides way in the frame shown in fig: When it issubjected to a harmonic horizontal force at the level of BC of magnitude of 4 sin 14t(kip) and (a) no damping is present (b) the damping coefficient = 0.1.

  • 8/10/2019 Matrix Analysis Stuff

    5/76

    5

    No.17. Determine the natural circular frequencies and characteristic shapes for the two-

    degree-of-freedom systems shown in fig.

    No.18. Determine the natural circular frequencies and characteristic shapes for the two-degree-of-freedom systems shown in the fig.

    No.19. Find the angular frequencies and the normal mode characteristic shapes for the

    cantilever in fig shown vibrating freely in the plane of the fig. Neglect the axialdeformations and consider only the lumped masses.

  • 8/10/2019 Matrix Analysis Stuff

    6/76

    6

    No.20. Find the response of the system shown in fig to a set of harmonic forces at the threecoordinates shown. P1= 2 P0sin t, P2= P0sin t, and P3= P0sin t.

    No.21. Find the response of the system shown in fig to a support motion described by

    s= g/5 sin t, where = 4 ( 1/sec ) and g is the acceleration due to gravity.

    No.22. Determine the natural frequencies and corresponding mode shapes for the shearbuilding shown in fig.

  • 8/10/2019 Matrix Analysis Stuff

    7/76

  • 8/10/2019 Matrix Analysis Stuff

    8/76

    8

    No.27. (a) For the spring assemblage shown in fig, obtain the global stiffness matrix by directsuperposition.

    (b) If nodes 1 is fixed while node 5 is given a fixed, known displacement of asshown in fig, determine the nodal displacements.

    (c) Determine the reactions at the fixed nodes 1 and 5.

    No.28. For the spring assemblages shown in fig, determine the nodal displacements, theforces in each element and the reactions. Use the direct stiffness method.

    No.29 Describe the flow chart for determining the member forces in given structure by finiteelement analysis.

    No.30 (a) If the system is shown has a damping coefficient = 0.1, what are the dampednatural circular frequency and natural period of damped vibration? What is thedisplacement at t = 1 sec, if D0= 1 in and D0 = 10 in/sec?

    (EI)AB= (EI)CD= 107k-in2

    No.30 (b) If the amplitude of free vibration of a system with one degree of freedom decreaseby 50% in 3 cycle, what is the damping coefficient?

  • 8/10/2019 Matrix Analysis Stuff

    9/76

    9

    Answer

    1. Prepare an influence line for the vertical reaction at b of this beam.

    1 2 EInb = x x(20 (20 )) + (20 - ) x

    2 3 2

    1 2 20 2

    3

    = x x + -2 3 2 2

    x3

    3

    = + 10 2 -

    3 2

    3

    = 10 2 -6

    1 2 8000EIbb = x 20 x 20( x 20 ) =

    2 3 3

    EInb x3 3

    Xb= = (10x2- ) x

    EIbb 6 8000

    Influence ordinates for 4ft interval.

    43 3At x = 4 Xb= 10 x 4

    2 - x = 0.0566 8000

    At x = 8'

    Xb= 0.208At x = 12' Xb= 0.432At x = 16' Xb= 0. 704At x = 20' Xb= 1

  • 8/10/2019 Matrix Analysis Stuff

    10/76

    10

    2.Prepare an influence line for the vertical reaction at a of this beam.

    1 2 EIna = x xx + (15 - ) x x

    2 3 2

    3 3 3

    = + 7.5 2

    - = 7.5 2

    -3 2 6

    153

    EIaa = 7.5 x 152- = 1125

    6

    EIna x3

    1Xa = = (7.5 x2- ) x

    EIaa 6 1125

    Influence ordinates for 3ft intervals.

    33

    1At x = 3 - Xa= 7.5 x 3

    2x x = 0.0566 1125

    At x = 6' Xa= 0.208At x = 9' Xa= 0.432At x = 12' Xa= 0.704

    At x = 15' Xa= 1

  • 8/10/2019 Matrix Analysis Stuff

    11/76

    11

    3. Complete the ordinates at internal of 2.5 ft of the influence line for reaction at A for the

    continuous beam shown. EI constant.

    10 10

    XA

    1 unit 2 1

    1 + SFD

    110

    +BMD

    10M/EI dia:

    10 1050 1/2x 10x 10=50

    2000/3

    250/3 100/3 100/3 50/3

    2000 EInAEIAA = ; XA =

    3 EIAA

    For AB member,

    2000 250 1 2000 250 3EInA = + x x = + +

    3 3 2 3 3 3 6

    For BC member,

    -50 1 3 50

    EInA = + x x = - 3 2 3 6 3

    CB

    Primary structure

    MB= O ( + )

    1 x 10 Cyx 10 = 0

    C =1 +

  • 8/10/2019 Matrix Analysis Stuff

    12/76

    12

    Influence line ordinate for 2.5 ft interval.

    For AB member,

    2000 250 0

    3At = 0XA= - x 0 + x = 1

    3 3 6 2000

    At x = 2.5' XA= 0.691At x = 5' XA= 0.406At x = 7.5' XA= 0.168At x = 10' XA= 0

    For BC member,2.53 50 3

    At x = 2.5' XA= - x 2.5 x = 0.0596 3 2000

    At x = 5' XA= - 0.094

    At x = 7.5' XA= - 0.082

    At x = 10' XA= 0

    10.406

    0.082 0.059

    0.691 0.1680.094

    I.L for reaction at A

    4. Compute the influence line ordinates at 3 ft intervals for the reaction at support B.

    A B C

    15 15Primary structure

    XB

    1/2 1 unit 1/2

    BMD

    7.5

  • 8/10/2019 Matrix Analysis Stuff

    13/76

    13

    x xM/EI dia:

    56.25 0.5x 56.25

    For AB member,

    1 0.5 3

    EInB = 56.25 - x x 0.5 = 56.25 -2 3 6

    0.5 x 153

    EIBB = 56.25 x 15 = 562.56

    EInB 0.5 3

    1

    XB = = ( 56.25 - ) xEIBB 6 562.5

    For BC member,

    0.5 3

    EInB = 56.25 -6

    1 0.5 3

    XB = ( 56.25 - )562.5 6

    Influence line ordinate for 3 ft intervals.

    0.5 x 33 1

    At x = 3' XB = (56.25 x 3 - ) x = 0.2966 562.5

    At x = 6' XB= 0.568At x = 9' XB= 0.792At x = 12' XB= 0.944At x = 15' XB= 1

    0.944 1 0.9440.792 0.792

    0.568 0.5680.296 0.296

    I.L for reaction at B

    7.5

  • 8/10/2019 Matrix Analysis Stuff

    14/76

    14

    5. Prepare on influence line for the moment at support support b of .given continuousbeam.

    a I=1000 b I=900 c I=1200 d I=1600 e

    15 12 15 18

    MbI 0.9 I 1.2 I 1.6 I primary

    structure

    1 unit

    -0.5 -1 +1 0.5

    Member I/L Kadj

    ab I/15 x 90/I x 4.5bc 0.9I/12 x 90/I x 5.0625cd 1.2I/15 x 90/I 7.2de 1.6I/18 x 90/I x 6

    Joint c d

    member end cb cd dc de

    Kadj: 5.0625 7.2 7.2 6cycle D.F 0.413 0.587 0.545 0.456

    1 FEMBal:M

    0.5- 0.207

    -- 0.293

    --

    --

    2 COMBal:M

    --

    --

    - 0.1470.08

    -0.067

    3 COM

    Bal:M

    -

    - 0.017

    0.04

    - 0.023

    -

    -

    -

    -4 COM

    Bal:M--

    --

    - 0.0120.007

    -0.005

    5 COM

    Bal:M

    -

    - 0.001

    0.003

    - 0.002

    -

    -

    -

    -Final end M 0.275 - 0.275 - 0.072 0.072

    1

  • 8/10/2019 Matrix Analysis Stuff

    15/76

    15

    1 0.072

    BMD0.5 0.275

    1.11 0.061 0.045

    M/EI dia:0.5 0.229

    0.305

    .a 1 1 2 1 1

    EI 1= = ( x 15 x 1 x x 15 - x 15 x 0. 5 x x 15 ) = 3.7515 15 2 3 2 3

    C 1 1 2 1 1EI 2= = ( x 12 x 1.11 x x 12 - x 12 x 0. 305 x x 12 ) = 3.83

    12 12 2 3 2 3

    EI bb= EI 1+ EI 2= 7.58

    For span ab

    00.5

    1 1 1 2EInb = x x x - x0.5 ( 1 - ) x - xx0.5 x

    2 15 3 15 2 2 15 3

    = 0.0111 x3- 0.25 x2 + 0.01667 x3 - 0.0111 x3

    = - 0.25 x2 + 0.01667 x3

    1

    1 2

    By using moment area theorem

    x/15

    x

    0.5x/15x x

    a b

    a ba

    bx/15

    0.5 x(1-x/15)

  • 8/10/2019 Matrix Analysis Stuff

    16/76

    16

    EInbMb = = - 0.033 x

    2 + 0.0022 x

    3

    EIbb

    For span bc

    b c

    x

    3.83

    1 2 1 EInb = - 3.83 + x1.11 ( 1- _) x + xx 1.11 x - x0.305

    12 2 2 12 3 2 12

    = - 3.83 + 0.555 2 0.0463 3+ 0.0308 3 4.236 x 10-33 x /3

    = - 3.83 + 0.555 x2 0.0197 x3

    EInbMb = = - 0.5053 x + 0.0732 x

    2- 2.6 x10-3x3EIbb

    For span cd

    d 1 1 1 1 2EI c= = ( x 15 x 0.06 x x 15 - x 15 x 0. 229 x x 15 ) = - 0. 995

    15 15 2 3 2 3

    1 EInb = 0.995 + x x0.06 x - x0.229 (1 - _) x

    2 15 3 15 2

    1 2 - x 0.229 x

    2 15 3

    x

    (1.11x/12)

    0.305x/12b c

    bc

    0.995x

    x

    0.229(1-x/15)

    0.229x/15

    0.06x/15

    x

    0.229

    0.06

    c d

    c d c d

    1.11(1-x/12)x

  • 8/10/2019 Matrix Analysis Stuff

    17/76

    17

    = 0.995 x + 6.667 x 10-4x3- 0.1145 x2+ 7.633 x 10-3x3 - 5.089 x 10-3x3

    = 0.995 x - 0.1145 x2+ 3.2107 x 10-3x3

    EInbMb = = 0.1313 x - 0.0151 x

    2+ 4.236 x10

    -4x

    3

    EIbb

    For span de

    d

    e 1 1 2EI d= = ( x 0.045 x 18 x x 18 ) = 0.27

    18 18 2 3

    1 2EInb = - 0.27 + x0.045 ( 1- _) x + xx 0.045 x

    18 2 2 18 3

    = - 0.27 x + 0.0225 x2 1.25 x 10-3x3 + 0.833 x 10-4x3

    = -0.27x + 0.0225 x2 4.1667 10

    -4x

    3

    EInb

    Mb = = - 0.0356 + 2.968 x 10

    -3

    2

    - 5.497 x10

    -5

    3

    EIbb

    I.L for moment at support b

    6. Prepare on influence line for the moment at support c of given continuous beam.

    I=1000 I=800 I=1000

    a b c d14 10 14

    0.045

    0.045(1-x/18)

    x

    0.045x/18

    0.27

    x

    de

    de

    0.

    2376

    0.7

    128

    1.0

    692

    0.

    9504

    0.

    2694

    0.3

    357

    0.2

    674

    0.1

    332

    0.

    0816

    0.

    1186

    0.1

    201

    0.

    0948

    0.

    9273

    0.

    9582

    0.

    5137

    0.

    0517

  • 8/10/2019 Matrix Analysis Stuff

    18/76

    18

    I 0.8I Mc I

    14 10 14

    1 unit

    -0.5 -1 +1

    0.1360.272 1

    1

    0.136

    BMD

    1.250.272 1

    0.136

    M/EI dia

    0.272 0.34

    b 1 1 2 1 1EI 1= = ( x 10 x 1.25 x x 10 - x 10 x 0.34 x x 10) = 3.602

    10 10 2 3 2 3

    member I/L kadj:

    ab I/14 x 70/I x1 5bc 0.8 I/10 x 70/I x 4.2cd I/14 x 70/I x 3.75

    Joint a b

    member end ab ba bc

    kadj: 5 5 4.2

    cycle D.F - 0.543 0.457

    1 FEMBal:

    --

    -- 0.272

    - 0.50.228

    2 C.O.MBal:

    0.136-

    --

    --

    Final end M 0.136 0.272 - 0.272

    primary structure

    1 2

  • 8/10/2019 Matrix Analysis Stuff

    19/76

    19

    d 1 1 2

    EI 2= = ( x 14 x 1 x x 14 )= 4.66714 14 2 3

    EIcc= EI 1+ EI 2= 8.269

    For span ab

    1 2 1 EInc= x0.136 ( 1- ) x + x x 0.136 x x - . xx0.272 x14 2 2 14 3 2 14 3

    = 0.068 x2- 4.857 x 10

    -3x

    3+ 3.238 x 10

    -3x

    3- 3.238 x 10

    -3x

    3

    = 0.068 x2- 4.857 x 10-3x3

    EIncMc = = 8.225 x 10

    -3x

    2 5.87 x 10

    -4x

    3

    EIcc

    For span bc

    d 1 1 1 1 2

    EI c= = ( x 1.25 x 10 x x 10 - x10 x0.34 x x 10 )10 10 2 3 2 3

    = 0.95

    1 1 0.34 2 EInc = - 0.95 +( x 1.25 x x ) ( x x x ) {0.34 (1 - ) x x }

    2 10 3 2 10 3 10 2

    0.136

    0.136x/14

    x

    x

    0.272x/14x

    0.136(1-x/14)

    0.272x/14

    0.272

    a ba b

    a b

    x

    xx

    1.25x/10

    1.25

    0.34(1-x/10

    0.34x/10

    0.9530.34

  • 8/10/2019 Matrix Analysis Stuff

    20/76

    20

    = - 0.95 x + 0. 0208 x3 0.0113 x3 0.17 x2+ 0.017 x3

    = - 0.95 x - 0. 17 x2+ 0.0265 x3

    EIncMc = = - 0.119 x - 0.0206 x

    2+ 0.0032 x3

    EIcc

    For span cd

    1 2EInb = - 4.667 + x( 1- _) x + x x x x

    14 2 2 14 3

    = - 4.667 x + 0. 5 x2 0.0357x3 + 0.0238x3

    = - 4.667 x + 0. 5 x2 0.0119x3

    EInbMb = = - 0.5645 x +0.0605 x

    2 0.00144 x3

    EIcc

    I.L for moment at support C

    7. Prepare on influence line for the moment at support b of given continuous beam.

    I=900 I=1000 I=1000

    a b c d12 15 15

    1

    x/14

    1-x/14

    x x4.667

    0.

    2866

    0.

    5844

    0.

    7398

    0.

    5992

    0.

    0282

    0.

    094

    0.

    1692

    0.

    2256

    0.

    235

    0.

    1692

    0.

    8985

    1.

    382

    1.

    52

    1.

    381

    1.

    035

    0.

    5503

  • 8/10/2019 Matrix Analysis Stuff

    21/76

    21

    0.9I Mb I I

    1 unit

    -1 +1 0.5

    1 0.286

    0.143

    1

    0.143

    BMD

    1.11

    1 0.2860.143

    M/EI diag0.286

    a 1 1 2EI 1= = ( x 12 x 1.11 x x 12 ) = 4.44

    12 12 2 3

    c 1 1 2 1 1EI 2= = ( x 15 x 1 x x 15 - x 15 x 0.286 x x 15 ) = 4.285

    15 15 2 3 2 3

    21

    member I/L kadj:ab 0.9I/12 x 60/I x 3.375bc I/15 x 60/I x 3cd I/15 x 60/I x 1 4

    Joint c d

    member end cd ed dc

    kadj: 3 4 4

    cycle D.F 0.429 0.571 -

    1 FEMBal:

    0.5-0.214

    -- 0.286

    --

    2 C.O.MBal:

    --

    --

    - 0.143-

    Final end M 0.286 - 0.286 - 0.143

  • 8/10/2019 Matrix Analysis Stuff

    22/76

    22

    EIbb= EI 1+ EI 2= 8.725

    For span ab

    1.11 a ba

    x

    x 2.22

    b 1 1 1EI a= = ( x 12 x 1.11 x x 12 ) = 2.22

    12 12 2 3

    1 1

    EInb = - 2.22 + x x1.11 x = 2.22 + 0.154 3

    2 12 3

    EInbMb = = - 0.254 x + 1.765 x 10

    -3x3

    EIbb

    For span bc.

    1

    x

    1 2 1 0.286 EInb = - 4.285 + x ( 1- _) x + x x x - x x

    15 2 2 15 3 2 15 3

    EInb = - 4.285 x + 0. 5 x

    2

    0.0333 x

    3

    + 0.0222 x

    3

    3.178 x 10

    -3

    x

    3

    = - 4.285 x + 0. 5 x2 0.01428 x

    3

    EInbMb = = - 0.491 x + 0.0573 x

    2 1.637 x 10-3x3

    EIbb

    1.11x/12

    x/15

    1-x/15

    x0.286x/15

    4.285

    x

    0.286

  • 8/10/2019 Matrix Analysis Stuff

    23/76

    23

    For span cd 0.143x

    c `dx1.0725

    d 1 1 1 1 2EI c= = ( x 15 x 0.143 x x 15 - x 15 x 0.286 x x 15) = - 1.0725

    15 15 2 3 2 3

    EInb = 1.0725 x + 1. 589 x 10-3x3 0.143 x2+ 9.533 x 10-3x3 6.356 x 10-3x3

    = 1.0725 x - 0.143 x2+ 4.766 x 10-3x3

    EInbMb = = 0.1229 x - 0.0164 x

    2+ 5.462 x 10-4x3

    EIbb

    I.L for moment at support b

    8. Assuming x sectional area A of all members to be constant. Prepare an influencelines for the forces in the redundant bars of given truss.

    0 .286(1-x/15

    0 .286x/15

    0 .286

    x

    0.143x/15

    1.

    0015

    1.

    2367

    0.

    9711

    0.

    4695

    0.

    7143

    1.

    1428

    0.

    9993

    0.

    2358

    0.

    2650

    0.

    1759

    0.

    0570

  • 8/10/2019 Matrix Analysis Stuff

    24/76

    24

    Select the redundant members at CD and FGX1 X2

    Primary structure

    1 1 0.5 0.5

    0.5 0.5 0.75 0.75 0.25 0.25

    2/3 1 1/3 0

    0.5 0.5 1 1

    0.25 0.25 0.75 0.75 0.5 0.5

    0 1/3 1 2/3

    Bar L F1 F2 F12L F1F2 L

    ab 15 - 0.5 0 3.75 0

    bc 15 - 0.5 0 3.75 0cd 15 - 0.75 - 0.25 8.4375 2.8125

    de 15 - 0.75 - 0.25 8.4375 2.8125ef 15 - 0.25 - 0.75 0.9375 2.8125

    fg 15 - 0.25 - 0.75 0.9375 2.8125

    BC 15 1 0 15 0

    CD 15 1 0 15 0

    DE 15 0.5 0.5 3.75 3.75

    EF 15 0.5 0.5 3.75 3.75

    aB 25 0.833 0 17.347 0

    0.

    417 0

    .833

    0.

    833

    0.

    417

    0.

    417

    0.

    417

    0.

    833

    X1= 1 unit condition

    X2= 1 unit condition

    F10.833

    0.

    417

    0.

    417

    0.

    417

    0.

    417

    F2

  • 8/10/2019 Matrix Analysis Stuff

    25/76

    25

    Bc 25 - 0.833 0 17.347 0

    cD 25 - 0.417 0.417 4.347 - 4.347De 25 0.417 - 0.417 4.347 - 4.347

    eF 25 - 0.417 0.417 4.347 - 4.347

    Fg 25 0.417 - 0.417 4.347 - 4.347

    115.832 1.362

    F12 L 115.832

    1 unit 11= =AE AE

    115.83211=

    AE

    F1F2L 1.362

    1 unit 12= =

    AE AE

    1.36212=

    AE

    For the symmetrical truss, 11= 22

    115.83222=

    AE

    1.362since 12 21

    AE

    For unit load applied at b or h

    0.625 1 0.625

    0.375 0.375

    1/2 1/2 0 0

    Fb

  • 8/10/2019 Matrix Analysis Stuff

    26/76

    26

    Bar L F1 Fb F1Fb Lab 15 - 0.5 0.375 - 2.8125

    bc 15 - 0.5 0.375 - 2.8125

    aB 25 0.833 - 0.625 - 13.0156

    Bc 25 - 0.833 - 0.625 + 13.0156

    - 5.625

    F1FbL - 5.625

    1 unit 1b= =AE AE

    F2FbL

    1 unit 2b= = 0AE

    For unit load applied at d or f

    0 1 0

    F1FdL - 19.688

    1 unit 1d = =AE AE

    F2FdL - 14.06

    1 unit 2d = =AE AE

    19.0881d= -

    AE

    14.062d= -

    AE

    Fd

    0.375 0.375

    0.5625 0.5625 0.1875 0.1875

    0.

    9375

    0.

    3125

    0.

    3125

    0.

    3125

    1

  • 8/10/2019 Matrix Analysis Stuff

    27/76

    27

    For unit load applied at e

    Bar L F1 F2 Fd Fe F1Fd L F2Fd L F1Fe L F2Fe L

    cd 15 - 0.75 - 0.25 0.5625 0.375 - 6.328 - 2.109 - 4.219 - 1.406

    de 15 - 0.75 - 0.25 0.5625 0.375 - 6.328 - 2.109 - 4.219 - 1.406

    ef 15 - 0.25 - 0.75 0.1875 0.375 - 0.703 - 2.109 - 1.406 - 4.219

    fg 15 - 0.25 - 0.75 0.1875 0.375 - 0.703 - 2.109 - 1.406 - 4.219

    DE 15 0.5 0.5 - 0.375 - 0.75 - 2.8125 - 2.8125 - 5.625 - 5.625

    EF 15 0.5 0.5 - 0.375 - 0.75 - 2.8125 - 2.8125 - 5.625 - 5.625

    cD 25 - 0.417 0.417 - 0.9375 - 0.625 -9.773 - 9.773 6.516 - 6.516

    De 25 0.417 -0.417 - 0.3125 0.625 - 3.258 3.258 6.516 - 6.516

    eF 25 - 0.417 0.417 0.3125 0.625 - 3.258 3.258 -6.516 6.516

    Fg 25 0.417 - 0.417 - 0.3125 - 0.625 - 3.258 3.258 - 6.516 6.516

    - 19.688 - 14.06 - 22.5 - 22.5

    F1FeL - 22.5

    1 unit 1e = =AE AE

    - 22.51e=

    AE

    F2FeL - 22.5

    1 unit 2e = =AE AE

    - 22.51e=

    AE

    1n+ X111+ X212 = 0

    2n+ X121+ X222 = 0

    For unit load at b or h

    -5.625 + 115.832 X1+ 1.362 X2 = 0

    0 + 1.362 X1 + 115.832 X2 = 0

    1 unit0

    0

    0.375 0.375

    0.375 0.375 0.375 0.375

    0.

    625

    0.

    625

    0.

    625

    0.

    62

    5

    Fe

  • 8/10/2019 Matrix Analysis Stuff

    28/76

    28

    X1b = 0.0468 = X2h

    X2b = -0.00061 = X1h

    For unit load at d or f

    - 19.688 + 115.832 X1+ 1.362 X2 = 0

    - 14.06 + 1.362 X1 + 115.832 X2 = 0

    X1d = 0.1686 = X2f

    X2d = 0.1194 = X1f

    For unit load at e

    - 22.5 + 115.832 X1+ 1.362 X2 = 0

    - 22.5 + 1.362 X1 +115.832 X2 = 0

    X1c = 0.192

    X2c = 0.192

    0.1920.1686 0.1195

    0.0486

    0.0006

    0.1920.1686

    0.1195 0.0486

    0.0006

    9. Assuming x sectional area A of all members to be constant. Prepare an influencelines for the forces in the redundant bars of given truss.

    I.L for barforce in CD member

    I.L for barforce in FG member

  • 8/10/2019 Matrix Analysis Stuff

    29/76

    29

    B C D E F G H

    4m

    a b c d e f g h i

    1 1 0.5 0.5

    0.833 0.833 0.417 0.417 0.4170.417

    F1

    0.5 0.5 0.75 0.75 0.25 0.252/3 1 1/3 0

    0.5 0.5 1 1

    0.417

    0.417 0.417 0.417 0.8330.833

    F20.25 0.25 0.75 0.75 0.5 0.5

    2/30 1/3 1

    Bar L F1 F2 F12 L F1F2 L

    ab 3 - 0.5 0 0.75 0bc 3 - 0.5 0 0.75 0

    cd 3 - 0.75 - 0.25 1.6875 0.5625

    de 3 - 0.75 - 0.25 1.6875 0.5625

    ef 3 - 0.25 - 0.75 0.1875 0.5625

    fg 3 - 0.25 - 0.75 0.1875 0.5625

    BC 3 1 0 3 0

    CD 3 1 0 3 0

    DE 3 0.5 0.5 0.75 0.75

    8 space e 3 m c/c = 24 m

    Select forces in bars CD and FG as redundant

    X1= 1 unit condition

    primary structure

    X1 X2

  • 8/10/2019 Matrix Analysis Stuff

    30/76

    30

    0.

    625

    EF 3 0.5 0.5 0.75 0.75

    aB 5 0.833 0 3.469 0Bc 5 -0.833 0 3.469 0

    cD 5 - 0.417 0.417 0.869 - 0.869

    De 5 0.417 -0.417 0.869 - 0.869

    eF 5 - 0.417 0.417 0.869 - 0.869

    Fg 5 0.417 - 0.417 0.869 - 0.869 23.164 0.274

    F12L 23.164

    1 unit 11 = =AE AE

    F1F2L 0.274

    1 unit 12 = =

    AE AE

    23.16411 =

    AE

    0.27412 =

    AE

    For symmetrical truss, 11 = 12

    23.164

    22=

    AE

    0.274since 12 = 21 =

    AE

    For unit load applied at b or h

    0.

    625

    1

    0.375 0.375

    1 unit 0 0

    Fb

  • 8/10/2019 Matrix Analysis Stuff

    31/76

    31

    0.

    937

    0.

    3125

    0.

    3125

    0.

    3125

    1 Fd

    Fe

    0

    .625

    0.

    625

    0

    .625

    0

    .625

    For unit load applied at d or f

    For unit load applied at e

    Bar L F1 F2 Fd Fe F1Fd L F2Fd L F1Fe L F2Fe L

    cd 3 - 0.75 - 0.25 0.5625 + 0.375 - 1.266 - 0.422 - 0.844 - 0.281

    de 3 - 0.75 - 0.25 0.5625 + 0.375 - 1.266 - 0.422 - 0.844 - 0.281

    ef 3 - 0.25 - 0.75 0.1875 0.375 - 0.1406 - 0.422 - 0.281 - 0.844fg 3 - 0.25 - 0.75 0.1875 0.375 - 0.1406 - 0.422 - 0.281 - 0.844

    DE 3 0.5 0.5 - 0.375 - 0.75 - 0.5625 - 0.5625 - 1.125 - 1.125

    EF 3 0.5 0.5 - 0.375 - 0.75 - 0.5625 - 0.5625 - 1.125 - 1.125

    cD 5 - 0.417 0.417 - 0.9375 - 0.625 1.9547 1.9547 1.303 - 1.303

    De 5 0.417 -0.417 - 0.3125 0.625 - 0.6516 0.6516 1.303 - 1.303

    eF 5 - 0.417 0.417 0.3125 0.625 - 0.6516 0.6516 - 1.303 1.303

    Fg 5 0.417 - 0.417 - 0.3125 - 0.625 - 0.6516 0.6516 - 1.303 1.303 - 3.938 - 2.819 - 4.5 - 4.5

    Bar L F1 Fb F1FbL

    ab 3 - 0.5 0.375 - 0.5625

    bc 3 - 0.5 0.375 - 0.5625

    aB 5 0.833 - 0.625 - 2.603

    Bc 5 - 0.833 - 0.625 2.603

    - 1.125

    F1FbL 1.125Unit 1b= =

    AE AE

    1.1251b =

    AE

    F2FbL 0Unit 2b= =

    AE AE

    2b = 0

    0.375 0.375

    0.5625 0.5625 0.1875 0.1875

    0 3/4 1/4 01 unit

    0.375 0.375

    0.375 0.375 0.375 0.375

    0 1/2 1/2 01 unit

  • 8/10/2019 Matrix Analysis Stuff

    32/76

    32

    F1FdL - 3.398

    1 unit 1d = =AE AE

    - 3.3981d=AE

    F2FdL - 2.183

    1 unit 2d = =AE AE

    - 2.1832d=

    AE

    F1FeL - 4.5

    1 unit 1e = =AE AE

    - 4.51e= = 2e

    AE

    1n+ X111+ X212 = 0

    2n+ X121+ X222 = 0

    For point b or h

    -1.125 + 23.164 X1+ 0.274 X2 = 0

    0 + 0.274 X1 + 23.164 X2 = 0

    X1b = 0.0486

    X2b =- 0.0006

    For point d or f

    - 3.398 + 23.164 X1+ 0.274 X2 = 0

    - 2.813 + 0.274 X1 + 23.164 X2 = 0

    X1d = 0.1687

    X2d = 0.1195

  • 8/10/2019 Matrix Analysis Stuff

    33/76

    33

    For point e

    - 4.5 + 23.164 X1+ 0.274 X2 = 0

    - 4.5 + 0.274 X1+ 23.164 X2 = 0

    X1e = 0.192

    X2e = 0.192

    0.1920.1687

    0.04860.1195

    0.0006

    0.1920.1195

    0.16870.0486

    0.0006

    10. Prepare an influence line for the moment at support d of given continuous beam.

    MdI 0.9I 1.2I 1.6I

    1 unit

    -0.5 -1 +1

    I.L for barforce in CD member

    I.L for barforce in FG member

    member I/L kadj:

    ab I/15 x 90/I x1 6bc 0.9 I/12 x 90/I x 1 6.75cd 1.2 I/15 x 90/I x 5.4de 1.6 I/18 x 90/I x 6

    primary structure

  • 8/10/2019 Matrix Analysis Stuff

    34/76

    34

    0.036 0.07 0.261 1

    a b c d e

    10.07

    BMD

    0.036 0.078 0.2610.07 0.833

    0.625

    M/EI dia

    0.2180.036 0.29

    1 2

    c 1 1 2 1 1EI 1= = ( x 15 x 0.833 x x 15 - x 15 x 0.218 x x 15) = 3.62

    15 15 2 3 2 3

    e 1 1 2EI 2= = ( x 18 x 0.625 x x 18 ) = 3.75

    18 18 2 3

    EI dd= EI 1+ EI 2= 7.37

    Joint a b c

    member end ab ba bc cb cd

    kadj: 6 6 6.75 6.75 5.4

    cycle D.F - 0.471 0.529 0.556 0.444

    1 FEMBal:M

    --

    --

    --

    -0.278

    - 0.50.222

    2 C.O.MBal:M

    --

    -- 0.065

    0.139- 0.074

    --

    --

    3 C.O.MBal:M

    - 0.033-

    -

    -

    -

    -

    - 0.0370.021

    -0.016

    4 C.O.MBal:M

    -

    -

    -- 0.005

    0.011- 0.006

    -

    -

    -

    -

    5 C.O.MBal:M

    - 0.003-

    -

    -

    -

    -

    - 0.0030.002

    -0.001

    Final end M - 0.036 - 0.07 0.07 0.261 - 0.261

  • 8/10/2019 Matrix Analysis Stuff

    35/76

    35

    For span ab

    0.036 x

    1 1 EInd = x x 0.07 x - x 0.36 (1 x ) x

    2 15 3 15 2

    1 2- x x 0.036 x

    2 15 3

    = 7.778 x 10-4

    x3 0.018 x

    2+ 1.2 x 10

    -3x

    3 0.8 x 10

    -3x

    3

    = - 0.018 x2 + 1.178 x 10-3 x3

    EIndMd= = - 2.442 x 10

    -3x

    2+

    1.598 x 10

    -4x

    3

    EIdd

    For span bc

    b c

    0.29

    c 1 1 2 1 1

    EI b= = ( x 12 x 0.078 x x 12 - x 12 x 0.29 x x 12) = 0.26812 12 2 3 2 3

    1 2EInd = 0.268 + x 0.078 ( 1- _) x + x 0.078 x x x

    2 2 2 12 31 1

    - x x 0.29 x 2 12 3

    x

    0.036(1-x/15

    0.036x/15

    0.07x/15

    0.07

    x

    x

    x

    x

    0.078x/12

    0.078

    0.29x/12

    0.268

    0.078(1-x/12)

    0.29x/12

  • 8/10/2019 Matrix Analysis Stuff

    36/76

    36

    = 0.268 x + 0.039 x2 - 3.25 x 10-3 x3+ 2.167 x 10-3 x3 - 4.028 x 10-3 x3

    = 0.268 x + 0.039 x2 - 5.111 x 10-3 x3

    EInd

    Md = = 0.0364 x + 5.292 x 10-3

    x2

    - 6.935 x 10-4

    x3

    EIdd

    For span cd

    d 1 1 1 1 2EI c= = ( x 15 x 0.833 x x 15 - x 15 x 0.218 x x 15) = 0.9925

    15 15 2 3 2 3

    1 1 xEInd = - 0.9925 + x x 0.833 _ x - x 0.218 (1 - ) x

    2 15 3 15 2

    1 2- x x 0.218 x

    2 15 3

    = - 0.9925 x + 9.256 x 10-3

    x3 - 0.109 x

    2+ 7.267 x 10

    -3x

    3 - 4.844 x 10-

    3x

    3

    = - 0.9925 x - 0.109 x2

    +. 11.679 x 10-3

    x3

    EIndMd = = - 0.1347 x - 0.0148 x

    2 + 1.585 x 10-3x3EIdd

    xx

    x

    0.833

    0.9925

    cd

    c d0.833x/15

    x

    0.218x/15

    0.218

    dc

    0.218(1-x/15)

  • 8/10/2019 Matrix Analysis Stuff

    37/76

    37

    For span de

    d e

    1 2EInd = - 3.75 + x 0.625 ( 1- _) x + x x 0.625 x

    18 2 2 18 3

    = - 3.75 x + 0.3125 x2- 0.01736 x3 + 0.01157 x3

    = - 3.75 x + 0.3125 x2- 5.786 x 10-3x3

    EIndMd = = - 0.5088 x + 0.0424 x2 - 7.851 x 10-4x3

    EIdd

    I.L for moment at support d

    11. Find the approximate values of the end moments in a column and a shear wall in astructure which has the same plan as in fig shown and has four stories of equal heighth = b. The frame is subjected to a horizontal force in the x direction of magnitude p/2 attop floor and p at each of the other floor levels. The properties of members are asfollows : for any column I = 17 x 10-6b4, for any beam I = 34 x 10 -6b4, and for any

    wall I = 87 x 10-3b4. Take E = 2.3 G. The area of wall cross section = 222 x 10 -3b2.Consider shear deformation in the wall only.

    0.625x/18

    x

    0.625(1-x/18)

    3.75x

    0.625

    0.0

    1766

    0.0

    534

    0.

    0813

    0.0

    755

    0.4

    95

    0.

    999

    1.

    256

    1.

    009

    1.1

    66

    1.

    696

    1

    .717

    1

    .357

    0.1

    381

    0.

    2591

    0.

    2507

    0.

    742

  • 8/10/2019 Matrix Analysis Stuff

    38/76

    38

    soln:In actual structure three are 16 columns, 4 walls 12 beams of length 1.6b and 4 beams

    of length 2 b.

    Ic = Ici = 16 x 17 x 10-6b4= 272 x 10-6b4

    12 4(I/L)b = 4 (I/L)bi = 4 x 34 x 10

    -6b4( + ) = 1292 x 10-6b31.6b 2b

    Iw = Iwi = 4 x 87 x 10-3b4= 348 x 10-3b4

    arw = arwi = 4 x 5/6 x 222 x 10-3b2= 740 x 10-3b2

    wall substitute frame

    12.9s 0.423 Eh

    3

    t - 0.273 Eh3

    c - 0.65

    -

    01.09 x 10-3Eh3

    0.54 x 10-3

    Eh3

    0.53.56

    3E= ( I/L )b

    S

    ( 4 + ) E Is =

    (1 + ) h

    ( 2 - ) E It =

    (1 + ) h

    c = t/s

    p

    h

    h

    h

    h

    p2

    p

    p

    2

    3

    1

    8 4

    5

    6

    7

    2

    3

    1

    8 4

    5

    6

    7

  • 8/10/2019 Matrix Analysis Stuff

    39/76

  • 8/10/2019 Matrix Analysis Stuff

    40/76

    40

    [ S22]w = 0.423

    Eh3 1 -0.65 0 0-0.65 2 -0.65 00 -0.65 2 -0.650 0 -0.65 2

    Condensed the stiffness matrix

    [S*]w= [ S11]w - [ S12]w [ S22]w-1

    [ S21]w

    = 10-2 Eh 13.98 -22.76 5.7 2.33

    -22.76 51.22 -31.84 2.555.7 -31.84 53.77 -30.19

    2.33 2.55 -30.19 56.33

    [S*] = [S*]w+ [S*]r= 10-4

    Eh 1421.4 symmetry-2303.05 5177.15

    574.22 -3215.76 5433.34232.28 259.64 -3051.41 5692.92

    {F*} = P 0.5111

    {D*} = [S*]-1 {F*}

    = 10 P 11.47

    Eh 8.325.03

    2.03

    Forces resisted by wall {F*}w= [S*]w{D*}

    = P 0.43681.0051.00411.0083

    Forces resisted by substitute frame

    {F*}r= [S*]r{D*}

    = P 0.0632-0.005-0.0041-0.0083

  • 8/10/2019 Matrix Analysis Stuff

    41/76

    41

    Introduction to Structural Dynamics

    12. A weightless cantilever of length L and constant flexural rigidity EI carries a weight W

    at its end. Neglecting the moment of inertia I of the mass about its center. (a) Find the naturalangular frequency and the natural period of vibration of the system. (b) If the motion is

    initiated by displacing the mass in a direction perpendicular to the cantilever by a distance ofand WL

    3/ 3EI and then leaving the system to vibrate freely, what is the max: displacement?

    What is the max: displacement at any time t?

    Soln:W

    W = mg ; m =g

    1 unit stiffness, S=3EI/L3

    3 EI/L3

    (a) = s/m = 3 EIg ; T = 2 = 2x WL3L3xW 3EIg

    (b) D0= WL3 : D0

    = 0

    3 EI

    Dmax:= ( D0/)2+ D0

    2 = D0= WL

    33EI

    D = D0sint + D0cost

    D = W L3 cost3EI

    13. Compute the natural angular frequency of vibration in sidesway for the frame in the fig:and calculate the natural period of vibration. Idealize the frame as a one-degree-of-freedom system. Neglect the axial and shear deformations and the weight of thecolumns. If initially the displacement is 1 in and the velocity is 10 in /sec, what is theamplitude and what is the displacement at t = 1sec?

  • 8/10/2019 Matrix Analysis Stuff

    42/76

    42

    Soln:

    SAB= 12 EI = 12 x 107 = 2.572 k/in

    L3 (30 x 12)3

    SCD= 12 EI = 12 x 107 = 5.023 k/in

    L3

    (24 x 12)3

    total stiffness S = SAB+ SCD= 7.595 k/in

    W = 60 k , m = W = 60 = 0.1554 k s2/in

    g 386

    (a) = s/m = 7.595 = 7 rad/s; T = 2 = 2 = 0.898 sec0.1554 7

    D0= l in, D0= 10 in/s

    = ( D0/)2+ D0

    2 = (10/7)2 + 12 = 1.744 in

    D = D0sin t + D0cos t

    = (10/7) sin 7 x 1 + 1 cos 7 x 1 = 1.692 in #

    14.( a )A one-story building is idealized as a rigid girder supported by weightless columns asshown in fig: In order to evaluate the dynamic properties of this structure, a free vibration test is made, in which the roof system ( rigid girder ) is displaced laterally by ahydraulic jack and then released. During the jacking operation, it is observed that a forceof 20 kip is required to displaced the girder 0.2 in. After the instantaneous release of thisinitial displacement, the max: displacement on the return swing is only 0.16 in and the

    period of this displacement cycle is T =1.4 sec.

  • 8/10/2019 Matrix Analysis Stuff

    43/76

    43

    Soln:

    T = 1.4 sec , S = 20 = 100 k/in0.2

    = 2 = 2 = 4.48 rad /sec

    T 1.4

    f = 1 = 1 = 0.714 HzT 1.4

    2 = ( S/m) ; m = (S/ 2) = ( 100/4.482) = 4.982 k s2/in

    W = mg = 4.982 x 386 = 1923.23 kip

    = Ln (Un/ Un+1) = Ln (0.2/0.16) = 0.223

    0.223

    = = = 3.55 %

    2 2

    C = Ccr = 2 m = 3.55 x 2 x 4.982 x 4.48 = 1.584 k s/in100

    D= 1 - 2 = ( 1- 3.55/100 )

    2 = 4.48 rad/s

    No.14 (b)The weight W of the building of fig: is 200 kip and the building is set into freevibration by releasing it (at time t = 0) from a displacement of 1.2 in. If the max:

    displacement on the return swing is 0.86 in at time t = 0.64 s, determine: (a) the lateralspring stiffness. (b) the damping ratio and ( c ) the damping coefficient.

    soln:

    W = 200 k , m = W = 200 = 0.518 ks2/ing 386

    D0= 1.2 in , T = 0.64 sec

    = 2/T = 2/ 0.64 = 9.817 rad/sec

  • 8/10/2019 Matrix Analysis Stuff

    44/76

    44

    (a) 2 = s/m s =

    2m = 9.817

    2x 0.518

    = 49.93 k/in

    (b) = Ln Un = Ln (1.2/0.86) = 0.3331%Un+1

    = = 0.3331 = 5.302 %

    2 2

    (c) C = Ccr = 2 m= 5.302x 2 x 0.518 x 9.817 = 0.5393 ks/in100

    15. Assume that the mass and stiffness of the structure of fig: are as follows: m = 2k s2/in,

    s = 40 k /in. If the system is set into free vibration with initial conditions D(o) = 0.7 inand D

    (o) = 5.6 in /s, determine the displacement and velocity at t = 1.0 sec, assuming

    (a) c = 0 (undamped system), (b) c = 2.8 ks/in.

    soln:

    = s/m = 40/2 = 4.472 rad/sec

    (a)undamped system

    D0= 0.7 in , D0= 5.6 in/s

    D = D0sin t + D0 cos t = 5.6 sin (4.472 x 1) + 0.7 cos (4.472 x 1)

    4.472= 1.383 in

    D= D0

    cos t - D0sin t = 5.6 cos 4.472 x 1 0.7 x 4.472x sin 4.472 x 1

    = 1.0771 in/sec

    (b) Damped system , C = 2.8 ks/in

    = C = 2.8 = 0.1565 = 15.65 %

    2 m 2 x 2 x 4.472

  • 8/10/2019 Matrix Analysis Stuff

    45/76

    45

    D= 1 - 2 = 4.472 1 0.15652 = 4.417 rad/s

    D0+ D0

    D = e-t x sin Dt + D0 cos Dt

    D

    = = 0.1565 x 4.472 = 0.6999 0.7

    e-t = e-0.7 x 1 = 0.4966

    D0+ D0 5.6 + 0.7 x 0.7

    = = 1.3788

    D 4.417

    D = 0.4966 [ (1.3788 sin 4.417 x 1 ) + (0.7 cos 4.417 x 1) ]

    = 0.7563 in

    D0+ D0 D0

    + D0

    D= - e

    -t sin Dt + D0 cos Dt + e

    -t xDcos Dt

    D D

    - D0Dsin Dt

    = - 0.7 x 0.7563 + 0.4966 [ (1.3788 x 4.417 cos 4.417 x 1) (0.7 x 4.417 x sin 4.417 x

    1) ]

    = 0.0591 in/s

    16. Determine the max: steady state sides-way in the frame shown in fig: When it issubjected to a harmonic horizontal force at the level of BC of magnitude of 4 sin 14t

    (kip) and (a) no damping is present (b) the damping coefficient = 0.1.

    soln:

    12 EI 12 x 107SAB= = = 2.572 k/in

    L3 (30 x 12)3

  • 8/10/2019 Matrix Analysis Stuff

    46/76

    46

    12 EI 12 x 107SCD= = = 5.023 k/in

    L3 (24 x 12)3

    Total S = SAB+ SCD= 7.595 k/in

    W = 60 k , m = (W/g) = (60/386) = 0.1554 k s2/in

    = s/m = 7.595 = 7 rad/s0.1554

    (a) no damping is present

    P(t) = P0sin t = 4 sin 14 t

    P0= 4 k , = 14

    P0 1 sin tDmax=

    S 1 (/)2

    P0 1 4 1Dmax= =

    S 1 (/)2 7.595 1 (14/7)2

    = 0.176 in

    (b) damping coeff: = 0.1

    = 0.1 = ( / )

    = 0.1 = 0.1 x 7 = 0.7

    P0 x 1Dmax = 2 2

    S 1 (/)2 + (2/2)

    4 x 1Dmax = 2 2

    7.595 1 14 2 + (2 x 0.7 x 14 )/497

    = 0.174 in

  • 8/10/2019 Matrix Analysis Stuff

    47/76

    47

    17. Determine the natural circular frequencies and characteristic shapes for the two-degree-

    of- freedom systems shown in fig.

    Soln:

    [ m ] = m1 0 = m 00 m2 0 m

    = m 1 00 1

    From appendix E-1

    [ s ] = EI 9.6 - 8.49L3 - 8.4 9.6

    [ m ]-1 = 1 1 0m 0 1

    [ B ] = [ m ]-1

    [ s ]

    = EI 1 0 9.6 - 8.49 = EI 9.6 - 8.49mL3 0 1 - 8.4 9.6 mL3 - 8.4 9.6

    [ B ] - 2[ I ] = 0

    [ B ] - 2 1 0 = EI 9.6-2 -8.4

    0 1 mL3 -8.4 9.6-

    2

    [ B ] - 2 = ( 9.6 - 2 )2 - 8.42 = 0

    92.16 19.2 2+ 4 70.56 = 0

    4 19.2

    2+ 21.6 = 0

    (2)

    2- 19.2 (

    2) + 21.6 = 0

    12

    = 1.2 EI

    mL3

  • 8/10/2019 Matrix Analysis Stuff

    48/76

    48

    22

    = - 18 EImL3

    For 12 = 1.2 EI

    mL3

    [ B ] - 12[I] D = { 0 }

    EI 9.6-1.2 -8.4 D1 = 0mL3 -8.4 9.6-1.2 D2

    Let D1 = 1 ,

    D2 = 1

    D(1)

    = 11

    For 22 = 18 EI /mL3

    EI 9.6-18 - 8.4 D1 = 0mL

    3- 8.4 9.6-18 D2

    Let D1 = 1

    9.6 D1 + 9.6 D2 = 0

    D2 = -1

    D(2) = 1-1

    18. Determine the natural circular frequencies and characteristic shapes for the two-degree-of-freedom systems shown in the fig.

    soln:

    2 1

  • 8/10/2019 Matrix Analysis Stuff

    49/76

    49

    [ m ] = m1 0 = m 0 = m 1 0

    0 m2 0 m 0 1

    From appendix E-3

    [ s ] = EI 1.71428 -4.28571L3 -4.28571 13.71428

    [ m ]-1

    = 1 1 0m 0 1

    [ B ] = [ m ]-1

    [ s ]

    = EI 1 0 1.71428 -4.28571mL3 0 1 -4.28571 13.71428

    = EI 1.71428 -4.28571mL3 -4.28571 13.71428

    [ B ] - 2 [ I ] = 0

    [ B ] - 2 [ I ] = EI 1.71428- 2 -4.28571

    mL3 -4.28571 13.71428 -

    2

    [ B ] - 2 [ I ] = (1.71428 - 2) (13.71428 - 2) 18.36731 = 0

    23.51012 15.42856 2+ 4- 18.36731 = 0

    4 15.42856

    2+ 5.14281 = 0

    12= 0.341 EI

    mL3

    22= 15.088 EI

    mL3

    For 12 = 0.341 EI

    mL3

    ( [ B ] - 12 [ I ] ) { D} = {0}

  • 8/10/2019 Matrix Analysis Stuff

    50/76

    50

    1.37328 -4.28571 D1 = 0-4.28571 13.3733 D2 0

    Let D1= 1 , D2= 0.32

    D(1) = 1

    0.32

    For 22 = 15.088 EI

    mL3

    ( [ B ] - 22 [ I ] ) { D} = {0}

    -13.7372 -4.28571 D1 = 0

    -4.28571 -1.37372 D2 0

    Let D1= 1 , D2= -3.12

    D(2)

    = 1-3.12

    19. Find the angular frequencies and the normal mode characteristic shapes for thecantilever in fig shown vibrating freely in the plane of the fig. Neglect the axialdeformations and consider only the lumped masses.

    soln:

    The system has three degree of freedom indicated by the three coordinates.

    3 2 1

  • 8/10/2019 Matrix Analysis Stuff

    51/76

    51

    From appendix E-3

    [ s ] = EI 1.6154 -3.6923 2.7692L3 -3.6923 10.1538 -10.6154

    2.7692 -10.6154 18.4615

    [ m ] = w 4 0 0g 0 1 0

    0 0 1

    [ B ] = [ m ]-1 [ s ]

    [ m ]-1

    = g 0.25 0 0w 0 1 0

    0 0 1

    [ B ] = EIg 0.25 0 0 1.6154 -3.6923 2.7692wL3 0 1 0 -3.6923 10.1538 -10.6154

    0 0 1 2.7692 -10.6154 18.4615

    [ B] { D } = 2 { D } ; [B ] EIg 0.4039 -0.9231 0.6923wL3 -3.6923 10.1538 -10.6154

    [ B ] - 2 [ I ] = 0 2.7692 -10.6154 18.4615

    [ B] - 2 [ I ] = EIg 0.4039 - 2 -0.9231 0.6923

    wL3 -3.6923 10.1538 - 2 -10.6154

    2.7692 -10.6154 18.4615 - 2

    [ B ] - 2 [ I ] = 0.4039 - 2 -0.9231 0.6923

    -3.6923 10.1538 - 2 -10.6154 = 0

    2.7692 -10.6154 18.4615 - 2

    (0.4039 - 2) [(10.1538 - 2) (18.4615 - 2) - 10.61542]

    +0.9231 -3.6923 (18.4625 -2) + 2.7692 x 10.6154

    +0.6923 3.6923 x 10.6154 - 2.7692 (10.1538 - 2) = 0

    6- 29.0192

    4+ 81

    2 2.0797 = 0

    (2

    )3- 29.0192 (

    2)

    2 + 81 (

    2) 2.0797 = 0

  • 8/10/2019 Matrix Analysis Stuff

    52/76

    52

    12

    = 0.02588 EIg/wL3

    22

    = 3.09908 EIg/wL3

    32

    = 25.89415 EIg/wL3

    1 = 0.1609 EIg/wL3 ; 2 = 1.7604 EIg/wL3 ; 3 = 5.0886 EIg/wL3

    For 12 = 0.02588 EIg

    wL3

    {[ B ] - 12 [ I ] }{ D} = {0}

    0.37802 -0.9231 0.6923 D1 0-3.6923 10.12792 -10.6154 D2 = 0

    2.7692 -10.6154 18.43562 D3 0(1)

    Let D1= 1 ,D2= 0.5224D3= 0.1506

    1D(1) = 0.5224

    0.1506

    For 22 = 3.09908 EIg

    wL3

    { [ B ] - 22 [ I ] } { D} = {0}

    -2.69518 -0.9231 0.6923 D1 = 0-3.6923 7.05472 -10.6154 D2 02.7692 -10.6154 15.36242 D3 0

    Let D1= 1 ,D2= -6.3414D3= -4.5622

    D(2)

    = 1-6.3414 -4.5622

    -6.3414

    1

    1

    0.5224

    1.506

    1= 0.1609 3EIg

    wl

    1 3

    EIg = 1.7604

    wl

  • 8/10/2019 Matrix Analysis Stuff

    53/76

    53

    For 32

    = 25.89415 EIgwL3

    { [ B ] - 32 [ I ] } { D} = {0}

    -25.49025 -0.9231 0.6923 D1 = 0-3.6923 -15.74035 -10.6154 D2 02.7692 -10.6154 -7.43265 D3 0

    Let D1= 1 ,

    D2= -13.1981D3= 19.2222

    1D

    (3) = -13.1981

    19.22221.0

    13.1981

    193.222

    20. Find the response of the system shown in fig to a set of harmonic forces at the three

    coordinates shown P1= 2 P0 sin t, P2= P0 sin t and P3= P0 sin t.

    soln:

    From appendix E-3

    [ s ] = EI 1.6154 -3.6923 2.7692L3 -3.6923 10.1538 -10.6154

    2.7692 -10.6154 18.4615

    3 = 5.0866 EIg/wL3

  • 8/10/2019 Matrix Analysis Stuff

    54/76

    54

    [ m ] = w 4 0 0g 0 1 0

    0 0 1

    [ B ] = [ m ]-1 [ s ]

    [ B] = [ m ]-1 [ s ] = EIg 0.4039 -0.9231 0.6923

    wL3

    -3.6923 10.1538 -10.61542.7692 -10.6154 18.4615

    [ B ] - 2

    [ I ] = 0

    12

    = 0.02588 EIgwL

    3

    22 = 3.09908 EIg

    wL3

    32

    = 25.89415 EIgwL3

    [ B ] - 2 [ I ] D = 0

    [ ] = 1.0 1.0 1.00.5224 -6.3414 -13.19810.1506 -4.5622 19.2222

    1 = {( 1)}T[ m ] {(1)} = [ 1 0.5224 0.1506 ] W 4 0 0 1

    g 0 1 0 0.52240 0 1 0.1506

    = 4.296 W/g

    2 = {(2)}T[ m ] {(2)} = [ 1 -6.3414 -4.5622] W 4 0 0 1

    g 0 1 0 -6.34140 0 1 -4.5622

    = 65.072 W/g

    3= {( 3)

    }T[ m ] {

    (3)} = [1 -13.1981 19.2222] W 4 0 0 1

    g 0 1 0 - 13.1981

    0 0 1 19.2222

    = 547.68 W/g

    2

    P = P0 1 sin t1

  • 8/10/2019 Matrix Analysis Stuff

    55/76

    55

    2

    L1 = {( 1)}T{ P } = [ 1 0.5224 0.1506 ] P0sin t 1

    1

    = 2.673 P0sin t

    2

    L2 = {( 2)}T{ P } = [ 1 -6.3414 -4.5622 ] P0sin t 11

    = -8.904 P0sin t

    2

    L3 = {( 3)

    }T{ P } = [ 1 -13.1981 19.2222 ] P0sin t 1

    1

    = 8.024 P0sin t

    The uncouple eqn:of motion is

    r

    + r2

    r= Lrr

    1 + 1

    21= L1

    1

    1 + 0.02588 EIg 1= 0.6222 P0sin t

    wL3 w/g

    2 + 3.09908 EIg2= - 0.1369 P0sin t

    wL3

    w/g

    3 + 25.89415 EIg3= 0.0147 P0sin t

    wL3 w/gThe steady state displacement is,

    1= 0.6223 P0 g/W sin t 2= - 0.1369 P0 g/W sin t

    0.02588 EIg -2 ; 3.09908 EIg -

    2 ;

    W L3

    W L3

    3= 0.0147 P0 g/W sin t

    25.89415 EIg - 2

    W L3

  • 8/10/2019 Matrix Analysis Stuff

    56/76

    56

    21. Find the response of the system shown in fig to a support, motion described by

    s = g/5 sin t, where = 4 (1/sec) and g is the acceleration due to gravity.

    soln:

    From appendix E-3

    [ s ] = EI 1.6154 -3.6923 2.7692

    L3 -3.6923 10.1538 -10.61542.7692 -10.6154 18.4615

    [ m ] = W 4 0 0g 0 1 0

    0 0 1

    [ B ] = [ m ]-1 [ s ]

    [ B ] - [ m ]-1 [ s ] = EIg 0.4039 -0.9231 0.6923

    WL3 -3.6923 10.1538 -10.61542.7692 -10.6154 18.4615

    [ B ] - 2 [ I ] = 0

    12

    = 0.02588 EIgWL

    3

    22 = 3.09908 EIg

    WL3

    32

    = 25.89415 EIgWL3

    [ B ] - 2 [ I ] D = 0

  • 8/10/2019 Matrix Analysis Stuff

    57/76

    57

    [ ] = 1.0 1.0 1.00.5224 -6.3414 -13.19810.1506 -4.5622 19.2222

    m* = W/g 4

    11

    4

    L1 = - s {( 1)}T{ m*} = - s [ 1 0.5226 0.15063 ] 1 W/g

    1

    = - g/5 x W/g sin t x 4.67323

    = - 0.9346 W sin t

    L2 = - s {( 2)

    }T{ m

    *}

    4

    = - g/5 sin t x W/g [ 1 -6.3414 -4.5622 ] 11

    = 1.381 W sin t

    L3 = - s {( 3)

    }T{ m

    *}

    4

    = - g/5 sin t x W/g [ 1 -13.1981 19.2222 ] 11

    = - 2.005 W sin t

    1 = {( 1)}T{ m }{( 1)}

    4 0 0 1= [ 1 0.5224 0.1506 ] W/g 0 1 0 0.5224

    0 0 1 0.1506

    = 4.296 W/g

    2 = {( 2)}T{ m }{( 2)}

    4 0 0 1= [ 1 -6.3414 -4.5622 ] W/g 0 1 0 -6.3414

    0 0 1 -4.5622

    = 65.027 W/g

  • 8/10/2019 Matrix Analysis Stuff

    58/76

    58

    3 = {( 3)

    }T{ m }{

    ( 3)}

    4 0 0 1= [ 1 -13.1981 19.2222 ] W/g 0 1 0 -13.1981

    0 0 1 19.2222

    = 547.68 W/g

    The uncouple eqn:

    of motion is

    r + r

    2r= Lr

    r

    1 + 121= L1

    1

    1 + 0.02588 EIg1= - 0.2174 g sin t

    WL3

    2 + 3.09908 EIg 2= 0.0212 g sin t

    WL3

    3 + 25.89415 EIg 3= - 0.0037 g sin t

    W L3

    The steady state uncouple displacement is

    1= - 0.2174 g sin t

    0.02588 EIg - 2

    WL3

    2= 0.0212 g sin t

    3.09908 EIg - 2WL

    3

    3= - 0.0037 g sin t

    25.89415 EIg - 2

    wL

    3

  • 8/10/2019 Matrix Analysis Stuff

    59/76

    59

    22. Determine the natural frequencies and corresponding mode shapes for the shearbuilding shown in fig.

    Soln:

    m1 0 0 0.025 0 0[ m ] = 0 m2 0 = 0 0.05 0 ks

    2/in0 0 m3 0 0 0.1

    k1+ k2 - k2 0 40 -10 0[ k ] = - k2 k2+ k3 - k2 = -10 20 -10 k/in

    0 - k3 k3 0 -10 10

    [ m ]-1 = 40 0 00 20 00 0 10

    40 0 0 40 - 10 0[ B ] = [ m ]-1 [ k ] = 0 20 0 x -10 20 -10

    0 0 10 0 -10 10

    1600 -400 0

    = -200 400 -2000 -100 100

    1600 -2 -400 0

    [ B ] - 2[ I ] = - 200 400 -2 -200

    0 -100 100 -2

    [ B ] - 2[ I ] = (1600 -2 ) (400 -2 ) (100 -2 ) 2 x 104 + 400 - 200 (100 - 2 ) = 0

    (1600 -2 ) 4 x 104 500 2 + 4 2 x 104 - 8 x 106 + 8 x 1042= 0

    32 x 106 80 x 10

    4

    2+ 1600

    4 2 x 10

    4

    2+ 500

    4

    6- 8 x 10

    6+ 8 x 10

    4

    2= 0

    - 6

    + 2100 4 74 x10

    4

    2+ 24 x10

    6= 0

  • 8/10/2019 Matrix Analysis Stuff

    60/76

    60

    - (2}

    3+ 2100 (

    2}

    2- 74 x10

    4(

    2} + 24 x10

    6= 0

    12= 36.06 ; 1= 6.01 rad/s

    22= 400 ; 2= 20 rad/s

    32= 1663.94 ; 3= 40.79 rad/s

    Natural frequencies

    1= = 0.96 Hz ; 2= 3.183 Hz ; 3= 6.492 Hz2

    For 12= 36.06

    [ B ] - 12 [ I ] D = 0

    1563.94 -400 0 D1 0-200 363.94 -200 D2 = 0

    0 -100 63.94 D3 0

    Let D1= 1 , 6.12D2= 3.91D3= 6.12 3.91

    1 1D

    (1) = 3.91

    6.12 1= 6.01rad/sec

    For 22 = 400

    ( [ B ] - 22 [ I ] ) { D} = {0}

    1200 - 400 0 D1 = 0- 200 0 - 200 D2 0

    0 - 100 - 300 D3 0

    Let D1= 1 ,D2= 3D3= - 1

    1D(2) = 3

    - 1

    2 = 20rad/sec

    3.0

    1.0

    -1.0

  • 8/10/2019 Matrix Analysis Stuff

    61/76

    61

    For 32

    = 1663.94

    ([ B ] - 32 [ I ] ) { D} = {0}

    - 63.94 - 400 0 D1 = 0

    - 200 - 1263.94 -200 D2 00 - 100 - 1563.94 D3 0

    Let D1= 1 ,D2= - 0.16

    D3= 0.01

    1D

    (3) = - 0.16

    0.01

    3 = 40.79 rad.s

    FINITE ELEMENT METHOD

    23. For the spring assemblage with arbitrarily numbered nodes shown in fig. obtain (a) theglobal stiffness matrix (b) the displacements of nodes 3 and 4. (c) the reaction forces atnode 1 and 2 (d) the forces in each spring . A force of 5000 lb is applied at node 4 in the

    x direction. The spring constants are given in the fig. Nodes 1 and 2 are fixed.

    Soln:

    For element 1,

    k(1)

    = k1 - k1 = 1000 - 1000 lb/in

    - k1 k1 -1000 1000

    For element 2,

    k(2) = k2 - k2 = 2000 - 2000 lb/in- k2 k2 -2000 2000

    1.00

    0.01

    -0.16

  • 8/10/2019 Matrix Analysis Stuff

    62/76

  • 8/10/2019 Matrix Analysis Stuff

    63/76

    63

    1x= -10,000 lb

    11

    3x= 10,000 lb

    11

    110000/11 10000/11

    For element 2,

    3x = 2000 -2000 d3x 10/11

    4x -2000 2000 d4x 15/11

    3x

    = -10,000 lb

    11

    4x= 10,000 lb11

    210000/11 10000/11

    For element 3,

    4x = 3000 -3000 d4x 15/112x -3000 3000 d2x 0

    4x= 45,000 lb

    11

    2x= -45,000 lb11

    345000/11 lb

    45000/11 lb

  • 8/10/2019 Matrix Analysis Stuff

    64/76

    64

    24. For the spring assemblages shown in fig, obtain (a) the global stiffness matrix, (b) thedisplacement of nodes 2, 3 and 4 (c) the global nodal forces, and (d) the local elementforces. Node 1 is fixed while node 5 is given a fixed, known displacement = 20 mm .The spring constants are all equal to k = 200 kN/m.

    Soln:For element 1,

    k(1)

    = k1 - k1 = 200 - 200 kN/m- k1 k1 -200 200

    k(1) = k(2)= k(3)= k(4)

    (a) k = 200 -200 0 0 0-200 400 -200 0 00 -200 400 -200 00 0 - 200 400 -2000 0 0 -200 200

    (b) k d = F

    200 -200 0 0 0 d1x F1x-200 400 -200 0 0 d2x F2x0 -200 400 -200 0 = d3x F3x0 0 -200 400 -200 d4x F4x0 0 0 200 200 d5x F5x

    Boundary condition d1x= 0 , d5x= 20 mm = 0.02 mF2x= 0 , F3x= 0 , F4x= 0

    400 -200 0 d2x = F2x-200 400 -200 d3x F3x

    0 -200 400 d4x F3x + 200 x

    400 -200 0 d2x = 0

    -200 400 -200 d3x 00 -200 400 d4x 4

    D2x= 0.005 m, D3x= 0.01 m, D4x= 0.015 m

  • 8/10/2019 Matrix Analysis Stuff

    65/76

    65

    (c)

    200 -200 0 0 0 0 F1x-200 400 -200 0 0 0.005 F2x0 -200 400 -200 0 0.01 = F3x0 0 -200 400 -200 0.015 F4x

    0 0 0 200 200 0.02 F5x

    F1x= -1 kN, F2x= 0, F3x= 0, F4x= 0, F5x= 1 kN

    ( d ) For element 1,

    = k d

    1x = 200 -200 d1x 0

    2x -200 200 d2x 0.005

    1x= - 1 kN

    2x= 1 kN

    1

    1 kN 1 kN

    For element 2,

    2x = 200 -200 d2x 0.005

    3x -200 200 d3x 0.01

    2x= - 1 kN

    3x= 1 kN

    2

    1 kN 1 kN

    For element 3,

    3x = 200 -200 d3x 0.01

    4x -200 200 d4x 0.015

  • 8/10/2019 Matrix Analysis Stuff

    66/76

    66

    3x= - 1 kN

    4x= 1 kN

    3

    1 kN 1 kN

    For element 4,

    4x = 200 -200 d4x 0.015

    5x -200 200 d5x 0.01

    4x= - 1 kN

    5x= 1 kN

    41 kN 1 kN

    25. (a)Obtain the global stiffness matrix K of the assemblage shown in fig by superimposingthe stiffness matrices of the individual springs. Here k1, k2, and k3are the stiffness ofthe springs as shown.(b) If nodes 1 and 2 are fixed and a force P acts on node 4 in the positive x direction,

    find an expression for the displacements of nodes 3 and 4.(c) Determine the reaction forces at nodes 1 and 2.

    Soln:

    For element 1,

    k(1) = k1 - k1- k1 k1

    For element 2,

    k(2)

    = k2 - k2- k2 k2

  • 8/10/2019 Matrix Analysis Stuff

    67/76

    67

    For element 3,

    k(3) = k3 - k3- k3 k3

    (a) k1 0 - k1 0k = 0 k3 0 - k3

    - k1 0 k1 + k2 - k20 - k3 - k2 k2 + k3

    (b) k d = F

    k1 0 - k1 0 d1x F1x

    0 k3 0 - k3 d2x = F2x- k1 0 k1 + k2 - k2 d3x F3x

    0 - k3 - k2 k2 + k3 d4x F4x

    Boundary condition d1x= 0 , d2x= 0 , F3x= 0 , F4x= 0 ,

    k1 + k2 - k2 d3x = F3x 0- k2 k2+ k3 d4x F4x P

    (k1 + k2) d3x - k d4x = 0

    (k1 + k2)d4x = d3x

    k2

    - k2d3x+ (k2 + k3) d4x = P

    (k1 + k2)- k2d3x+ (k2 + k3) x d3x = P

    k2

    - k22+ k1k2+ k1k3+ k2

    2+ k2 k3

    d3x ( ) = Pk2

    k2d3x = P

    k1k2+ k2 k3 + k1k3

    k1+ k2d4x= P

    k1k2+ k2 k3 + k1k3

  • 8/10/2019 Matrix Analysis Stuff

    68/76

    68

    (c)k1 0 - k1 0 0 F1x0 k3 0 - k3 0 F2x

    - k1 0 k1 + k2 - k2 k2 P =k1k2+ k2 k3 + k1k3 F3x

    0 - k3 - k2 k2 + k3 (k1+k2) P

    k1k2+ k2 k3 + k1k3 F4x

    - k1k2F1x = P

    k1k2+ k2 k3 + k1k3

    - k3( k1k2)F2x = P

    k1k2+ k2 k3 + k1k3

    26. For the spring assemblage shown in fig, determine the displacement at node 2 and theforces in each spring element. Also determine the force F3. Given node 3 displaces anamount = 1 in the positive x direction because of the force F3 and k1 = k2= 1000 lb/in.

    Soln:For element 1,

    k(1) = k1 - k1 = 1000 -1000 lb/in- k1 k1 -1000 1000

    For element 2,

    k(2) = k2 - k2 = 1000 -1000 lb/in

    - k2 k2 -1000 1000

    Assemblage the spring elements

    k = 1000 - 1000 0- 1000 2000 - 1000

    0 - 1000 1000

    (b) k d = F

    1000 - 1000 0 d1x F1x- 1000 2000 - 1000 d2x = F2x

    0 - 1000 1000 d3x F3x

  • 8/10/2019 Matrix Analysis Stuff

    69/76

    69

    Boundary condition d1x= 0 , d3x= 1 in , F2x= 0

    2000 d2x - 1000 d3x = F2x

    2000 d2x = 1000 x 1

    d2x = 0.5 in

    1000 - 1000 0 0 F1x- 1000 2000 - 1000 0.5 = F2x

    0 - 1000 1000 1 F3x

    F1x = - 500 lb

    F3x = - 500 + 1000 = 500 lbFor element 1,

    = k d

    1x = 1000 -1000 d1x 0

    2x -1000 1000 d2x 0.5

    1x = - 500 lb ;

    2x = 500 lb

    1

    500 500

    For element 2,

    = k d

    2x = 1000 -1000 d2x 0.5

    3x -1000 1000 d3x 1

    2x = - 500 lb ;

    3x = 500 lb

    2

    500 lb 500 lb

  • 8/10/2019 Matrix Analysis Stuff

    70/76

    70

    27. (a) For the spring assemblage shown fig, obtain the global stiffness matrix by directsuperposition.

    (b) In nodes 1 in fixed while node 5 is given a fixed, known displacement of as shownin fig, determine the nodal displacements.

    (c) Determine the reactions at the fixed nodes 1 and 5.

    Soln:For element 1,

    k(1) = k - k- k k

    k(2)

    = k(3)

    = k(4)

    = k(1)

    = k - k

    - k k

    (a) k = k -k 0 0 0- k 2 k - k 0 00 - k 2 k - k 00 0 - k 2 k - k0 0 0 - k k

    (b) k d = F

    k -k 0 0 0 d1x F1x-k 2 k -k 0 0 d2x = F2x0 -k 2 k -k 0 d3x F3x0 0 - k 2 k -k d4x F4x0 0 0 -k k d5x F5x

    Boundary condition d1x= 0 , d5x=

    F2x = 0 , F3x = 0 , F4x = 0

    2 k - k 0 d2x F2x 0- k 2 k - k d3x = F3x 00 - k 2 k d4x F4x + k k

    2 k d2x- k d3x = 0d3x = 2 d2x

    - k d2x+ 2 k d3x - k d4x= 0

  • 8/10/2019 Matrix Analysis Stuff

    71/76

    71

    - k d2x+ 4 k d2x - k d4x= 0

    3 k d2x = k d4x

    d4x = 3 d2x

    - k d3x+ 2 k d4x= k

    - 2 k d2x+ 6 k d2x= k

    4 k d2x = k

    d2x = /4

    d2x = /4 ; d3x = /2 ; d4x = 3/4

    ( c ) k d = F

    k -k 0 0 0 0 F1x-k 2 k -k 0 0 0.25 = F2x0 -k 2 k -k 0 0.5 F3x0 0 - k 2 k -k 0.75 F4x0 0 0 -k k F5x

    F1x = - 0.25 k

    F5x = - 0.25 k

    28. For the spring assemblages shown in fig, determine the nodal displacements, the forces

    in each element and the reactions. Use the direct stiffness method.

    Soln:For element 1,

    k(1) = k1 - k1 = 500 -500 lb/in

    - k1 k1 -500 500

    For element 2,

    k(2) = k2 - k2 = 1000 -1000 lb/in- k2 k2 -1000 1000

  • 8/10/2019 Matrix Analysis Stuff

    72/76

    72

    For element 3,

    k(3) = k3 - k3 = 1500 -1500 lb/in- k3 k3 -1500 1500

    (b) k d = F

    500 500 0 0 d1x F1x

    -500 1500 -1000 0 d2x = F2x0 -1000 2500 -1500 d3x F3x

    0 0 -1500 1500 d4x F4x

    Boundary condition d1x= 0

    F2x = -1000 lb, F4x = 4000 lb , F3x = 0

    1500 - 1000 0 d2x -1000- 1000 2500 - 1500 d3x = 0

    0 - 1500 1500 d4x 4000

    d2x = 6 in

    d3x = 10 in

    d4x = 12.667 in (38/3)

    F1x = 500 d1x - 500 d2x - = - 3000 lb

    For element 1,

    = k d

    1x = 500 -500 d1x 0

    2x -500 5 00 d2x 6

    1x = - 3000 lb ;

    2x = 3000 lb

    1

    3000lb 3000lb

  • 8/10/2019 Matrix Analysis Stuff

    73/76

    73

    For element 2,

    2x = 1000 -1000 d2x 6

    3x -1000 1000 d3x 10

    2x = - 4000 lb ;

    3x = 4000 lb

    2

    4000 4000lb

    For element 3,

    3x = 1500 -1500 d3x 10

    4x -1500 1500 d4x 38/3

    3x = - 4000 lb ;

    4x = 4000 lb

    3

    4000 lb 4000lb

  • 8/10/2019 Matrix Analysis Stuff

    74/76

    74

    29. Describe the flow chart for determining the member forces in given structure by finiteelement analysis.

  • 8/10/2019 Matrix Analysis Stuff

    75/76

    75

    30.(a) If the system is shown has a damping coefficient = 0.1, what are the dampednatural circular frequency and natural period of damped vibration? What is thedisplacement at t = 1 sec, if D0= 1 in and D0 = 10 in/sec?

    (EI)AB= (EI)CD= 107

    k-in2

    12 EI 12 x 107

    SAB= = = 2.572 k/in

    L3 (30 x 12)3

    12 EI 12 x 107SCD= = = 5.025 k/in

    L3 (24 x 12)3

    Total S = SAB+ SCD=7.595 k/in

    W 60m = = = 0.1554 ks

    2/in

    g 386

    s 7.595

    = = = 7 rad/sm 0.1554

    = = 0.1 x 7 = 0.7

    d2 = 2 - 2 = 72 - 0.72

    = 6.965 rad/s

    2 2

    Td= = = 0.902 sec

    d 6.965

  • 8/10/2019 Matrix Analysis Stuff

    76/76

    76

    If D0= 1 in, D0 = 10 in/sec

    D02+ D0

    D = e-t

    sin d+ D0 cos dt

    d

    10+ 0.7 x 1

    D = e-0.7 x 1

    sin 6.969 x 1 + 1 cos 6.965 x 16.956

    D = 0.8663 in

    30 (b) If the amplitude of free vibration of a system with one degree of freedom decrease by50% in 3 cycle, what is the damping coefficient?

    1 Dn = in

    P Dn+p

    1 1 = ln

    3 0.5

    = 0.2311

    0.2311Damping coefficient = = = 0.0368 = 3.68%2 2