49
Smoothed Particle Hydrodynamics Outline Non-relativistic hydrodynamics. SPH equations. Applications. Relativistic hydrodynamics. Relativistic SPH. High energy nuclear physics. Carlos Eduardo Aguiar Instituto de Física - UFRJ

Smoothed Particle Hydrodynamics Outline Non-relativistic hydrodynamics. SPH equations. Applications. Relativistic hydrodynamics. Relativistic SPH. High

Embed Size (px)

Citation preview

Smoothed Particle Hydrodynamics

Outline •Non-relativistic hydrodynamics.• SPH equations.• Applications.

• Relativistic hydrodynamics.• Relativistic SPH.• High energy nuclear physics.

Carlos Eduardo AguiarInstituto de Física - UFRJ

Fluid Dynamics

Hydrodynamic Equations

vtdt

d

velocity fluidv

density mass

pressureP

Pdt

ddt

d

1v

vContinuity equation

Euler’s equation

Ideal fluid

0dt

ds

massunit entropy / s

),( sPP

Entropy Equation

• no viscosity• no thermal conduction

v

P

dt

de

massunit energy / thermale

),( ePP

Pvdt

d

v

1)( 2

21

)(1

)( 221 vPev

dt

d

dP

TdsPdVde2

Energy Equation

Ideal Gas

))(1(

0

0 0)( ssen

PsK

enenP )1(),(

)1/( Te

TnP

nsKsnP )(),(

mn /

)(

])[()(

)()(

)(

221

221

v

v

vvIv

v

t

Pvt

v

Pt

t

Conservation Laws

umeenergy/vol thermal e

lumeentropy/vo s

SPH

- L.Lucy, Astron.J. 82, 1013 (1977)- R.Gingold, J.Monaghan, MNRAS 181, 378 (1977)

• Developed to study gas dynamics in astrophysical systems. • Lagrangian method.• No grids.• Arbitrary geometries.• Equally applicable in 1, 2 and 3 space dimensions.

Reviews:- J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543 (1992)- L. Hernquist, N. Katz, Ap. J. Suppl. 70, 419 (1989)

Smoothing

xxxxxx dhWAAA S ),()()()(

)()()( 2hOAAS xx

h

x0 1);( xx dhW

)()()()()]()([ xxxxxx SSS BABABA

kernel smoothing),( hW x

Error:

Particles

b

bb

bbSPS WA

mAA )()(

)()()( xx

x

xxx

xxxxx dWS )()()(

xxxxx

xx

dWAAS )()()(

)()(

b

bbbSPS Wm )()()()( xxxxx

N

bbbm

1

)()( xxx

"Monte-Carlo" sampling

b

bb

bb Wm )(

)(

)()( xx

x

xvxv

b

bbb Wm )()()()( xxxvxvx

)()()()()]()([ xxxxxx SPSPSP BABABA

)()(0, xx AAhN SP

Different ways of writing SP estimates(we omit the SP subscript from now on):

b

bbb Wm )()()(

1)( xxxv

xxv

Derivatives

b

bb

bb WA

mA )()( xxx

b

bb

bb WA

mA )()( xxx

No need for finite differences and grids:

211 ii

i

AAA

i-1 i+1i

bab

b

bba Wm

vv

b

abab

bba Wm

vv)(

vvv )(

b

abaabbaa Wm )()( vvv

Exact Galilean invariance

More than one way of calculating derivatives:

AAA )(

b

baaabba WAAmA )(][)( xx

)( vdt

d

b

abaabba Wmdt

d)( vv

)]()([ ttWm bb

aba xx

b

abababa Wmdt

d)( xx

aa

dt

dv

x

Moving the Particles

baba

ba

bb

a

WP

mP

2

PPP

b

abaa

a

b

bb

a

WPP

mP

22

Euler's Equation

a

a P

dt

d

v

b

abaa

a

b

bb

a WPP

mdt

d22

v

Exact momentum conservation

Entropy

bbbb

bb

b

bb

Wsm

Wm

)(

)()(

xx

xxx

)()()( xxx s

0dt

dsa

),( aaa sPP

Energy

a

a P

dt

de

v

),( aaa ePP

babaabb

a

a

a

WmPP

)(2

vvv

PPPv

vv

babaab

b

bb

a

WP

mP

)(2

vvv

bababa

b

b

a

ab

a WPP

mdt

de)(

2

122

vv

2

)( vvv PPP

a

aa P

dt

evd

)()( 2

21 v

baba

b

bb

a

aab

aa WPP

mdt

evd22

221 )( vv

Alternatively:

SPH Equations

babaab

b

b

a

ab

a WPP

mdt

dev

222

1

baba

b

b

a

ab

a WPP

mdt

d22

v

aa

dt

dv

x

b

abba Wm ),( aaa ePP

Smoothing Kernels

q

qq

qqq

hhW

2;0

21;4/)2(

10;4/32/31

),( 3

32

x

1,

7

10,

3

2hq /x

dimensions

)/exp(1

),( 222/

hh

hW xx

Gaussian:

Spline:

Shock Waves

shock wave

x

numerical calculation

Artificial Viscosity

babaab

b

b

a

ab

a WPP

mdt

d22

v

babaabab

b

b

a

ab

a WPP

mdt

dev

222

1

ndissipatioab

0;0

0;2

abab

ababab

ababab

ab

c

rv

rv

22

ab

ababab

h

r

rv• Galilean invariant.• Vanishes for rotations.• Conserves linear and angular momentum.

Local Resolution Length

aa

dt

dv

x

babaab

b

b

a

ab

a WPP

mdt

d ~22

v

babaabab

b

b

a

ab

a WPP

mdt

de ~

2

122

v

babaabb

a

aa Wmh

dt

dh ~v

)],(),([2

1~babaabab hWhWW rr

dt

dh

dt

hd a

a

aa

babaabb

a Wmdt

d ~v

SPH Simulation of the Hubble Volume

Mass density in a thin slice (100x100x20Mpc/h)at the present epoch. This is a view one would

observe if the speed of light were infinite.

SPH Simulation of Galaxy Formation

Density of gas and dark matter in a group of galaxies.

Gas Dark Matter

SPH Simulation of Supernova Explosion

Herant et al., Ap.J. 435, 339 (1994)

75 ms after bounce

x (km)

z (k

m)

SPH Simulation of Supernova Explosion

Herant et al., Ap.J. 435, 339 (1994)

SPH Simulation of Stellar Collision

Disruption of a main sequence star by a close encounter with a high velocity neutron star.

Colors represent log (density).

SPH Simulation of Colliding Asteroids

An 8 m radius rock strikes the 1.6 km long asteroid Castalia at 5 km/s. Red is totally

fractured rock, blue is intermediate fractured rock, and white particles represent the impactor.

SPH Simulation of Projectile Impact on Sand

Particles Temperature

Projectile: Aluminum cylinder 30x10 cm (2d). Initial velocity: 3 km/sec

Relativistic Hydrodynamics

PguuPT )(

)1,1,1,1(

),(

frame)(rest density baryon

frame)(rest density energy

pressure

g

u

n

P

v

unn

0 T

0 n

Energy-momentumconservation

Baryon-numberconservation

Continuity equation:

n

vdt

d

Entropy equation:

0)(0

uTuv

vdt

d )(

0dt

dsns /

entropy density (rest frame)

0)(

Tuug v

th

B

emne

TsnPew

0/

/

u

d

d

Pn

uwd

d

1

Relativistic Euler equation:

w = enthalpy per baryon

Momentum equation:

Pn

wdt

d

1)( v

t

P

nw

dt

d

1)(

Energy equation:

)(1

vPndt

dE

n

PwE

202

10 vv meE

Relativistic SPH

b

abba W)(x

aa particle ofnumber baryon

vdt

d

b

abaabba W

dt

dv

aa

dt

dv

x

b

abab

bb

a

aab

a WPP

dt

dE22

vv

baba

b

b

a

ab

a WPP

dt

d22

p

Pn

wdt

d

1)( v

aaaa w vp

)(1

vPndt

dE

aa

aaaa n

PwE

Energy (per baryon number)

Momentum (per baryon number)

Particle Velocity

),(,,, aaaaaaa enPE vp ?

nenPeenw /),(),(

)1(),( 222 enww pvp

1|| 2

pEen

PwE

)1()]1(||,/[ 2222 pp Ew

v,),(,,, enPwen

RSPH Equations

b

abab

bb

a

aab

a WPP

dt

dE22

vv

baba

b

b

a

ab

a WPP

dt

d22

p

aa

dt

dv

x

b

abba W

)1(])1(||,/[ 2222 aaaaaaaa Ew pp

Baryon-Free System

TPB 0

dT

TdPT

)()(

0 T

vdt

d

PTdt

d

1)( v

(Rest frame)

(Lab frame)

entropy density:

b

abab

b

a

ab

a WPP

sdt

d22

p

aa

dt

dv

x

b

abba Ws

1)/( 2 aaaa Tp

Baryon-Free RSPH

Ultrarelativistic Pion Gas

42

30TP

32

15

2T

PPT 3

27766.02

)3(152

n

3

1

d

dPcs

- 8 - 6 - 4 - 2 0 2 4 6 8 1 0 1 2

x

0

0.2

0.4

0.6

0.8

1

1.2

entr

opy

dens

ity

exactSPH

N /L = 80h = 0.1dt = 0.05

R arefaction w aveP = (15/1282)1/3 4 /3

Ultrarelativistic Pions

Rarefaction Wave

SHASTA et al.

0 2 4 6 8 10 12

x

0

0.1

0.2

0.3

0.4

0.5

entr

opy

dens

ity

exactSPH

Landau-Kalatn ikov so lutionP = (15/128 4 /3

N /L = 400h = 0.05dt = 0.02

Ultrarelativistic Pions

Landau Solution

Artificial Viscosity

• E.Chow and J.Monaghan, Journal of Computational Physics 134, 296 (1997)

See also:• S.Siegler and H.Riffert, astro-ph/9904070

babaab

b

bb

a

aab

a WPP

dt

dEG

vv22

babaab

b

b

a

ab

a WPP

dt

d22

p

Shock Tube

-40 -20 0 20 40

x

0

0.4

0.8

1.2

bary

on d

ensi

ty

N /L = 8h = 1dt = 0.48t = 48

= 1.4m 0 = 1

Ideal nucleon gas

SHASTA et al.

Shock Tube

Ideal nucleon gas

-40 -20 0 20 40

x

0

2

4

6

8

10

12

bary

on d

ensi

ty

N /L = 8h = 1dt = 0.36t = 36

= 5/3m 0 = 1

SHASTA et al.