12
1 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz Renz and Roman Boča Supplementary information Experimental Chemicals and handling All chemicals were purchased and used as received in reagent grade. The manipulations were made under air conditions. The products were filtered over the ashless paper and fritted glass with porosity no. 4. Physical Measurements Elemental analyses were measured by Flash 2000 CHNS apparatus (Thermo Scientific). The samples for FT-IR (ATR) measurements was not dried prior to its using and were used as freshly growth crystals. The Nujol´s absorption UV-Vis spectra (190 - 1100 nm) for solid samples were measured by Specord 250 Plus (Analytica Jena) with the DAD detector at room temperature. Melting points were studied with thermo-microscopy by Kofler hot-stage microscope at 4°C·min -1 and reported without corrections. Preparation of complex [Fe III (L Et ) 2 Cl], 1. A 100 cm 3 round bottom flask was charged with 3-ethoxysalicylaldehyde (0.68 g, 4.12 mmol), furfurylamine (0.36 cm 3 , 4.12 mmol) and 20 cm 3 of MeOH. The reaction mixture was stirred for 1 hour at 70°C, with the colour change to yellow. FeCl 3 (0.33 g, 2.06 mmol) was added once and followed previous steps. Dark green crystals were isolated after four days by the filtration from mother liquid. Note: reaction with FeCl 2 ·4H 2 O gives the same result. Yield: 45 %. Melting point 240-246 °C. FT-IR bands (ATR), ν/cm -1 : 3118, 2976, 2927, 1623 (s) (C=N),1597, 1556, 1502, 1468 (s), 1448 (s), 1412, 1389, 1327, 1292 (s), 1247 (s), 1219 (s), 1149, 1115, 1078, 1012 (s), 970, 893, 800 (s), 759 (s), 735 (s), 646, 609 (s), 600 (s), 582, 540, 490 (s) (s = strong). Anal. Calc. for C 28 H 28 ClFeN 2 O 6 (579.82 g·mol -1 ): C, 58.00; H, 4.87; N, 4.83. Found: C, 58.62; H, 4.97; N, 4.54. 2-theta 5 10 15 20 25 30 35 40 45 relative intensity/a.u. 0 5000 10000 15000 20000 experimental XPD, 1 st scan experimental XPD, 2 nd scan theoretical Figure S1. Experimental X-ray powder diffraction patterns and theoretical prediction (Mercury software) using the wavelength (Co) = 1.78892 Å. Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

1Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Supplementary information

Experimental

Chemicals and handling All chemicals were purchased and used as received in reagent grade The manipulations were made under air conditions The products were filtered over the ashless paper and fritted glass with porosity no 4

Physical MeasurementsElemental analyses were measured by Flash 2000 CHNS apparatus (Thermo Scientific) The samples for FT-IR (ATR) measurements was not dried prior to its using and were used as freshly growth crystals The Nujolacutes absorption UV-Vis spectra (190 - 1100 nm) for solid samples were measured by Specord 250 Plus (Analytica Jena) with the DAD detector at room temperature Melting points were studied with thermo-microscopy by Kofler hot-stage microscope at 4degCmin-1 and reported without corrections

Preparation of complex [FeIII(LEt)2Cl] 1A 100 cm3 round bottom flask was charged with 3-ethoxysalicylaldehyde (068 g 412 mmol) furfurylamine (036 cm3 412 mmol) and 20 cm3 of MeOH The reaction mixture was stirred for 1 hour at 70degC with the colour change to yellow FeCl3 (033 g 206 mmol) was added once and followed previous steps Dark green crystals were isolated after four days by the filtration from mother liquid Note reaction with FeCl2middot4H2O gives the same result Yield 45 Melting point 240-246 degC FT-IR bands (ATR) νcm-1 3118 2976 2927 1623 (s) (C=N)1597 1556 1502 1468 (s) 1448 (s) 1412 1389 1327 1292 (s) 1247 (s) 1219 (s) 1149 1115 1078 1012 (s) 970 893 800 (s) 759 (s) 735 (s) 646 609 (s) 600 (s) 582 540 490 (s) (s = strong) Anal Calc for C28H28ClFeN2O6 (57982 gmiddotmol-1) C 5800 H 487 N 483 Found C 5862 H 497 N 454

2-theta

5 10 15 20 25 30 35 40 45

rela

tive

inte

nsity

au

0

5000

10000

15000

20000

experimental XPD 1st scanexperimental XPD 2nd scantheoretical

Figure S1 Experimental X-ray powder diffraction patterns and theoretical prediction (Mercury software) using the wavelength (Co) = 178892 Aring

Electronic Supplementary Material (ESI) for ChemCommThis journal is copy The Royal Society of Chemistry 2019

2Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Spectral data

434

490

540

582

600

609

646

735

759

800 893 9

7010

12 1

078

111

5 1

149

1219

1247

1292

132

7 1

389 1

412

1448

146

8 1

502

155

6 1

597

1623

292

7 2

976

311

8

TLCR12 ATR

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

T

500 1000 1500 2000 2000 3000 4000 Wavenumbers (cm-1)

Figure S2 IR spectrum of 1

Wavenumber 103 cm-1

10 12 14 16 18 20 22 24 26 28

Rel

ativ

e ab

sorb

ance

00

02

04

06

08

10

[FeIII(LEt)2Cl]Wavenumber 103 cm-1

10 12 14 16 18 20 22 24 26 28

Abs

orba

nce

deriv

ativ

e

-0004

-0003

-0002

-0001

0000

0001

0002

Tran

sitio

n

Figure S3 Electronic absorption spectrum of 1 in Nujol suspension and its first derivative (right) Vertical bars on right ndash calculated transitions (spin-orbit corrected excitation energies)

3Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Ab initio calculations

Table S1 SOC corrected absorption spectrum-----------------------------------------------------------------------------------Multiplets Energy Wavelength fosc T2 |TX| |TY| |TZ| (cm-1) (nm) (D2) (D) (D) (D) ----------------------------------------------------------------------------------- 0 6 125823 7948 0000000001 000000 000005 000000 000086 0 7 125823 7948 0000000000 000000 000017 000023 000030 0 8 125996 7937 0000000001 000000 000013 000001 000120 0 9 125996 7937 0000000001 000000 000023 000044 000053 0 10 150959 6624 0000000000 000000 000001 000034 000040 0 11 150959 6624 0000000001 000000 000004 000007 000084 0 12 151207 6613 0000000003 000000 000003 000141 000094 0 13 151207 6613 0000000007 000001 000006 000001 000245 0 14 198674 5033 0000000000 000000 000004 000014 000001 0 15 198674 5033 0000000000 000000 000005 000000 000003 0 16 230890 4331 0000000030 000002 000394 000020 000093 0 17 230890 4331 0000000010 000001 000168 000151 000042 0 18 231426 4321 0000000017 000001 000287 000060 000070 0 19 231426 4321 0000000003 000000 000101 000084 000025 0 20 239442 4176 0000000000 000000 000039 000001 000026 0 21 239442 4176 0000000000 000000 000002 000003 000018

Table S2 Lowest sextet-to-quartet NEVPT2 transition energies and contributions to the D-tensor for 1 Root Multiplicity Ecm-1 Dcm-1 Ecm-1

0 4 12580 2888 01 4 15099 -0932 09322 4 23135 -0239 -02323 4 24719 -0019 00185 4 25843 0002 04 4 26086 0004 07 4 27521 0 06 4 28031 -0027 -00278 4 28262 0 09 4 28812 -0082 007010 4 29904 0081 -000312 4 32077 -0675 -066513 4 33148 0002 011 4 33593 -0459 -045814 4 33989 0 015 4 42148 -0684 068116 4 45579 1250 0

4Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Structural data Table S3 Crystal data and structure refinement

[FeIII(LEt)2Cl] 1Empirical formula C28H28ClFeN2O6Formula weight g mol-1 57982Crystal system monoclinicSpace group C2cTemperature K 100Crystal size mm 022 times 012 times 006Z 4

a Aring 160599(7)b Aring 104661(3)c Aring 169384(8) deg 90β deg 109324(3)γ deg 90

V Aring3 268668(19)ρcalc g cm-3 1433μ mm-1 5798F(000) 12040Radiation CuKα (λ = 154186)2Θ range for data collectiondeg 10272 to 14321Index ranges -19 le h le 16 -8 le k le 12 -20 le l le 20Datarestraintsparameters 25840174Goodness-of-fit on F2 1063Final R indexes [Igt=2σ (I)] R1 = 00308 wR2 = 00710R indices (all data) R1 = 00368 wR2 = 00744color dark greenCCDC No 1855298

Table S4 Selected bond lengths (Aring) and bond angles (deg) in chromophore FeN2O2Cl of 1Fe1‒O1 18792(12) O11‒Fe1‒Cl1 11498(4)Fe1‒O11 18793(12) O1‒Fe1‒Cl1 11498(4)Fe1‒N1 21094(15) O1‒Fe1‒O11 13004(9)Fe1‒N11 21093(15) O1‒Fe1‒N1 8693(6)Fe1‒Cl1 22339(8) O11‒Fe1‒N1 8903(6)

O11‒Fe1‒N11 8694(6)O1‒Fe1‒N11 8903(6)N1‒Fe1‒Cl1 9478(4)N11‒Fe1‒Cl1 9478(4)N11‒Fe1‒N1 17043(9)

Table S5 Comparison of geometry for related complexes using SHAPE software Complex Trigonal bipyramid (TBPY) D3h Spherical square pyramid (SPY) C4v Ref[FeIII(LEt)2Cl] 0976 2800 this work[FeIII(LMe)2Cl] 3127 1003 unpublished[FeIII(L2)2Cl] 2808 0976 Ref [FeIII(L4)2Cl] 1978 1717 Ref

() Cisterna J Artigas V Fuentealba M Hamon P Manzur C Hamon J-R Carrillo D Pentacoordinated Chloro-Iron(III) Complexes with Unsymmetrically Substituted N2O2 Quadridentate Schiff-Base Ligands Syntheses Structures Magnetic and Redox Properties Inorganics 2018 6 5

5Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Description of crystal structure

The crystal structure of 1 (Figure S4) show CndashH∙∙∙Cl hydrogen bonding interactions between carbon atoms (C10) of furane ring and chlorine atoms (Cl1) [C10ndashH10∙∙∙Cl1 with distance C10∙∙∙Cl1 of 3522(2) Aring (Table S6)] CndashH∙∙∙O hydrogen bonding interactions between carbon atoms (C12) of furane ring and fenolic oxygen atoms (O1) [C12ndashH12∙∙∙O1 with distance C12∙∙∙O1 of 3367(2) Aring (Table S6)] and also CHπ interactions between methylene carbon atoms (C13) and carbon atoms (C10) of furane ring [C13ndashH13A∙∙∙C10 with distance C13∙∙∙C10 of 3722(2) Aring]

The π-π stacking interaction4 have been observed in crystal structure The π-π stacking interactions in 1 is observed between two benzene rings [C1ndashC6] with Cg∙∙∙∙Cg distance of 365 Aring and shift distance of 146 Aring (Figure S5)

Hirshfeld surface analysis

The characterization using Hirshfeld surface and Fingerprint plots were made through the program CrystalExplorer1751-3 The surface was shown transparent to allow clear viewing of molecules and the crystal interaction environment The fingerprint plots were displayed in the standard 04ndash30 Aring for axes scale de and di The Hirchfeld surface surrounded a molecule is defined by points where the attempt to the electron density from the molecule of interest is equal to the contribution from all the other molecules The 3D Hirshfeld surface mapped over the normalizes contact distances (dnorm) of 1 is illustrated in Fig S6 The 3D Hirshfeld surfaces of 1 mapped over shape index is drawn in Fig S7 The surface is shown as transparent to allow visualization of molecules around which they were calculated The 3D surface mapped over dnorm represents the circular depressions (deep red) visible on the Hirshfeld surface indicative of CndashH∙∙∙O CndashH∙∙∙Cl and CndashH∙∙∙π contacts Other visible spots in the Hirchfeld surfaces correspond to H∙∙∙H contacts The Hirchfeld surface plotted over shape index visualize π-π interactions in 1 (Fig S7)

Hirshfeld 2D fingerprint plots allow a quick and easy identification of the significant intermolecular interactions map on the molecular surface56 As shown in Fig S8 the weak H∙∙∙OO∙∙∙H hydrogen bonding interactions represent 168 of the total Hirshfeld surface with two distinct spikes in the 2D fingerprint plots indicating hydrogen bonding interactions are the most significant interaction in the crystal The analysis Hirshfeld 2D fingerprint plots of 1 shows weak H∙∙∙ClCl∙∙∙H hydrogen bonding interactions in proportion 92 and weak H∙∙∙CC∙∙∙H hydrogen bonding interactions in proportion 225 (Fig S8) The scattered points in the fingerprint plots illustrate proportion of C∙∙∙C interactions (35) and H∙∙∙H interactions (467) of the total Hirshfeld surface

(1) (a) Hirchfeld F L Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 1977 44 129-138 (b) Spackman M A Jayalitaka D Hirshfeld surface analysis CrystEngComm 2009 11 19-32

(2) (a) Spackman M A McKinnon J J Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 2002 4 378-392 (b) Parkin A Barr G Dong W Gilmore C J Jayalitaka D McKinnon J J Spackman M A Wilson C C Comparing entire crystal structures structural genetic fingerprinting CrystEngComm 2007 9 648-652

(3) Turner M J McKinnon J J Wolff S K Gromwood D J Spackman PR Jayalitaka D Spackman MA CrystalExplorer175 The University of Western Australia 2017

(4) Janiak C A critical account on πndashπ stacking in metal complexes with aromatic nitrogen-containing ligands J Chem Soc Dalton Trans 2000 3885ndash3896

(5) McKinnon JJ Spackman MA Mitchell AS Novel tools for visualizing and exploring intermol-ecular interactions in molecular crystals Acta Crystallogr Sect B 2004 B60 627ndash668

(6) McKinnon J J Jayatilaka D Spackman M A Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 2007 3814ndash3816

6Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S6 Hydrogen bonding interactions parameters of 1DndashH∙∙∙A Symmetry code d(DndashH) Aring d(HndashA) Aring d(DndashH) Aring lt(DndashHndashA)degC10ndashH10∙∙∙Cl1 12+x-12+y+z 095 289 3522(2) 125C7ndashH7∙∙∙O2 095 267 3223(2) 118C12ndashH12∙∙∙O1 12+x12+y+z 095 250 3367(2) 152C12ndashH12∙∙∙O3 12+x12+y+z 095 272 3437(2) 132

Figure S4 The CndashH∙∙∙Cl and CndashH∙∙∙O hydrogen bonds (blue dashed lines) CndashH∙∙∙π hydrogen bonding interactions (violet dashed lines) and π-π stacking interactions (black dashed lines) in crystals structure of 1

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 2: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

2Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Spectral data

434

490

540

582

600

609

646

735

759

800 893 9

7010

12 1

078

111

5 1

149

1219

1247

1292

132

7 1

389 1

412

1448

146

8 1

502

155

6 1

597

1623

292

7 2

976

311

8

TLCR12 ATR

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

T

500 1000 1500 2000 2000 3000 4000 Wavenumbers (cm-1)

Figure S2 IR spectrum of 1

Wavenumber 103 cm-1

10 12 14 16 18 20 22 24 26 28

Rel

ativ

e ab

sorb

ance

00

02

04

06

08

10

[FeIII(LEt)2Cl]Wavenumber 103 cm-1

10 12 14 16 18 20 22 24 26 28

Abs

orba

nce

deriv

ativ

e

-0004

-0003

-0002

-0001

0000

0001

0002

Tran

sitio

n

Figure S3 Electronic absorption spectrum of 1 in Nujol suspension and its first derivative (right) Vertical bars on right ndash calculated transitions (spin-orbit corrected excitation energies)

3Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Ab initio calculations

Table S1 SOC corrected absorption spectrum-----------------------------------------------------------------------------------Multiplets Energy Wavelength fosc T2 |TX| |TY| |TZ| (cm-1) (nm) (D2) (D) (D) (D) ----------------------------------------------------------------------------------- 0 6 125823 7948 0000000001 000000 000005 000000 000086 0 7 125823 7948 0000000000 000000 000017 000023 000030 0 8 125996 7937 0000000001 000000 000013 000001 000120 0 9 125996 7937 0000000001 000000 000023 000044 000053 0 10 150959 6624 0000000000 000000 000001 000034 000040 0 11 150959 6624 0000000001 000000 000004 000007 000084 0 12 151207 6613 0000000003 000000 000003 000141 000094 0 13 151207 6613 0000000007 000001 000006 000001 000245 0 14 198674 5033 0000000000 000000 000004 000014 000001 0 15 198674 5033 0000000000 000000 000005 000000 000003 0 16 230890 4331 0000000030 000002 000394 000020 000093 0 17 230890 4331 0000000010 000001 000168 000151 000042 0 18 231426 4321 0000000017 000001 000287 000060 000070 0 19 231426 4321 0000000003 000000 000101 000084 000025 0 20 239442 4176 0000000000 000000 000039 000001 000026 0 21 239442 4176 0000000000 000000 000002 000003 000018

Table S2 Lowest sextet-to-quartet NEVPT2 transition energies and contributions to the D-tensor for 1 Root Multiplicity Ecm-1 Dcm-1 Ecm-1

0 4 12580 2888 01 4 15099 -0932 09322 4 23135 -0239 -02323 4 24719 -0019 00185 4 25843 0002 04 4 26086 0004 07 4 27521 0 06 4 28031 -0027 -00278 4 28262 0 09 4 28812 -0082 007010 4 29904 0081 -000312 4 32077 -0675 -066513 4 33148 0002 011 4 33593 -0459 -045814 4 33989 0 015 4 42148 -0684 068116 4 45579 1250 0

4Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Structural data Table S3 Crystal data and structure refinement

[FeIII(LEt)2Cl] 1Empirical formula C28H28ClFeN2O6Formula weight g mol-1 57982Crystal system monoclinicSpace group C2cTemperature K 100Crystal size mm 022 times 012 times 006Z 4

a Aring 160599(7)b Aring 104661(3)c Aring 169384(8) deg 90β deg 109324(3)γ deg 90

V Aring3 268668(19)ρcalc g cm-3 1433μ mm-1 5798F(000) 12040Radiation CuKα (λ = 154186)2Θ range for data collectiondeg 10272 to 14321Index ranges -19 le h le 16 -8 le k le 12 -20 le l le 20Datarestraintsparameters 25840174Goodness-of-fit on F2 1063Final R indexes [Igt=2σ (I)] R1 = 00308 wR2 = 00710R indices (all data) R1 = 00368 wR2 = 00744color dark greenCCDC No 1855298

Table S4 Selected bond lengths (Aring) and bond angles (deg) in chromophore FeN2O2Cl of 1Fe1‒O1 18792(12) O11‒Fe1‒Cl1 11498(4)Fe1‒O11 18793(12) O1‒Fe1‒Cl1 11498(4)Fe1‒N1 21094(15) O1‒Fe1‒O11 13004(9)Fe1‒N11 21093(15) O1‒Fe1‒N1 8693(6)Fe1‒Cl1 22339(8) O11‒Fe1‒N1 8903(6)

O11‒Fe1‒N11 8694(6)O1‒Fe1‒N11 8903(6)N1‒Fe1‒Cl1 9478(4)N11‒Fe1‒Cl1 9478(4)N11‒Fe1‒N1 17043(9)

Table S5 Comparison of geometry for related complexes using SHAPE software Complex Trigonal bipyramid (TBPY) D3h Spherical square pyramid (SPY) C4v Ref[FeIII(LEt)2Cl] 0976 2800 this work[FeIII(LMe)2Cl] 3127 1003 unpublished[FeIII(L2)2Cl] 2808 0976 Ref [FeIII(L4)2Cl] 1978 1717 Ref

() Cisterna J Artigas V Fuentealba M Hamon P Manzur C Hamon J-R Carrillo D Pentacoordinated Chloro-Iron(III) Complexes with Unsymmetrically Substituted N2O2 Quadridentate Schiff-Base Ligands Syntheses Structures Magnetic and Redox Properties Inorganics 2018 6 5

5Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Description of crystal structure

The crystal structure of 1 (Figure S4) show CndashH∙∙∙Cl hydrogen bonding interactions between carbon atoms (C10) of furane ring and chlorine atoms (Cl1) [C10ndashH10∙∙∙Cl1 with distance C10∙∙∙Cl1 of 3522(2) Aring (Table S6)] CndashH∙∙∙O hydrogen bonding interactions between carbon atoms (C12) of furane ring and fenolic oxygen atoms (O1) [C12ndashH12∙∙∙O1 with distance C12∙∙∙O1 of 3367(2) Aring (Table S6)] and also CHπ interactions between methylene carbon atoms (C13) and carbon atoms (C10) of furane ring [C13ndashH13A∙∙∙C10 with distance C13∙∙∙C10 of 3722(2) Aring]

The π-π stacking interaction4 have been observed in crystal structure The π-π stacking interactions in 1 is observed between two benzene rings [C1ndashC6] with Cg∙∙∙∙Cg distance of 365 Aring and shift distance of 146 Aring (Figure S5)

Hirshfeld surface analysis

The characterization using Hirshfeld surface and Fingerprint plots were made through the program CrystalExplorer1751-3 The surface was shown transparent to allow clear viewing of molecules and the crystal interaction environment The fingerprint plots were displayed in the standard 04ndash30 Aring for axes scale de and di The Hirchfeld surface surrounded a molecule is defined by points where the attempt to the electron density from the molecule of interest is equal to the contribution from all the other molecules The 3D Hirshfeld surface mapped over the normalizes contact distances (dnorm) of 1 is illustrated in Fig S6 The 3D Hirshfeld surfaces of 1 mapped over shape index is drawn in Fig S7 The surface is shown as transparent to allow visualization of molecules around which they were calculated The 3D surface mapped over dnorm represents the circular depressions (deep red) visible on the Hirshfeld surface indicative of CndashH∙∙∙O CndashH∙∙∙Cl and CndashH∙∙∙π contacts Other visible spots in the Hirchfeld surfaces correspond to H∙∙∙H contacts The Hirchfeld surface plotted over shape index visualize π-π interactions in 1 (Fig S7)

Hirshfeld 2D fingerprint plots allow a quick and easy identification of the significant intermolecular interactions map on the molecular surface56 As shown in Fig S8 the weak H∙∙∙OO∙∙∙H hydrogen bonding interactions represent 168 of the total Hirshfeld surface with two distinct spikes in the 2D fingerprint plots indicating hydrogen bonding interactions are the most significant interaction in the crystal The analysis Hirshfeld 2D fingerprint plots of 1 shows weak H∙∙∙ClCl∙∙∙H hydrogen bonding interactions in proportion 92 and weak H∙∙∙CC∙∙∙H hydrogen bonding interactions in proportion 225 (Fig S8) The scattered points in the fingerprint plots illustrate proportion of C∙∙∙C interactions (35) and H∙∙∙H interactions (467) of the total Hirshfeld surface

(1) (a) Hirchfeld F L Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 1977 44 129-138 (b) Spackman M A Jayalitaka D Hirshfeld surface analysis CrystEngComm 2009 11 19-32

(2) (a) Spackman M A McKinnon J J Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 2002 4 378-392 (b) Parkin A Barr G Dong W Gilmore C J Jayalitaka D McKinnon J J Spackman M A Wilson C C Comparing entire crystal structures structural genetic fingerprinting CrystEngComm 2007 9 648-652

(3) Turner M J McKinnon J J Wolff S K Gromwood D J Spackman PR Jayalitaka D Spackman MA CrystalExplorer175 The University of Western Australia 2017

(4) Janiak C A critical account on πndashπ stacking in metal complexes with aromatic nitrogen-containing ligands J Chem Soc Dalton Trans 2000 3885ndash3896

(5) McKinnon JJ Spackman MA Mitchell AS Novel tools for visualizing and exploring intermol-ecular interactions in molecular crystals Acta Crystallogr Sect B 2004 B60 627ndash668

(6) McKinnon J J Jayatilaka D Spackman M A Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 2007 3814ndash3816

6Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S6 Hydrogen bonding interactions parameters of 1DndashH∙∙∙A Symmetry code d(DndashH) Aring d(HndashA) Aring d(DndashH) Aring lt(DndashHndashA)degC10ndashH10∙∙∙Cl1 12+x-12+y+z 095 289 3522(2) 125C7ndashH7∙∙∙O2 095 267 3223(2) 118C12ndashH12∙∙∙O1 12+x12+y+z 095 250 3367(2) 152C12ndashH12∙∙∙O3 12+x12+y+z 095 272 3437(2) 132

Figure S4 The CndashH∙∙∙Cl and CndashH∙∙∙O hydrogen bonds (blue dashed lines) CndashH∙∙∙π hydrogen bonding interactions (violet dashed lines) and π-π stacking interactions (black dashed lines) in crystals structure of 1

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 3: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

3Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Ab initio calculations

Table S1 SOC corrected absorption spectrum-----------------------------------------------------------------------------------Multiplets Energy Wavelength fosc T2 |TX| |TY| |TZ| (cm-1) (nm) (D2) (D) (D) (D) ----------------------------------------------------------------------------------- 0 6 125823 7948 0000000001 000000 000005 000000 000086 0 7 125823 7948 0000000000 000000 000017 000023 000030 0 8 125996 7937 0000000001 000000 000013 000001 000120 0 9 125996 7937 0000000001 000000 000023 000044 000053 0 10 150959 6624 0000000000 000000 000001 000034 000040 0 11 150959 6624 0000000001 000000 000004 000007 000084 0 12 151207 6613 0000000003 000000 000003 000141 000094 0 13 151207 6613 0000000007 000001 000006 000001 000245 0 14 198674 5033 0000000000 000000 000004 000014 000001 0 15 198674 5033 0000000000 000000 000005 000000 000003 0 16 230890 4331 0000000030 000002 000394 000020 000093 0 17 230890 4331 0000000010 000001 000168 000151 000042 0 18 231426 4321 0000000017 000001 000287 000060 000070 0 19 231426 4321 0000000003 000000 000101 000084 000025 0 20 239442 4176 0000000000 000000 000039 000001 000026 0 21 239442 4176 0000000000 000000 000002 000003 000018

Table S2 Lowest sextet-to-quartet NEVPT2 transition energies and contributions to the D-tensor for 1 Root Multiplicity Ecm-1 Dcm-1 Ecm-1

0 4 12580 2888 01 4 15099 -0932 09322 4 23135 -0239 -02323 4 24719 -0019 00185 4 25843 0002 04 4 26086 0004 07 4 27521 0 06 4 28031 -0027 -00278 4 28262 0 09 4 28812 -0082 007010 4 29904 0081 -000312 4 32077 -0675 -066513 4 33148 0002 011 4 33593 -0459 -045814 4 33989 0 015 4 42148 -0684 068116 4 45579 1250 0

4Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Structural data Table S3 Crystal data and structure refinement

[FeIII(LEt)2Cl] 1Empirical formula C28H28ClFeN2O6Formula weight g mol-1 57982Crystal system monoclinicSpace group C2cTemperature K 100Crystal size mm 022 times 012 times 006Z 4

a Aring 160599(7)b Aring 104661(3)c Aring 169384(8) deg 90β deg 109324(3)γ deg 90

V Aring3 268668(19)ρcalc g cm-3 1433μ mm-1 5798F(000) 12040Radiation CuKα (λ = 154186)2Θ range for data collectiondeg 10272 to 14321Index ranges -19 le h le 16 -8 le k le 12 -20 le l le 20Datarestraintsparameters 25840174Goodness-of-fit on F2 1063Final R indexes [Igt=2σ (I)] R1 = 00308 wR2 = 00710R indices (all data) R1 = 00368 wR2 = 00744color dark greenCCDC No 1855298

Table S4 Selected bond lengths (Aring) and bond angles (deg) in chromophore FeN2O2Cl of 1Fe1‒O1 18792(12) O11‒Fe1‒Cl1 11498(4)Fe1‒O11 18793(12) O1‒Fe1‒Cl1 11498(4)Fe1‒N1 21094(15) O1‒Fe1‒O11 13004(9)Fe1‒N11 21093(15) O1‒Fe1‒N1 8693(6)Fe1‒Cl1 22339(8) O11‒Fe1‒N1 8903(6)

O11‒Fe1‒N11 8694(6)O1‒Fe1‒N11 8903(6)N1‒Fe1‒Cl1 9478(4)N11‒Fe1‒Cl1 9478(4)N11‒Fe1‒N1 17043(9)

Table S5 Comparison of geometry for related complexes using SHAPE software Complex Trigonal bipyramid (TBPY) D3h Spherical square pyramid (SPY) C4v Ref[FeIII(LEt)2Cl] 0976 2800 this work[FeIII(LMe)2Cl] 3127 1003 unpublished[FeIII(L2)2Cl] 2808 0976 Ref [FeIII(L4)2Cl] 1978 1717 Ref

() Cisterna J Artigas V Fuentealba M Hamon P Manzur C Hamon J-R Carrillo D Pentacoordinated Chloro-Iron(III) Complexes with Unsymmetrically Substituted N2O2 Quadridentate Schiff-Base Ligands Syntheses Structures Magnetic and Redox Properties Inorganics 2018 6 5

5Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Description of crystal structure

The crystal structure of 1 (Figure S4) show CndashH∙∙∙Cl hydrogen bonding interactions between carbon atoms (C10) of furane ring and chlorine atoms (Cl1) [C10ndashH10∙∙∙Cl1 with distance C10∙∙∙Cl1 of 3522(2) Aring (Table S6)] CndashH∙∙∙O hydrogen bonding interactions between carbon atoms (C12) of furane ring and fenolic oxygen atoms (O1) [C12ndashH12∙∙∙O1 with distance C12∙∙∙O1 of 3367(2) Aring (Table S6)] and also CHπ interactions between methylene carbon atoms (C13) and carbon atoms (C10) of furane ring [C13ndashH13A∙∙∙C10 with distance C13∙∙∙C10 of 3722(2) Aring]

The π-π stacking interaction4 have been observed in crystal structure The π-π stacking interactions in 1 is observed between two benzene rings [C1ndashC6] with Cg∙∙∙∙Cg distance of 365 Aring and shift distance of 146 Aring (Figure S5)

Hirshfeld surface analysis

The characterization using Hirshfeld surface and Fingerprint plots were made through the program CrystalExplorer1751-3 The surface was shown transparent to allow clear viewing of molecules and the crystal interaction environment The fingerprint plots were displayed in the standard 04ndash30 Aring for axes scale de and di The Hirchfeld surface surrounded a molecule is defined by points where the attempt to the electron density from the molecule of interest is equal to the contribution from all the other molecules The 3D Hirshfeld surface mapped over the normalizes contact distances (dnorm) of 1 is illustrated in Fig S6 The 3D Hirshfeld surfaces of 1 mapped over shape index is drawn in Fig S7 The surface is shown as transparent to allow visualization of molecules around which they were calculated The 3D surface mapped over dnorm represents the circular depressions (deep red) visible on the Hirshfeld surface indicative of CndashH∙∙∙O CndashH∙∙∙Cl and CndashH∙∙∙π contacts Other visible spots in the Hirchfeld surfaces correspond to H∙∙∙H contacts The Hirchfeld surface plotted over shape index visualize π-π interactions in 1 (Fig S7)

Hirshfeld 2D fingerprint plots allow a quick and easy identification of the significant intermolecular interactions map on the molecular surface56 As shown in Fig S8 the weak H∙∙∙OO∙∙∙H hydrogen bonding interactions represent 168 of the total Hirshfeld surface with two distinct spikes in the 2D fingerprint plots indicating hydrogen bonding interactions are the most significant interaction in the crystal The analysis Hirshfeld 2D fingerprint plots of 1 shows weak H∙∙∙ClCl∙∙∙H hydrogen bonding interactions in proportion 92 and weak H∙∙∙CC∙∙∙H hydrogen bonding interactions in proportion 225 (Fig S8) The scattered points in the fingerprint plots illustrate proportion of C∙∙∙C interactions (35) and H∙∙∙H interactions (467) of the total Hirshfeld surface

(1) (a) Hirchfeld F L Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 1977 44 129-138 (b) Spackman M A Jayalitaka D Hirshfeld surface analysis CrystEngComm 2009 11 19-32

(2) (a) Spackman M A McKinnon J J Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 2002 4 378-392 (b) Parkin A Barr G Dong W Gilmore C J Jayalitaka D McKinnon J J Spackman M A Wilson C C Comparing entire crystal structures structural genetic fingerprinting CrystEngComm 2007 9 648-652

(3) Turner M J McKinnon J J Wolff S K Gromwood D J Spackman PR Jayalitaka D Spackman MA CrystalExplorer175 The University of Western Australia 2017

(4) Janiak C A critical account on πndashπ stacking in metal complexes with aromatic nitrogen-containing ligands J Chem Soc Dalton Trans 2000 3885ndash3896

(5) McKinnon JJ Spackman MA Mitchell AS Novel tools for visualizing and exploring intermol-ecular interactions in molecular crystals Acta Crystallogr Sect B 2004 B60 627ndash668

(6) McKinnon J J Jayatilaka D Spackman M A Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 2007 3814ndash3816

6Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S6 Hydrogen bonding interactions parameters of 1DndashH∙∙∙A Symmetry code d(DndashH) Aring d(HndashA) Aring d(DndashH) Aring lt(DndashHndashA)degC10ndashH10∙∙∙Cl1 12+x-12+y+z 095 289 3522(2) 125C7ndashH7∙∙∙O2 095 267 3223(2) 118C12ndashH12∙∙∙O1 12+x12+y+z 095 250 3367(2) 152C12ndashH12∙∙∙O3 12+x12+y+z 095 272 3437(2) 132

Figure S4 The CndashH∙∙∙Cl and CndashH∙∙∙O hydrogen bonds (blue dashed lines) CndashH∙∙∙π hydrogen bonding interactions (violet dashed lines) and π-π stacking interactions (black dashed lines) in crystals structure of 1

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 4: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

4Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Structural data Table S3 Crystal data and structure refinement

[FeIII(LEt)2Cl] 1Empirical formula C28H28ClFeN2O6Formula weight g mol-1 57982Crystal system monoclinicSpace group C2cTemperature K 100Crystal size mm 022 times 012 times 006Z 4

a Aring 160599(7)b Aring 104661(3)c Aring 169384(8) deg 90β deg 109324(3)γ deg 90

V Aring3 268668(19)ρcalc g cm-3 1433μ mm-1 5798F(000) 12040Radiation CuKα (λ = 154186)2Θ range for data collectiondeg 10272 to 14321Index ranges -19 le h le 16 -8 le k le 12 -20 le l le 20Datarestraintsparameters 25840174Goodness-of-fit on F2 1063Final R indexes [Igt=2σ (I)] R1 = 00308 wR2 = 00710R indices (all data) R1 = 00368 wR2 = 00744color dark greenCCDC No 1855298

Table S4 Selected bond lengths (Aring) and bond angles (deg) in chromophore FeN2O2Cl of 1Fe1‒O1 18792(12) O11‒Fe1‒Cl1 11498(4)Fe1‒O11 18793(12) O1‒Fe1‒Cl1 11498(4)Fe1‒N1 21094(15) O1‒Fe1‒O11 13004(9)Fe1‒N11 21093(15) O1‒Fe1‒N1 8693(6)Fe1‒Cl1 22339(8) O11‒Fe1‒N1 8903(6)

O11‒Fe1‒N11 8694(6)O1‒Fe1‒N11 8903(6)N1‒Fe1‒Cl1 9478(4)N11‒Fe1‒Cl1 9478(4)N11‒Fe1‒N1 17043(9)

Table S5 Comparison of geometry for related complexes using SHAPE software Complex Trigonal bipyramid (TBPY) D3h Spherical square pyramid (SPY) C4v Ref[FeIII(LEt)2Cl] 0976 2800 this work[FeIII(LMe)2Cl] 3127 1003 unpublished[FeIII(L2)2Cl] 2808 0976 Ref [FeIII(L4)2Cl] 1978 1717 Ref

() Cisterna J Artigas V Fuentealba M Hamon P Manzur C Hamon J-R Carrillo D Pentacoordinated Chloro-Iron(III) Complexes with Unsymmetrically Substituted N2O2 Quadridentate Schiff-Base Ligands Syntheses Structures Magnetic and Redox Properties Inorganics 2018 6 5

5Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Description of crystal structure

The crystal structure of 1 (Figure S4) show CndashH∙∙∙Cl hydrogen bonding interactions between carbon atoms (C10) of furane ring and chlorine atoms (Cl1) [C10ndashH10∙∙∙Cl1 with distance C10∙∙∙Cl1 of 3522(2) Aring (Table S6)] CndashH∙∙∙O hydrogen bonding interactions between carbon atoms (C12) of furane ring and fenolic oxygen atoms (O1) [C12ndashH12∙∙∙O1 with distance C12∙∙∙O1 of 3367(2) Aring (Table S6)] and also CHπ interactions between methylene carbon atoms (C13) and carbon atoms (C10) of furane ring [C13ndashH13A∙∙∙C10 with distance C13∙∙∙C10 of 3722(2) Aring]

The π-π stacking interaction4 have been observed in crystal structure The π-π stacking interactions in 1 is observed between two benzene rings [C1ndashC6] with Cg∙∙∙∙Cg distance of 365 Aring and shift distance of 146 Aring (Figure S5)

Hirshfeld surface analysis

The characterization using Hirshfeld surface and Fingerprint plots were made through the program CrystalExplorer1751-3 The surface was shown transparent to allow clear viewing of molecules and the crystal interaction environment The fingerprint plots were displayed in the standard 04ndash30 Aring for axes scale de and di The Hirchfeld surface surrounded a molecule is defined by points where the attempt to the electron density from the molecule of interest is equal to the contribution from all the other molecules The 3D Hirshfeld surface mapped over the normalizes contact distances (dnorm) of 1 is illustrated in Fig S6 The 3D Hirshfeld surfaces of 1 mapped over shape index is drawn in Fig S7 The surface is shown as transparent to allow visualization of molecules around which they were calculated The 3D surface mapped over dnorm represents the circular depressions (deep red) visible on the Hirshfeld surface indicative of CndashH∙∙∙O CndashH∙∙∙Cl and CndashH∙∙∙π contacts Other visible spots in the Hirchfeld surfaces correspond to H∙∙∙H contacts The Hirchfeld surface plotted over shape index visualize π-π interactions in 1 (Fig S7)

Hirshfeld 2D fingerprint plots allow a quick and easy identification of the significant intermolecular interactions map on the molecular surface56 As shown in Fig S8 the weak H∙∙∙OO∙∙∙H hydrogen bonding interactions represent 168 of the total Hirshfeld surface with two distinct spikes in the 2D fingerprint plots indicating hydrogen bonding interactions are the most significant interaction in the crystal The analysis Hirshfeld 2D fingerprint plots of 1 shows weak H∙∙∙ClCl∙∙∙H hydrogen bonding interactions in proportion 92 and weak H∙∙∙CC∙∙∙H hydrogen bonding interactions in proportion 225 (Fig S8) The scattered points in the fingerprint plots illustrate proportion of C∙∙∙C interactions (35) and H∙∙∙H interactions (467) of the total Hirshfeld surface

(1) (a) Hirchfeld F L Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 1977 44 129-138 (b) Spackman M A Jayalitaka D Hirshfeld surface analysis CrystEngComm 2009 11 19-32

(2) (a) Spackman M A McKinnon J J Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 2002 4 378-392 (b) Parkin A Barr G Dong W Gilmore C J Jayalitaka D McKinnon J J Spackman M A Wilson C C Comparing entire crystal structures structural genetic fingerprinting CrystEngComm 2007 9 648-652

(3) Turner M J McKinnon J J Wolff S K Gromwood D J Spackman PR Jayalitaka D Spackman MA CrystalExplorer175 The University of Western Australia 2017

(4) Janiak C A critical account on πndashπ stacking in metal complexes with aromatic nitrogen-containing ligands J Chem Soc Dalton Trans 2000 3885ndash3896

(5) McKinnon JJ Spackman MA Mitchell AS Novel tools for visualizing and exploring intermol-ecular interactions in molecular crystals Acta Crystallogr Sect B 2004 B60 627ndash668

(6) McKinnon J J Jayatilaka D Spackman M A Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 2007 3814ndash3816

6Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S6 Hydrogen bonding interactions parameters of 1DndashH∙∙∙A Symmetry code d(DndashH) Aring d(HndashA) Aring d(DndashH) Aring lt(DndashHndashA)degC10ndashH10∙∙∙Cl1 12+x-12+y+z 095 289 3522(2) 125C7ndashH7∙∙∙O2 095 267 3223(2) 118C12ndashH12∙∙∙O1 12+x12+y+z 095 250 3367(2) 152C12ndashH12∙∙∙O3 12+x12+y+z 095 272 3437(2) 132

Figure S4 The CndashH∙∙∙Cl and CndashH∙∙∙O hydrogen bonds (blue dashed lines) CndashH∙∙∙π hydrogen bonding interactions (violet dashed lines) and π-π stacking interactions (black dashed lines) in crystals structure of 1

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 5: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

5Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Description of crystal structure

The crystal structure of 1 (Figure S4) show CndashH∙∙∙Cl hydrogen bonding interactions between carbon atoms (C10) of furane ring and chlorine atoms (Cl1) [C10ndashH10∙∙∙Cl1 with distance C10∙∙∙Cl1 of 3522(2) Aring (Table S6)] CndashH∙∙∙O hydrogen bonding interactions between carbon atoms (C12) of furane ring and fenolic oxygen atoms (O1) [C12ndashH12∙∙∙O1 with distance C12∙∙∙O1 of 3367(2) Aring (Table S6)] and also CHπ interactions between methylene carbon atoms (C13) and carbon atoms (C10) of furane ring [C13ndashH13A∙∙∙C10 with distance C13∙∙∙C10 of 3722(2) Aring]

The π-π stacking interaction4 have been observed in crystal structure The π-π stacking interactions in 1 is observed between two benzene rings [C1ndashC6] with Cg∙∙∙∙Cg distance of 365 Aring and shift distance of 146 Aring (Figure S5)

Hirshfeld surface analysis

The characterization using Hirshfeld surface and Fingerprint plots were made through the program CrystalExplorer1751-3 The surface was shown transparent to allow clear viewing of molecules and the crystal interaction environment The fingerprint plots were displayed in the standard 04ndash30 Aring for axes scale de and di The Hirchfeld surface surrounded a molecule is defined by points where the attempt to the electron density from the molecule of interest is equal to the contribution from all the other molecules The 3D Hirshfeld surface mapped over the normalizes contact distances (dnorm) of 1 is illustrated in Fig S6 The 3D Hirshfeld surfaces of 1 mapped over shape index is drawn in Fig S7 The surface is shown as transparent to allow visualization of molecules around which they were calculated The 3D surface mapped over dnorm represents the circular depressions (deep red) visible on the Hirshfeld surface indicative of CndashH∙∙∙O CndashH∙∙∙Cl and CndashH∙∙∙π contacts Other visible spots in the Hirchfeld surfaces correspond to H∙∙∙H contacts The Hirchfeld surface plotted over shape index visualize π-π interactions in 1 (Fig S7)

Hirshfeld 2D fingerprint plots allow a quick and easy identification of the significant intermolecular interactions map on the molecular surface56 As shown in Fig S8 the weak H∙∙∙OO∙∙∙H hydrogen bonding interactions represent 168 of the total Hirshfeld surface with two distinct spikes in the 2D fingerprint plots indicating hydrogen bonding interactions are the most significant interaction in the crystal The analysis Hirshfeld 2D fingerprint plots of 1 shows weak H∙∙∙ClCl∙∙∙H hydrogen bonding interactions in proportion 92 and weak H∙∙∙CC∙∙∙H hydrogen bonding interactions in proportion 225 (Fig S8) The scattered points in the fingerprint plots illustrate proportion of C∙∙∙C interactions (35) and H∙∙∙H interactions (467) of the total Hirshfeld surface

(1) (a) Hirchfeld F L Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 1977 44 129-138 (b) Spackman M A Jayalitaka D Hirshfeld surface analysis CrystEngComm 2009 11 19-32

(2) (a) Spackman M A McKinnon J J Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 2002 4 378-392 (b) Parkin A Barr G Dong W Gilmore C J Jayalitaka D McKinnon J J Spackman M A Wilson C C Comparing entire crystal structures structural genetic fingerprinting CrystEngComm 2007 9 648-652

(3) Turner M J McKinnon J J Wolff S K Gromwood D J Spackman PR Jayalitaka D Spackman MA CrystalExplorer175 The University of Western Australia 2017

(4) Janiak C A critical account on πndashπ stacking in metal complexes with aromatic nitrogen-containing ligands J Chem Soc Dalton Trans 2000 3885ndash3896

(5) McKinnon JJ Spackman MA Mitchell AS Novel tools for visualizing and exploring intermol-ecular interactions in molecular crystals Acta Crystallogr Sect B 2004 B60 627ndash668

(6) McKinnon J J Jayatilaka D Spackman M A Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 2007 3814ndash3816

6Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S6 Hydrogen bonding interactions parameters of 1DndashH∙∙∙A Symmetry code d(DndashH) Aring d(HndashA) Aring d(DndashH) Aring lt(DndashHndashA)degC10ndashH10∙∙∙Cl1 12+x-12+y+z 095 289 3522(2) 125C7ndashH7∙∙∙O2 095 267 3223(2) 118C12ndashH12∙∙∙O1 12+x12+y+z 095 250 3367(2) 152C12ndashH12∙∙∙O3 12+x12+y+z 095 272 3437(2) 132

Figure S4 The CndashH∙∙∙Cl and CndashH∙∙∙O hydrogen bonds (blue dashed lines) CndashH∙∙∙π hydrogen bonding interactions (violet dashed lines) and π-π stacking interactions (black dashed lines) in crystals structure of 1

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 6: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

6Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S6 Hydrogen bonding interactions parameters of 1DndashH∙∙∙A Symmetry code d(DndashH) Aring d(HndashA) Aring d(DndashH) Aring lt(DndashHndashA)degC10ndashH10∙∙∙Cl1 12+x-12+y+z 095 289 3522(2) 125C7ndashH7∙∙∙O2 095 267 3223(2) 118C12ndashH12∙∙∙O1 12+x12+y+z 095 250 3367(2) 152C12ndashH12∙∙∙O3 12+x12+y+z 095 272 3437(2) 132

Figure S4 The CndashH∙∙∙Cl and CndashH∙∙∙O hydrogen bonds (blue dashed lines) CndashH∙∙∙π hydrogen bonding interactions (violet dashed lines) and π-π stacking interactions (black dashed lines) in crystals structure of 1

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 7: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

7Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S5 The π-π stacking interactions in crystal structure of 1

Figure S6 View of the three-dimensional Hirshfeld surface of 1 plotted over dnorm in the range -01689 to 15730 au

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 8: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

8Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Figure S7 View of the three-dimensional Hirshfeld surface of 1 plotted over shape index showing π-π stacking interactions

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 9: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

9Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

a) b)

c) d)

e) f)Figure S8 The full two-dimensional fingerprint plots of 1 showing (a) all interactions and delineated into (b) H∙∙∙OO∙∙∙H (c) H∙∙∙ClCl∙∙∙H (d) H∙∙∙CC∙∙∙H (e) O∙∙∙O and (f) H∙∙∙H interactions The di and de values are the closest internal and external distances from given on the Hirshfeld surface contacts

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 10: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

10Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

DC magnetic data

ZFS Hamiltonian 2 2 2 1eff B

ˆ ˆˆ ( 3)z z zH D S S g B S r

h h

a) D gt 0 geff = 197(6) Dhc = +20(8) cm-1 molecular-field correction zjhc = -0011 cm-1 and the overall temperature-independent magnetism TIM = -74 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00056 R(M) = 0058

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

b) D lt 0 geff = 197(4) Dhc = ndash15(4) cm-1 molecular-field correction zjhc = -0019 cm-1 and the overall temperature-independent magnetism TIM = ndash67 times 10-9 m3 mol-1 E parameter ndash omitted Discrepancy factors R() = 00044 R(M) = 0071

TK

0 50 100 150 200 250 300

eff

B

0

1

2

3

4

5

6

7

BT

0 1 2 3 4 5 6 7

Mm

ol(N

A B

)

0

1

2

3

4

5

0 10 20 30 40

mol

(10-6

m3

mol

-1)

0

10

20

T = 20 KB = 01 T

T = 46 K

Figure S9 Magnetic functions for 1 Left ndash temperature dependence of the effective magnetic moment (inset molar magnetic susceptibility) right ndash field dependence of the magnetization per formula unit Lines ndash fitted using the zfs model

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 11: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

11Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

AC susceptibility

Fitting of the AC susceptibility data is based upon 44 data points (22 in-phase and 22 out-of-phase) using the formula for the two-set Debye model

or1 2

1 2 11 1

1 2

( )1 (i ) 1 (i )

T S T TS

1 2

1 11 1

1 2

1( ) ( )1 (i ) 1 (i )S T S

x x

where x1 is the weight of the first low-frequency relaxation set (channel branch) This equation decomposes into two explicit formulae for a) the in-phase component

1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

1 ( ) sin( 2) 1 ( ) sin( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )S T S T T

b) the out-of-phase component 1 2

1 1 2 2

1 11 1 2 2

1 2 11 2 2 1 2 21 1 1 2 2 2

( ) cos( 2) ( ) cos( 2)( ) ( ) ( )1 2( ) sin( 2) ( ) 1 2( ) sin( 2) ( )T S T T

with the constraint for the isothermal susceptibilities in order to get positive contributions from each 1 2T T primitive component Then 1 1 2 1 2( ) ( ) ( ) ( )T S T S S T S Tx

Seven free parameters (S T1 T2 1 2 1 and 2) can be fitted reliably by using 44 experimental data points The functional to be minimized accounts to the relative errors of both susceptibility components with the typical weight w = 007 or ( ) (1 ) ( )F w E w E

with ( ) ( )F E E e c e( ) (1 ) ( ) N

i i ii

E N

The extension to the three-set Debye model is straightforward

BT00 01 02 03

1

06 m

3 mol

0

5

10

15

20

BT00 01 02 03

1

06 m

3 mol

0

1

2

3

4

5

611 Hz11 Hz111 Hz1116 Hz

T = 20 K

Figure S10 AC susceptibility data for 1 field dependence for a set of frequencies at T = 20 K

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1

Page 12: Magnetostructural disposition of high-spin pentacoordinate ...3 Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex Cyril Rajnák, Ján Titiš, Ján Moncoľ, Franz

12Slow magnetic relaxation in a high-spin pentacoordinate Fe(III) complex

Cyril Rajnaacutek Jaacuten Titiš Jaacuten Moncoľ Franz Renz and Roman Boča

Table S7 Field dependence of AC susceptibility parameters for 1 at T = 19 K aBDCT R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

015 041 23 48(2) 56(3) 00 671(152) 66(2) 01 42(8) 197(1) 14(1) 232(4) 05 07 88030 031 15 30(1) 42(4) 02 506(97) 72(2) 11(4) 58(6) 177(1) 21(1) 178(3) 08 12 71045 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 57060 074 32 19(6) 00 618(90) 54(1) 13(4) 75(12) 130(1) 39(2) 29(1) 15 27 58075 11 57 19(7) 00 525(100) 45(1) 10(7) 71(17) 105(1) 45(4) 12(2) 19 25 57090 18 13 16 00 350(229) 35(3) 16 75 84(1) 49(15) 43(29) 19 23 58105 26 11 14(9) 00 506(201) 28(2) 01 73(32) 69(2) 60(14) 14(17) 20 19 60120 27 15 10(4) 00 414(136) 20(2) 01 72(31) 56(1) 60(21) 06(14) 18 17 65

a Obtained by a three-set Debye model in units of 10-6 m3 mol-1 LF LF( ) ( )T S T Sx IF IF LF( ) ( )T T T Sx HF HF IF( ) ( )T T T Sx HFT T

TK2 3 4

1

06 m

3 mol

0

5

10

15

20

TK2 3 4

1

06 m

3 mol

0

1

2

31 BDC = 045 T

1500 Hz

Figure S11 Temperature evolution of the AC susceptibility components for different frequencies ranging between f = 01 to 1500 Hz

Table S8 Temperature dependence of AC susceptibility parameters for 1 at BDC = 045 TTK R(rsquo)

R(rsquorsquo)

S LF LF LF 10-3 s

IF IF IF 10-3 s

HF HF HF 10-6 s

xLF xIF xHF

19 10 28 26(6) 39(9) 00 640(205) 81(6) 16(6) 73(17) 154(2) 25(4) 111(15) 11 33 5721 056 28 33(4) 49(11) 15 739(299) 79(5) 20(7) 67(20) 153(2) 19(3) 95(8) 14 25 6123 041 28 33(4) 47(5) 02 777(104) 70(5) 18(5) 65(12) 147(1) 17(2) 66(6) 12 20 6825 052 19 37(7) 54(16) 25 788(583) 67(8) 19(16) 63(43) 143(4) 17(3) 51(8) 16 12 7227 036 24 37(8) 49(12) 23 787(479) 59(9) 19(14) 66(42) 137(2) 18(3) 35(6) 13 10 7829 042 22 37 43(6) 00 730(235) 53(1) 27(13) 96(93) 129(1) 18(2) 24(1) 06 11 8331 050 25 37 44(5) 04 714(224) 49(1) 21(20) 70(73) 124(1) 20(2) 17(1) 08 06 8633 027 28 37 43(2) 00 608(84) 46(1) 18(18) 56(39) 119(1) 24(2) 107(6) 08 04 8935 028 30 37 42(8) 01 590(87) 45(2) 40 [91] 115(1) 27(4) 67(7) 07 03 9037 031 40 37 42(4) 00 617(152) 43(1) 29 [74] 111(1) 30(4) 42(7) 06 02 9137 043 55 37 43(1) 12(6) 523(72) 111(1) 38(3) 31(5) 08 - 9239 029 65 37 42(1) 08(5) 544(56) 107(1) 41(2) 19(3) 07 - 9341 027 52 37 41(1) 06(6) 527(54) 103(1) 43(2) 11(2) 06 - 94

a Obtained by a three-set (two-set) Debye model in units of 10-6 m3 mol-1