111
1 An introduction to Relativistic Quantum Chemistry Lucas Visscher Vrije Universiteit Amsterdam

Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Embed Size (px)

Citation preview

Page 1: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

1

An introduction toRelativistic Quantum

Chemistry

Lucas VisscherVrije Universiteit Amsterdam

Page 2: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

2

The extra dimension

Method

Hartree-Fock Full CI

Basisset

Minimal

Complete

Hamiltonian

Dirac-Coulomb-Breit

NR

Page 3: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

3

Course outline: lecture 1+2 Relativistic Quantum Chemistry

Special Relativity The Dirac equation

• Free particles• Second quantization and QED : a short detour• Hydrogenic atom

Approximate Hamiltonians Breit-Pauli perturbation theory The regular approximation (ZORA) The Douglas-Kroll-Heß method Four-component methods Direct perturbation theory

Page 4: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

4

Course outline: lecture 3 Effective Core Potentials

Basic assumptions Ab initio Model Potentials Energy-Consistent Pseudopotentials Shape-Consistent Pseudopotentials

Computational aspects All-electron or valence-only ? Wave Function Theory or Density Functional Theory ? Spin-orbit or scalar relativistic ?

Relativistic effects in chemistry Dissociation energies Bond lengths and bond strengths Dipole moments NMR shieldings Electric Field Gradients

Page 5: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

5

Coordinate transformation Galilean transformation

Simple addition of velocities, no speed limit!

w =dx

dt=

d( " x + vt)

dt=

d " x

dt+ v = " w + v

!

x = " x + vt

y = " y

z = " z

Page 6: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

6

Maxwell

137

Page 7: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

7

Thought experiment 1 Two rotating double stars A and B

Does their light reach earth at different times ? Do we observe one star at two positions ? NO -> The speed of light (c) does not depend on the

motion of the emitting stars Is there some immobile substance (ether) that transmits

the radiation? NO -> Need better theory of mechanics

Page 8: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

8

Thought experiment 2 Take two observers inside and outside a moving train The train passes the stationary observer, waiting for the

railroad sign, on its way to a nearby tunnel... They both know the speed of light and wonder when the

light of the railroad sign will illuminate the tunnel

The observer outside has an easy job : t = distance / c The observer inside needs to correct for the fact that the

tunnel is moving towards him (and the light) and gets aslightly smaller t

Their conclusion: with c constant, t needs to be relative

Page 9: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

9

Special relativity c constant and t variable gives

Galileo We need a new transformation

!

x = " # x + v # t ( )

y = # y

z = # z

t =$ # t + % # x ( )

!

x = " x + vt

y = " y

z = " z

!

x2

+ y2

+ z2

= c2t2

" x 2

+ " y 2

+ " z 2

= c2 " t

2

Scaling factor

No dependence on y and zsince clocks in the yz planewould disagree (reciprocalrelation between the frames)

Page 10: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

10

Lorentz transformation Substitute this ansatz in the unprimed equations and solve

Lorentz transformation

Time and spatial coordinates transform into each other 4-dimensional space-time coordinate system Nonrelativistic limit (c → ∞) gives Galileo transformation!

x = " # x + v # t ( )

y = # y

z = # z

t = " # t +v # x

c2

$

% &

'

( )

!

r = " r + vv # " r ( ) $ %1( )

v2

+ $ " t

&

' (

)

* +

t = $ " t +v # " r ( )c2

&

' (

)

* +

Generalize to 3d

!

" = # = (1$v2

c2)$1/ 2 % =

v

c2

Page 11: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

11

Relativistic Quantum Mechanics

1905 : STR Einstein : “E = mc2”

1926 : QM Schrödinger equation

1928 : RQM Dirac equation

1949 : QED Tomonaga, Schwinger &

Feynman

Page 12: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

12

Quantization

!

H = T +V =" 2

2m+ q# r( )

" = p$ qA

!

H " ih#

#t ; p"$ih%

ˆ H &(r, t) = ih#

#t&(r,t)

ˆ H = $h

2mˆ % 2 +

iqh

2mˆ % ' ˆ A + ˆ A ' ˆ % ( ) +

q2

2mˆ A 2 + q ˆ ( (r)

Non-relativistic quantizationThe nonrelativistic Hamiltonian function

Page 13: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

13

Spin and non-relativistic quantization 1

We can also write the the Hamiltonian function as

Quantization

!

E = q" +# $ %( )

2

2m

# i# j = &ij + i'ijk# k

!

ˆ H = q ˆ " +1

2m# $ %ih ˆ & + q ˆ A ( ){ }

2

= q ˆ " %h

2

2m# $ ˆ & ( )

2

+q

2

2m# $ ˆ A ( )

2

+iqh

2m# $ ˆ & ( ), # $ ˆ A ( )[ ]

+

Kronecker delta and Levi-Civita tensor

Page 14: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

!

ˆ " #A r( ) f (r) = ˆ " # f (r)A r( )( )

= ˆ " f (r)( ) #A r( ) + f (r) ˆ " #A r( )

= $ ˆ A # ˆ " f (r)( ) + Bf (r)

!

ˆ H = "h

2mˆ # 2 + q ˆ $ +

q2

2mˆ A

2

+iqh

2mˆ # % ˆ A + ˆ A % ˆ # ( ) "

qh

2m& % ˆ # ' ˆ A + ˆ A ' ˆ # ( )

Spin and non-relativistic quantization 2! "u( ) ! " v( ) = u " v( ) + i! " u # v( )

!

ˆ H = ˆ T + q ˆ " + iq ˆ A # ˆ $ +q

2

2

ˆ A 2 %

q

2& #B

A is a multiplicative operator

chain rule

Use definition of B

in atomic units

Page 15: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

15

Spin in NR quantum mechanicsThe Pauli Hamiltonian in two-component form

Second derivatives w.r.t. position, first derivative w.r.t. timeLinear in scalar, quadratic in vector potential→ Can not be Lorentz-invariant

Ad hoc introduction of spin.The anomalous g-factor(ratio magnetic moment to the intrinsic angularmomentum) is not well explained

No spin-orbit coupling

!

"1

2#2 + q$ + iqA % # +

q2

2mA2 "

q

2Bz "

q

2Bx " iBy( )

"q

2Bx + iBy( ) "

1

2#2 + q$ + iqA % # +

q2

2mA2 +

q

2Bz

&

'

( ( (

)

*

+ + +

Page 16: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

16

Relativistic quantization 1Take the classical relativistic energy expression

!

E " q# = m2c4 + c 2$ 2[ ]

1/ 2

Quantization recipe gives

After series expansion of the square root this couldprovide relativistic corrections to the Schrödinger Equation

Disadvantage : Difficult to define the square root operatorin terms of a series expansion (A and p do not commute).Not explored much.

!

"E = mc2"

!

ih"#

"t= m

2c4

+ c2$ 2 # % q&#

Without EM-fields

Page 17: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

17

Relativistic quantization 2Eliminate the square root prior to quantization

!

E " q#( )2

= m2c4 + c 2$ 2

Quantization

Klein-Gordon Equation

Lorentz invariant No spin

The KG-equation is used for mesons (that have no spin)

!

ih"

"t# q ˆ $

%

& '

(

) *

2

+ = m2c

4 + c 2ˆ , 2( )+

!

"*r( )" r( )# dr = f (t) Charge is conserved, particle number is not

Page 18: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

18

Relativistic quantization 3Define a new type of “square root”

Quantization

The Dirac equation

Suitable for relativistic description of electrons

!

ih"#

"t= $mc 2 + c% & ˆ ' + q ˆ ( ( )#!

E " q# = $mc 2 + c% & '

% i,% j[ ]+

= 2(ij ) % i,$[ ]+

= 0 ) $ 2 =1

Page 19: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

19

The Dirac equation

!

"mc 2 + c# $ % + q&( )' r,t( ) = ih(' r,t( )(t

First derivatives with respect to time and position Linear in scalar and vector potentials

Can be shown to be Lorentz invariant

Alpha and Beta are conventionally represented bythe following set of 4-component matrices

!

"x =0 # x

# x 0

$

% &

'

( ) "y =

0 # y

# y 0

$

% &

'

( ) " z =

0 # z

# z 0

$

% &

'

( ) * =

I 0

0 +I

$

% &

'

( )

Page 20: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

20

The Dirac Hamiltonian

!

ˆ H = "mc2

+ c# $ ˆ % + q&

=

mc2

+ q& 0 c% z c(% x ' i% y )

0 mc2

+ q& c(% x + i% y ) 'c% z

c% z c(% x ' i% y ) 'mc2

+ q& 0

c(% x + i% y ) 'c% z 0 'mc2

+ q&

(

)

* * * *

+

,

- - - -

Four component wave function : why ?

1) Spin doubles the components

2) Negative energy solutions : E < -mc2

Page 21: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

21

Densities

!

" r, t( ) = q#†r, t( )# r, t( )

• Charge density

• Current density

• Conservation relation!

j r,t( ) = q"† r,t( ) c# " r,t( )

!

"# r, t( )"t

+$ % j r,t( ) = 0

Page 22: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

22

Time-independent Dirac equation The nuclei do not move with relativistic speeds with

respect to each other Take a stationary frame of reference (Born-

Oppenheimer approximation) Separate the time and position variables

!

ˆ H "(r, t) = ih#"(r,t)

#t

"(r, t) = $(r)%(t)

ˆ H $(r) = E $(r)

%(t) = eEt / ih

Time dependent Dirac equation

Time independent Dirac equation

Page 23: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

23

Free particle Dirac equation Take simplest case : φ= 0 and A = 0 Use plane wave trial function

!

"(r) = eik#r

a1

a2

a3

a4

$

%

& & & &

'

(

) ) ) )

E *mc2( )a1 * chkza3 * chk*a4 = 0

E *mc2( )a2 * chk+a3 + chkza4 = 0

*chkza1 * chk*a2 + E + mc2( )a3 = 0

*chk+a1 + chkza2 + E + mc2( )a4 = 0

!

k± = kx ± iky

Non-relativistic functional form with constants aithat are to be determined

After insertion into time-independentDirac equation

Page 24: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

24

Free particle Dirac equation

Two doubly degenerate solutions

Compare to classical energy expression

Quantization (for particles in a box) and prediction ofnegative energy solutions

E2

!m2

c4

! c2

h2

k2( ) = 0

E+ = + m2

c4

+ c2

h2

k2

E! = ! m2c4 + c2h2k2

E = m2

c4

+ c2

p2

Page 25: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

25

Free particle Dirac equation Wave function for E = E+

Upper components are the “Large components” Lower components are the “Small components”

!

a2 = 0 ; a3 = a1

chkz

E+ + mc2

; a4 = a1

chk+

E+ + mc2

h k " p << mc

a3 = a1

cpz

mc2

+ m2c

4+ c

2p

2# a1

pz

2mc

a4 # a1

p+

2mc

For particles moving with “nonrelativistic” velocities

Page 26: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

26

Free particle Dirac equation Wave function for E = E-

Role of large and small components is reversed Charge conjugation symmetry Can we apply the variational principle ? Variational Collapse

!

a4

= 0

a1

= a3

chkz

E" "mc2

# a3

pz

"2mc

a2

= a3

chk+

E" "mc2# a

3

p+

"2mc

Page 27: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

27

Dirac sea of electrons All negative energy

solutions are filled The Pauli principle

forbids doubleoccupancy

Holes in the filled seashow up as particleswith positive charge :positrons (discoveredin 1933)

Infinite backgroundcharge

Electronlike continuum solutions

Positronlike continuum solutions

Electronlike bound solutions

Page 28: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

28

Second Quantization Introduce a m-dimensional Fock space F(m)

States are defined by the occupation number vector n

The vacuum has all n=0

We use an orthonormal basis

n = n1, n2,K,n

m

ni= 0,1

vac = 0, 0,K, 0

n k = !nk

vac vac = 1

Page 29: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

29

Second Quantization Second quantized operators

Creation operator

Annihilation operator

Define all operators in terms of these elementary operators

ai

†n

1,K, n

i,K,n

m= 0 (n

i=1)

ai

†n

1,K, n

i,K,n

m= C

in

1,K,1,K, n

m (n

i= 0)

ai

†vac = 0,K,1,K, 0

ain

1,K, n

i,K, n

m= C

in

1,K, 0,K,n

m (n

i= 1)

ain

1,K, n

i,K, n

m= 0 (n

i= 0)

aivac = 0

ˆ ! = !kl

ˆ a k

†ˆ a

l

k ,l =1

m

"

Page 30: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

30

Fock space HamiltonianPositive and negative energy solutions define a Fock space Hamiltonian

!

ˆ H Total

= ˆ H ++

+ ˆ H +"

+ ˆ H "+

+ ˆ H ""

ˆ H ++

= H pqˆ a p

† ˆ a qp,q

E#E+

$ ˆ H ""

= H%&ˆ a %

† ˆ a &% ,&

E#E"

$

ˆ H +":pair creation

= H p%ˆ a p

† ˆ a %%

E#E"

$p

E#E +

$

ˆ H "+:pair annihilation

= H%pˆ a %

† ˆ a pp

E#E +

$%

E#E"

$

Page 31: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

31

Renormalization1. Subtract energy from the occupied negative energy

states

2. Re-interpretation

3. Normal ordered Hamiltonian

ˆ a p† = ˆ b p

† ˆ a p =

ˆ b p

ˆ a !† = ˆ b ! ˆ a ! =

ˆ b !†

!

ˆ H QED = H pq

ˆ b p† ˆ b q

p,q

electrons

" + H p#ˆ b p

† ˆ b #† + H#p

ˆ b #ˆ b p( )

#

pos.

"p

el.

" $ H#%ˆ b #

† ˆ b %# ,%

positrons

"

!

ˆ H QED

= ˆ H Total

" E0

= ˆ H Total

" ˆ H Total

Due to the anticommutation relation

Page 32: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

32

Quantum Electro Dynamics

Positive energy for positrons

Total charge is also redefined

!

QvacQED

= "e vac ˆ N QED vac

= "e vac bp† bp " b#

†b##

positronstates

$p

electronstates

$ vac = 0

!

E(1p;0e) = K, 1,K;K ˆ H QED

K,1,K;K

= K,1,K;K " H#$b#†b$

#,$

positronstates

% K,1,K;K = "E& ' mc2

Neg. Pos. Neg. Pos.

γ

Page 33: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

33

Dressed particles The QED Hamiltonian depends on the positive and

negative energy solutions of the Dirac equation. TheDirac equation depends on the external potential

Common choices Free particle solutions (Feynman,1948) Fixed external potential (Furry,1951) External + some mean-field potential (“fuzzy”)

Particles in one representation are quasiparticles(dressed with ep-pairs) in another representation

Different no-pair approximations possible

Page 34: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

34

Electron-electron interaction Add quantized EM-field and interaction term

Electron-electron interaction is automaticallyretarded by the finite velocity of light

Corrections to the Dirac equation and theinstantaneous Coulomb interaction can be derived Feynman (NP 1965) diagrams

• Breit interaction (1929) (Order c-2)• Vacuum Polarization + Self Energy = Lamb shift (NP 1955) (c-3)

= p ! states;e! states; photons

ˆ H QED , full = ˆ H e+ p + ˆ H photons+ ˆ H e+ p, photons

Page 35: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

35

Electron-electron interaction Three terms up to order c-2

Coulomb, Gaunt and retardation terms First correction describes the current-current interaction Second correction describes retardation

!

gCoulomb"Breit

1,2( ) =1

r12

"1

c2r12

c#1 $ c#2

"1

2c2c#1 $%1( ) c#2 $% 2( )r12

Page 36: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

36

Dirac-Coulomb-Breit Hamiltonian Second quantization is merely convenient for our

purposes, but becomes essential when goingbeyond the No-Pair approximation

Page 68 of Book 1 has everything we need:

Matrix elements are complex and (therefore) haveless permutational symmetry

We want to compute these matrix elements, so weneed to go back to first quantization and basis setexpansion techniques.....

!

ˆ H = hij

D

i, j

" ai

†a j +

1

2gijkl

C + gijkl

B( )i, j ,k,l

" ai

†ak

†ala j

Page 37: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

37

MO-integrals in quaternion formL. Visscher, J. Comp. Chem. 23 (2002) 759.

Gµ! ,"#VW ,XY =

$µV †

(r1 )$!W (r1 )$"

X †(r2 )$#

Y (r2 )

r12

dr1dr2%%

Bµ! ,pqXX,&1 2e&1 2

= cµpX,&1 c!q

X,& 2e&1

* e&2

&1 =0

3

'&1 =0

3

'

GpqrsDirac(Coulomb &1 2&3 4 = Bµ! , pq

XX ,&1 2Gµ!"#XXYYB

"#,rs

Y Y,& 3 4

" ,#

NY

'µ ,!

NX

'Y

L ,S

'X

L,S

' &12,&34 = 0,1,2,3( )

GpqrsLévy(Leblond = Bµ!,pq

LL ,0 Gµ!"#LLLLB

"# ,rs

LL,0

" ,#

NL

'µ ,!

NL

'

Gpqrsspinfree = Bµ!,pq

XX ,0 Gµ!"#XXYYB

"#,rs

Y Y,0

" ,#

NY

'µ ,!

NX

'Y

L ,S

'X

L ,S

'

GpqrsTwo( spinor&1 2&3 4 = Bµ! ,pq

LL ,&1 2Gµ!"#LLLLB

"# ,rs

LL,&3 4

" ,#

NL

'µ ,!

NL

' &12,& 34 = 0,1,2, 3( )

Page 38: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

38

Discussed in Lecture 1

!

"mc 2 + c# $ ˆ % + q&( )' r( ) = E' r( ) Dirac equation

Electronlike continuum solutions

Positronlike continuum solutions

Electronlike bound solutions

Lorentz invariance

Renormalization (QED)

Choosing the reference DiracHamiltonian in QED: we needorbitals

No-Pair approximation andsecond quantized Hamiltonian

Breit interaction

Page 39: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

39

One more exact solution of the Dirac equation

The hydrogenic atom

This equation can be solved exactly byseparating the radial and angular variables

The derivation and energy is found invarious textbooks.

!

mc2 "

Z

rc# $ p

c# $ p "mc 2 "Z

r

%

&

' ' '

(

)

* * *

+ Lr( )

+ Sr( )

%

& '

(

) * = E

+ Lr( )

+ Sr( )

%

& '

(

) *

Page 40: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

40

The hydrogenic atom The exact energy expression

Scalar relativistic corrections :

Spin-orbit couping :

!

E = mc2/ 1+

Z /c

n " j "1

2+ ( j +1/2)

2 "Z2

c2

#

$

% %

&

% %

'

(

% %

)

% %

2

j = l ± s

!

ENR

= "Z2

2

Page 41: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

41

Page 42: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

42

Orbital stabilisationAlkali metals

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

Nuclear Charge

nonrelativistic

relativistic

H, Li, Na, K, Rb, Cs, Fr, 119

Page 43: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

43

Spin-orbit splittingGroup 13

0.0

0.1

0.2

0.3

0.4

0 50 100 150

Nuclear Charge

nonrelativistic

relativistic

relativistic

B, Al, Ga, In, Tl, 113

Page 44: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

44

Orbital destabilisationGroup 12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150

Nuclear Charge

nonrelativistic

relativistic

relativistic

Zn, Cd, Hg, 112

Page 45: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

45

Orbital contraction <r> of the outermost s-orbital

Alkali metals

1

2

3

4

5

6

7

8

0 50 100 150

Nuclear Charge

nonrelativistic

relativistic

Page 46: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

46

Orbital contraction <r> of the outermost p-orbital

Group 13

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150

Nuclear charge

nonrelativisticrelativisticrelativistic

Page 47: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

47

Orbital expansion <r> of the outermost d-orbital

Group 12

0.8

1.0

1.2

1.4

1.6

1.8

2.0

20 70 120

Nuclear Charge

nonrelativisticrelativisticrelativistic

Page 48: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

48

The hydrogenic atom The exact energy expression

Can be expanded to!

E = mc2/ 1+

Z /c

n " j "1

2+ ( j +1/2)

2 "Z2

c2

#

$

% %

&

% %

'

(

% %

)

% %

2

!

E = mc2 "

Z2

2n2

+Z4

2n4c2

3

4"

n

j +1

2

#

$ %

& %

'

( %

) %

+OZ6

c4

*

+ ,

-

. /

!

1+ x( )"1

2 =1"1

2x +

3

8x2"K

Page 49: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

49

Approximate Hamiltonians

Find operators that can describe these scalar relativistic and spin-orbit coupling corrections in molecular systems

Start by decoupling the large and small component equations

Rewrite the lower equation as

!

V" L + c# $ p" S = E" L

c# $ p" L + V % 2mc 2( )" S = E" S

!

" Sr( ) = 1#

E #V

2mc2

$

% &

'

( )

#1* + p

2mc" L

r( )

= K E,r( )* + p

2mc" L

r( )

!

K E,r( ) = 1"E "V

2mc2

#

$ %

&

' (

"1

Page 50: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

50

Approximate Hamiltonians

Substitute in the upper equation

Unnormalized Elimination of the Small Component

!

1

2m" # p( )K E,r( ) " # p( ) +V

$ % &

' ( ) * L

r( ) = E* Lr( )

!

K E,r( ) = 1"E "V

2mc2

#

$ %

&

' (

"1

Page 51: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

51

Pauli Hamiltonian

Crudest approximation :

Take K=1 but keep the magnetic field

!

1

2m" # p( ) " # p( ) +V

$ % &

' ( ) * L

r( ) = E* Lr( )

p2

2m+V

$ % &

' ( ) * L

r( ) = E* Lr( )

!

K E,r( ) =1

!

1

2m" # $( ) " # $( ) +V

% & '

( ) * + L

r( ) = E+ Lr( )

Schrödinger equation

Pauli equation

Page 52: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

52

Breit-Pauli Hamiltonian

Find an operator that normalizes the wave function :

Multiply the UESC equation by N-1

!

" = N" L

N = 1+1

4m2c2# $ p( )K 2 # $ p( )

!

N"1 1

2m# $ p( )K E,r( ) # $ p( ) +V

% & '

( ) * N

"1N+ L

r( ) = N"1E+ L

r( )

!

N"1 1

2m# $ p( )K E,r( ) # $ p( ) +V

% & '

( ) * N

"1+ r( ) = EN"2+ r( )

Page 53: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

53

Breit-Pauli Hamiltonian

Use series expansions and keep terms up to order c-2

!

ˆ N "1 = 1+

1

4m2c

2# $p( )K 2 # $p( )

%

& ' (

) *

"1/ 2

=1"1

8m2c

2# $p( )K 2 # $p( ) +K

=1"p

2

8m2c

2+ O(c

"4)

!

ˆ N "2 = 1+

1

4m2c

2# $p( )K 2 # $p( )

%

& ' (

) *

"1

=1"p

2

4m2c

2+ O(c

"4)

!

K2 = 1"

E "V

2mc2

#

$ %

&

' (

"2

=1+O c"2( )

Page 54: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

54

Breit-Pauli Hamiltonian

Expansion of K

Subsitute and keep only terms to order c-2

!

K E,r( ) = 1+E "V( )2mc

2

#

$ %

&

' (

"1

=1"E "V( )2mc

2+O(c"4 )

!

ˆ N "1 ˆ V +

1

2m# $p( )K # $p( )

%

& ' (

) * ˆ N "1+ = EN

"2+

!

ˆ V + ˆ T +" #p( )V " #p( ) $ Ep

2 $Tp2 $

1

2p

2,V[ ]

+

4m2c

2

%

&

' ' '

(

)

* * * + = E $

Ep2

4m2c

2

,

- .

/

0 1 +

Page 55: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

55

The energy dependent term on the lhs was cancelled by the rhs

Further simplify the equation using

Result : The Breit-Pauli equation

!

" #p( )V " #p( ) = pV( ) #p+Vp2 + i" # pV( ) $p

%1

2p2,V[ ]

+= %

1

2p2V( ) % pV( ) #p%Vp2

Breit-Pauli Hamiltonian

!

ˆ H BP = ˆ T + ˆ V +

" #p( )V " #p( ) $Tp2$

1

2p

2,V[ ]

+

4m2c

2

Darwin Mass-Velocity Spin-Orbit

!

ˆ H BP = ˆ T + ˆ V "

p2V

8m2c

2"

p4

8m3c

2+

i# $ pV( ) %p4m

2c

2

Page 56: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

56

Expectation values for the hydrogen atom

!

< ˆ H Darwin

>=Z

4

2n3c

2(l = 0)

!

< ˆ H Darwin

>= 0 (l > 0)

!

< ˆ H MV

>=Z

4

2n4c

2

3

4"

n

l +1

2

#

$ %

& %

'

( %

) %

!

< ˆ H SO >=

Z4

2n3c

2

l

l 2l +1( ) l +1( )j = l +1/2( )

!

< ˆ H SO >=

Z4

2n3c

2

"l "1

l 2l +1( ) l +1( )j = l "1/2( )

Page 57: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

57

Approximate relativistic Hamiltonians

Can we improve upon the Breit-Pauli Hamiltonian ?

A short wish list :

1. The Hamiltonian should resemble the SchrödingerHamiltonian as much as possible

2. It should describe the scalar relativistic effects3. It should describe the spin-orbit coupling effect4. It should be variationally stable5. It should be easy to implement6. Errors relative to the Dirac solutions should be small

and systematically improvable

7. It should be well-named....

Page 58: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

58

Regular approximations What did we do wrong ? Check the expansion parameter

E should be small relative to 2mc2

Orbital energies vary over a range of -0.1 to 5,000 au Twice the rest mass energy is 37,558 au This difference should be large enough

V should be small relative to 2mc2

The potential is dominated by the nuclear attraction close to the nuclei

Take r = 10-4 au and Z=6 (carbon) : V = 60,000 au Is this inside the nucleus ? No : the RMS radius is 4.7 10-5 au for C.

!

K E,r( ) = 1+E "V( )2mc

2

#

$ %

&

' (

"1

=1"E "V( )2mc

2+O(c"4 )

!

V " #Z

r

Page 59: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

59

Regular approximations Can we find a better expansion parameter ? Yes !

E should be small relative to 2mc2 - V V is negative which improves the expansion close to the nuclei

Zeroth order in this expansion

Zeroth order equation does describe SO-coupling and scalarrelativistic corrections

Gauge dependence of the energy Affects ionization energies, structures Gauge independence can be achieved various ways

!

K E,r( ) = 1+E "V( )2mc

2

#

$ %

&

' (

"1

= 1"V

2mc2

)

* +

,

- . "1

1+E

2mc2 "V

)

* +

,

- . "1

!

1

2m" # p( ) 1$

V

2mc2

%

& '

(

) * $1

" # p( ) +V+ , -

. / 0 1 ZORA

r( ) = E1 ZORAr( )

!

V "V + C E " E + C #EC

2mc2

Page 60: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

60

Approximations to K(E,r) for the 1s orbital of Fm99+

Page 61: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

61

8

6

4

2

0

r!!

(a.u

.)

10-5

10-4

10-3

10-2

10-1

100

r (a.u.)

1s orbital

DIRAC ZORA NR

Uranium atom

Page 62: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

62

0.5

0.4

0.3

0.2

0.1

0.0

r!!

(a.u

.)

10-5

10-4

10-3

10-2

10-1

100

101

r (a.u.)

7s orbital

DIRAC ZORA NR

Uranium atom

Page 63: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

63

Foldy-Wouthuysen transformations Use an energy-independent unitary transformation to

decouple the large and small component equations

Exact expressions are only known for the free particleproblem

!

UHDU

"1U#

i

D = EU#i

D

HFW = U ˆ H

DU

"1 =H

+0

0 H"

$

% &

'

( )

#i

FW 4,(+) = U#i

D(+) =#

i

FW

0

$

% &

'

( )

ˆ U =1+ X

†X( )

"1

2 1+ X†X( )

"1

2 X†

X 1+ XX†( )"

1

2 1+ XX†( )"

1

2

$

%

& & &

'

(

) ) )

Picture change

!

X =1

2mcK ".p( )

Page 64: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

64

Douglas-Kroll-Hess method Idea

Transform “bare-nucleus Hamiltonian” with the known free-particletranformation matrix, followed by additional transformations to reduce size ofremaining off-diagonal elements to some order in the potential

Assumptions The transformation is based on the Furry picture : potential does not include

mean-field of electrons The conventional implementations neglect the transformation of the two-

electron interaction and often also the SO-coupling terms

Advantages-Disadvantages Method is variationally stable Slight modification of existing code required (replacement of one-electron

nuclear attraction integrals), fast implementation Good results in practice, significant improvement over Breit-Pauli Complicated operators, matrix elements can not be calculated analytically Two-electron terms are hard to evaluate Interactions with external field need to be represented by transformed operators

(picture change)

Page 65: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

65

The second-order Hamiltonian

The Douglas-Kroll-Hess Hamiltonian

!

HDKH 2 = Ep + Ap V + ".Pp( )V ".Pp( )( )Ap +W

1EpW1

+1

2W1

2Ep +

1

2EpW1

2

!

W1

=ApRpV p, " p ( )A " p # ApV p, " p ( )R " p A " p

E p + E " p

!

H(2)

=H

DKH 2H12

(2)

H21

(2)H22

(2)

"

# $

%

& '

Douglas-Kroll-Hess method

!

Rp =c" #p

Ep + mc2

=" #Pp

!

Ap =Ep + 2mc

2

2Ep!

Ep = m2c4

+ c2p2 Free particle energy operator

Kinematical factor

Page 66: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

66

General operator transformations Barysz-Sadlej-Snijders (1997) Reiher (200X) van Wüllen (200X)

Higher order two electron effects Samzow, Hess, Jansen (1992) Park and Almlöf (1994) Hirao (2003-present)

Infinite order via matrix representations Ilias and Jensen (2005)

Higher order approaches

Page 67: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

67

Four-component methods Idea

Expand Dirac equation in separate basis sets for the largeand small components

Use kinetic balance condition to prevent “variationalcollapse”

Advantages-Disadvantages No approximations made Matrix elements over the operators are easily evaluated Many more two-electron integrals need to be handled The Fock matrix is twice as large No picture change problems

Page 68: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

68

Hartree-Fock Self Consistent Field

1. Construct Fock operator

2. Find eigensolutions

3. Check convergence

4. Compute energy

!

F = " # c 2 + c$ %p+V + J j &K j

j

occupiedorbitals

'

!

F" r1( ) = #" r

1( )

!

" new{ } = " old{ } ?

!

EHF

= EKinetic

+ EPotential

+ EElec . Re p.

!

EHF

= < i |

i

occupiedorbitals

" # $ c 2+ c% &p | i > + < i |

i

occupiedorbitals

" V | i > +1

2< i |

i, j

occupiedorbitals

" J j 'K j | i >

Page 69: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

69

!

F =

V + J j "K j

j

# c $.p( ) " K j

j

#

c $.p( ) " K j

j

# V " 2c2 + J j "K j

j

#

%

&

' ' '

(

)

* * *

Fock operator

!

Jj r1( ) =" j

L†

r2( )" j

Lr2( ) +" j

S†

r2( )" j

Sr2( )

r12

dr2

=#$j r2( )r12

dr2#

!

Kj" i

Lr1( ) = Kj

LL" i

Lr1( ) + Kj

SL" i

Lr1( )

=" j

L†

r2( )" i

Lr2( )

r12

dr2" j

Lr1( ) +#

" j

L†

r2( )" i

Lr2( )

r12

dr2" j

Sr1( )#

!

Kj" i

Sr1( ) = Kj

LS" i

Sr1( ) + Kj

SS" i

Sr1( )

=" j

S†

r2( )" i

Sr2( )

r12

dr2" j

Lr1( ) +#

" j

S†

r2( )" i

Sr2( )

r12

dr2" j

Sr1( )#

Page 70: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

70

Basis set expansion Use different expansion sets for the large and small

component parts of the wave function

Kinetic balance condition

Recovers the non-relativistic limit

!

"ir( ) =

Lr( )0

$

% &

'

( )

µ=1

NL

* cµi

L +0

#+Sr( )

$

% &

'

( ) c+i

S

+ =1

NS

*

!

" Sr( ) =

# $ p

2mc" Lr( )

!

"#L*

r( )T$ "%Lr( )dr =

1

2"#L*

r( ) & 'p( )$ "µ

Sr( )dr

µ=1

NS

( ) "µ

S*

r( ) & 'p( )$ "%Lr( )dr

!

TLL =

1

2" #p( )

LS

" #p( )SL Resolution of identity

Page 71: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

71

Choice of expansion functions Large component

Atoms : Sturmians, Slaters or Gaussians Molecules : Spherical or Cartesian Gaussians

Small component Same type as large component Should fulfill kinetic balance relation

!

"P

S{ } = # $p( )"P

L{ }

!

"P

S{ } =#"P

L

#x,#"P

L

#y,#"P

L

#z

$ % &

' ( )

Restricted KB Unrestricted KB

Page 72: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

72

Condition : (! . p)(! . p) = p2

Kinetic Balance

Schrödinger equation

Dirac equation

c !

Cartesian Gaussian basis

Large Component

Small Component

s p d

s p d f

Page 73: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

73

The large component wave function resembles thenon-relativistic wave function

Exact relation between large and small componentwave functions

The small component density

Small component wave function is related to the firstderivative of large component wave function

The small component density is anembarrassingly local quantity !

!

( " S =

#1

2c1+

E #V

2c2

$

% &

'

( )

#1( *

( " L

Page 74: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Electron Density of Uranyl

Large component Small component

Page 75: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

75

Spinfree Dirac equation Define an auxilliary function

Transform the Dirac equation accordingly

Separate scalar and spin-dependent part andneglect the spin-dependent terms if desired

!

" S =1

2mc# $p( )% L

!

V T

T" #p( )V " #p( )4mc

2$T

%

&

' '

(

)

* * + L

, L

%

& '

(

) * = E

1 0

0T

2mc2

%

& ' '

(

) * * + L

, L

%

& '

(

) *

Relation holds by definition

Page 76: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

76

Direct perturbation theory Consider the modified Dirac equation

Non-relativistic limit is related to the Lévy-Leblond equation

Define a perturbation theory with as first (or second) orderperturbations

!

V T

T" #p( )V " #p( )4mc

2$T

%

&

' '

(

)

* * + L

, L

%

& '

(

) * = E

1 0

0T

2mc2

%

& ' '

(

) * * + L

, L

%

& '

(

) *

!

V T

T "T

#

$ %

&

' ( ) L

* L

#

$ %

&

' ( = E

NR1 0

0 0

#

$ %

&

' ( ) L

* L

#

$ %

&

' (

!

V " #p( )" #p( ) $2m

%

& '

(

) * + u

+ l

%

& '

(

) * = E

LL1 0

0 0

%

& '

(

) * + u

+ l

%

& '

(

) *

!

H(1)

=0 0

0 "Vc"2#

$ %

&

' (

!

S(1)

=0 0

0 c"2

#

$ %

&

' (

Page 77: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

77

Discussed in Lecture 2

Two-component methods

Breit-Pauli perturbation theory

Regular approach (ZORA)

Douglas-Kroll-Hess method

4-component methods

Direct Perturbation Theory

!

1

2m" # p( )K E,r( ) " # p( ) +V

$ % &

' ( ) * L

r( ) = E* Lr( )

Page 78: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

78

Valence-Only approaches All-electron calculations are not always feasible or necessary

Hierarchy of approximations for “core” electrons1. Correlate the core electrons at a lower level of theory (e.g. MP2)2. Include core electrons only at HF level of theory3. Use atomic orbitals for core electrons (Frozen Core)4. Model frozen core by a Model Potential5. Model frozen core by a Relativistic Effective Core Potential

Error correction and additional features1. Estimate higher order correlation effects in another basis set2. Use a core correlation potential3. Use a core polarization potential4.5. Include valence relativistic effects in RECP

Page 79: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

79

Consider the Fock operator

Identify localized (atomic) core orbitals and partition

Coulomb potential goes to zero at large distance, contains correctiondue to imperfect screening of nuclei at short distance

Exchange contribution depends on the overlap : short range Approximation made : atomic core orbitals are not allowed to change

upon molecule formation

!

F = hkinetic "

ZA

rAA

Nuclei

# + Jc

A "Kc

A

c

core

#A

Nuclei

# + Jv"K

v

v

valence

#

F = hkinetic "

ZA

*

rAA

Nuclei

# + Jv"K

v

v

valence

# + "ZA

core

rA

+ Jc

A

c

core

#$

% &

'

( )

A

Nuclei

# " Kc

A

c

core

#A

Nuclei

#

Frozen Core approximation

!

F = hkinetic "ZA

rAA

Nuclei

# + J j "K j( )j

occupiedorbitals

#

!

ZA

*= Z

A" Z

Core

VCoulomb VExchange

Page 80: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

80

Core polarization and overlap Polarizability of the core can modeled by a classical core

polarization potential (see also book II, formula 45.9)

Need a cut-off factor in the field since the multipole expansionis only valid outside the core

Can be extended to model core-correlation and core-valencecorrelation as well

The overlap between cores is assumed to be zero and thusneglects the exchange repulsion and nuclear attractionbetween neighbour cores

For “large core” calculations this requires a correction

!

VCPP

A= "

1

2fA

T#AfA

A

$ Field from the electrons and the other nucleiat the position of core A

Polarizability of core A

Page 81: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

81

Ab Initio Model PotentialsReplace the exact, non-local, frozen core potential by a modelpotential plus a projection operator

Density fit of spherical density, can be done toarbitrary precision

!

VFrozen core

A = Jc

A " ZA

core( )c

core

# " Kc

A

c

core

# $VCoul

A +VExch

A + PCore

A

!

VCoul

A=1

rA

ci

Ae"# i

ArA2

i

$

!

VExch

A= " r S rs

"1s Kc

At S tu

"1u

r,s,t ,u

primitivebasison A

#c

core

#

Resolution of identity with non-orthogonal functions

!

PCore

A= c B

c

Ac

c

core

"

Level shift that enforces orthogonality to the core

Page 82: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

82

Ab Initio Model Potentials

No freely adjustable parameters Keeps nodal structure of the valence orbitals Core orbitals in the virtual space Relativistic effects can be included in the reference

Fock operator Cowan-Griffin Hamiltonian Wood-Boring Hamiltonian Douglas-Kroll-Hess Hamiltonian

Can also be used to generate “no-valence” MPs Improves description of ions in crystals May require iterative generation scheme See example from the work of Seijo in the green hand-out

Page 83: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

83

Effective Core PotentialsReduce the basis set used to describe the valence orbitals

These pseudopotentials are determined via a fitting procedure. Theytake care of Coulomb and Exchange and core-valence orthogonality.

!

VFrozen core

ArA( ) " ML

ArA( ) + lml f l

ArA( )

ml =# l

l

$l= 0

L#1

$ lml

Phillips and Kleinman : shift core orbitals to make themdegenerate with the valence orbitals

!

"v

{ }# ˜ " v{ }

!

Fv" F

v+ #

v$#

c( )c

% c c

Make nodeless pseudo-orbitals

!

VFrozen core

ArA( ) " ML

ArA( ) + ljm j f lj

ArA( ) ljm j

ml =# l

l

$j= l#1/ 2

l+1/ 2

$l= 0

L#1

$

Scalar

Spin-Orbit

Page 84: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

84

Shape consistent ECPs “American school” : Christiansen, Ermler, Pitzer “French school” : Barthelat, Durand, Heully, Teichteil Make nodeless pseudo-orbitals that resemble the true valence

orbital in the bonding region

Absolute correlation energy may be overestimated relative tocorrelation calculations done with the real orbitals

Fit is sometimes done to the large component of Dirac wavefunction (picture change error)

Reasonable accuracy for bond lengths and frequencies Available in many program packages

!

"v r( )# ˜ " v r( ) ="v r( ) r $ rC( )f r( ) r < rC( )

% & '

Original orbital in the outer region

Smooth polynomial expansion in the inner region

Page 85: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

85

Energy consistent ECPs “German school” : Stoll, Preuss, Dolg Semi-empirical or ab initio approach that tries to reproduce the

low-energy atomic spectrum (using correlated calculations)

Provides good accuracy for many elements and bondingsituations Difference in correlation due to nodeless valence orbitals is

automatically included in the fit Small cores are often necessary to obtain stable results Available in many program packages

!

min wI EI

PP " EI

Reference( )2

I

LowlyingLevels

#$

%

& & &

'

(

) ) )

Page 86: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

86

Methods to treat relativity “Best” method depends on system studied See exercise (and answer) 10

Closed shells and simple open shells Use a size-extensive and economical method SOC-inclusive method may be required

Complicated open shells, bond breaking MCSCF, Multi-Reference CI or MR-CC SOC-inclusive methods are usually required Mean-field description of SO (AMFI) is usually sufficient

Use “best practice” and experience from calculations on lightelements

Page 87: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

87

Non-relativistic gold is silver The 5d-6s transition is shifted from the UV to the visible part of the

spectrum by scalar relativistic effects

Phosphorescence Singlet-triplet transitions are allowed because the non-relativistic

quantum numbers are not exact

6s

Visible Relativistic Effects

5d

6s

5d

Non-Relativistic Relativistic

Page 88: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

88

Mercury: Dipole polarizability Calculation via 4-

component time-dependentHartree-Fock (4c TD-DFTis nowadays also possible)

A. RelativisticB. NonrelativisticC. Breit-Pauli Pert. Theory

6s→6p transitions “Forbidden” 1S0 → 3P1

“Allowed” 1S0 → 1P1

Relativistic

Nonrelativistic

BP PT

Experiment

Page 89: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

89

Closed shell molecules Some studies with all-electron single

reference methods

Analyze relativistic effects for diatomicmolecules

Page 90: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

90

Atomization energies• Example: Halogen molecules• Molecular energy is hardly affected by SO-

coupling (SO quenching)• First order perturbation theory

σg

σu∗

πg∗

πu

σg,1/2

σu,1/2∗

πg,1/2∗

πu,1/2

RelativisticNonrelativistic

πu,3/2

πg,3/2∗

Page 91: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

91

Atomization energies• Atomic asymptotes are lowered by SO-coupling• First order perturbation theory

Nonrelativistic

px py pz

Relativistic

p1/2 p3/2 p3/2

SO-splitting

2P

2P3/2

Page 92: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Relativistic effect on atomization energies (kcal/mol)

Mainly SO-coupling : relativistic effect on atomizationenergies can be estimated by correction to the asymptote

Page 93: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Relativistic effect on harmonic frequencies (cm-1)

Bond weakening due to admixture of the antibonding sigma orbital. This is a second order spin-orbit effect

Page 94: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Relativistic effect on equilibrium distances (Å)

Note the underestimation by Hartree-Fock in At2

Page 95: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

95

Atomization energies• Example: Hydrogen halides• SO-coupling is again mostly quenched• First order perturbation theory• Strong sigma-pi mixing in ultra-relativistic H117

σ

σ∗

π

σ1/2

σ1/2∗

π1/2

RelativisticNonrelativistic

π3/2

Page 96: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Dissociation Energiesaug-pVTZ

-25

-20

-15

-10

- 5

0

HF HCl HBr HI HAtR

ela

tiv

istic

shif

t

in

De

(kcal/

mo

l)

HF

HF+G

MP2

CCSD

CISD

CISD+Q

CCSD(T)

Mainly SO-coupling : a good estimate for atomizationenergies can be obtained by correcting only the asymptote

Page 97: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Vibrational Frequenciesaug-pVTZ

-250

-200

-150

-100

-50

0

HF HCl HBr HI HAt

Rela

tiv

isti

c s

hif

t in

!

e (

cm

-1)

HF

HF+G

MP2

CCSD

CISD

CISD+Q

CCSD(T)

Bond weakening due to admixture of the antibonding sigma orbital

Page 98: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Bond Lengths

aug-pVTZ

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

HF HCl HBr HI HAt

Rela

tivis

tic

shif

t in

re

)

HF

HF+G

MP2

CCSD

CISD

CISD+Q

CCSD(T)

Competition between scalar and spin-orbit effectsTotal effect is small (< 0.01 Å) in this case

Page 99: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

99

6

5

4

3

2

1

dis

socia

tion e

nerg

y (

eV

)

AuHHI

TlH

IF

PbO TlF

Au2

PbTe

Bi2

I2

TlI

spin-orbit effect in: fragments (atoms) molecule

SR ZORA ZORA Exp

Page 100: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

100

Groundstate of thalliumhydrideK. Faegri Jr.. and L. Visscher, Theor. Chem Acc. 105 (2001) 265.

Goal : Provide benchmark values for this standard testcase Hamiltonian : Dirac-Coulomb-(Gaunt) Correlation space : up to 36 electrons (6s, 6p; 4f, 5s, 5p, 5d)

Method and# electrons corr.

Re(pm)

Ke(N/m)

!

(cm-1)De

(eV)

MP2* 14 186.2 121 1437 1.83

DC-CCSD(T)* 14 188.5 111 1376 2.07

DC-CCSD(T) 14 187.6 113.3 1385 2.00

DC-CCSD(T) 20 187.4 112.1 1378 1.98

DC-CCSD(T) 36 187.4 111.1 1371 1.98

DCG-CCSD(T) 36 187.7 111.9 1376 2.06

experiment 186.8 114.4 1391 2.06

*Seth, Schwerdtfeger and Faegri (1999) calculations with contracted basis sets.

Page 101: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

101

Open shell molecules Two studies with all-electron single and

multireference methods

Analyze relativistic effects

Page 102: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

Fine structure splitting in radicals

Fine structure splittings XO molecules

150

200

250

300

350

150 200 250 300 350 400

Experimental FSS (cm - 1)

Experiment

DCG-Hartree-FockDCG-CCSD

DCG-CCSD-T

• Valence iso-electronic systems O2–, FO, ClO

• Breit interaction and correlation should be included for accurate results

O2–

FO

ClO

Page 103: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

103

Platinumhydride PtH molecule : jj-coupling instead of LS-coupling scheme Pt (5d96s1) + H (1s1) → PtH (5d9σ2)

Page 104: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

104

Molecular properties Relativistic effects on some molecular

properties

Page 105: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

105

Dipole moment of HI

Relativistic effects

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

-1 -0.5 0 0.5 1

(R-Re)

dip

ole

mom

ent

(au

)

NR CCSD(T)

SF CCSD(T)

DC CCSD(T)

exp.

Page 106: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

106

20253035404550

HF HCl HBr HI

NR SOSRRel

NMR: 1H shielding trends

Page 107: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

107

NMR: 13C shielding trends

Data from Malkina et al., Chem. Phys. Lett. 1998Mean-field SO method employed.

Page 108: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

108

Extracting nuclear structure information fromSpectroscopy & Quantum Chemistry

Nuclear Quadrupole Moments

The coupling between the nuclearquadrupole moment Q and the electricfield gradient (EFG) at the nucleus qgives an energy splitting that dependson the orientation of the nuclear spin.This can be observed with highprecision in microwave (rotational)spectroscopy on diatomic molecules.

Quantum chemistry gives q and canthus be used to obtain accurate valuesof Q or to predict and rationalize NQRor NMR observations.

EQ =e2qzz Q 3mI

2 ! I(I +1)[ ]4I(2I !1)

Molecularrotation

Nuclear spin

Page 109: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

109

Iodine

Spread in Nuclear Quadrupole Moments (mbarn)

-500 -400 -300 -200 -100 0 100 200

NR-HF

SF-HF

DC-HF

ZORA4-DFT(BP)

DC-MP2

DC-CCSD

DC-CCSD(T)

TlI

AuI

AgI

CuI

I2

IBr

ICl

IF

HI

Page 110: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

110

Further reading Relativistic Quantum Mechanics

R. E. Moss, Advanced molecular quantum mechanics.(Chapman & Hall, London, 1973).

P. Strange, Relativistic Quantum Mechanics. (CambridgeUniversity Press, Cambridge, 1998).

Relativistic Quantum Chemical methods Relativistic Electronic Structure Theory - Part 1 :

Fundamentals, ed. P. Schwerdtfeger (Elsevier, A’dam, 2002). Theoretical chemistry and physics of heavy and superheavy

elements, ed. U. Kaldor and S. Wilson (Kluwer, Dordrecht,2003.

Relativistic Effects in Heavy-Element Chemistry and Physics,edited by B. A. Hess (Wiley, Chichester, 2003).

Applications Relativistic Electronic Structure Theory - Part 2 :

Applications, ed. P. Schwerdtfeger (Elsevier, Amsterdam,2004).

Page 111: Lucas Visscher- An introduction to Relativistic Quantum Chemistry

111

Typographical errors

Page 601 & Formula 4 (answer to question 3) : c missing

Page 604 : division symbol missing

Answer to question 2

!

j r,t( ) = q"† r,t( )c#" r, t( )

!

E = mc2/ 1+

Z /c

n " j "1

2+ ( j +1/2)

2 "Z2

c2

#

$

% %

&

% %

'

(

% %

)

% %

2

!

" #X( ) " #Y( ) =" i" j XiY j

=1

2" i," j[ ]

+XiYj +

1

2" i," j[ ]

$XiYj

= %ij XiY j + i&ijk" kXiY j

= X #Y+ i" # X'Y( )