284
UMTS Long Term Evolution (LTE) Reiner Stuhlfauth [email protected] Training Centre Rohde & Schwarz, Germany Subject to change Data without tolerance limits is not binding. R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners. 2011 ROHDE & SCHWARZ GmbH & Co. KG Test & Measurement Division - Training Center - This folder may be taken outside ROHDE & SCHWARZ facilities. ROHDE & SCHWARZ GmbH reserves the copy right to all of any part of these course notes. Permission to produce, publish or copy sections or pages of these notes or to translate them must f irst be obtained in writing from ROHDE & SCHWARZ GmbH & Co. KG, Training Center, Mühldorfstr . 15, 81671 Munich, Germany

LTE eutran rsanov2012

Embed Size (px)

Citation preview

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 1/284

UMTS Long Term Evolution(LTE)

Reiner Stuhlfauth

[email protected]

Training Centre

Rohde & Schwarz, Germany 

Subject to change – Data without tolerance limits is not binding.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks

of the owners.

2011 ROHDE & SCHWARZ GmbH & Co. KG

Test & Measurement Division

- Training Center -This folder may be taken outside ROHDE & SCHWARZ facilities.

ROHDE & SCHWARZ GmbH reserves the copy right to all of any part of these course notes.

Permission to produce, publish or copy sections or pages of these notes or to translate them must f irst

be obtained in writing from

ROHDE & SCHWARZ GmbH & Co. KG, Training Center, Mühldorfstr. 15, 81671 Munich, Germany

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 2/284

November 2012 | LTE Introduction | 2

2013/20142009/2010

Technology evolution path

GSM/

GPRS

EDGE, 200 kHzDL: 473 kbps

UL: 473 kbps

EDGEevoDL: 1.9 Mbps

UL: 947 kbps

HSDPA, 5 MHzDL: 14.4 Mbps

UL: 2.0 Mbps

HSPA, 5 MHzDL: 14.4 Mbps

UL: 5.76 Mbps

HSPA+, R7DL: 28.0 Mbps

UL: 11.5 Mbps

2005/2006 2007/2008 2011/2012

HSPA+, R8DL: 42.0 Mbps

UL: 11.5 Mbps

cdma

2000

1xEV-DO, Rev. 0

1.25 MHz

DL: 2.4 MbpsUL: 153 kbps

1xEV-DO, Rev. A

1.25 MHz

DL: 3.1 MbpsUL: 1.8 Mbps

1xEV-DO, Rev. B

5.0 MHz

DL: 14.7 MbpsUL: 4.9 Mbps

HSPA+, R9DL: 84 Mbps

UL: 23 Mbps

DO-AdvancedDL: 32 Mbps and beyond

UL: 12.4 Mbps and beyond

LTE-Advanced R10

DL: 1 Gbps (low mobility)UL: 500 Mbps

Fixed WiMAX

scalable bandwidth1.25 … 28 MHz 

typical up to 15 Mbps

Mobile WiMAX, 802.16e

Up to 20 MHzDL: 75 Mbps (2x2)

UL: 28 Mbps (1x2)

 Advanced Mobile

WiMAX, 802.16mDL: up to 1 Gbps (low mobility)

UL: up to 100 Mbps

VAMOSDouble Speech

Capacity

HSPA+, R10DL: 84 Mbps

UL: 23 Mbps

LTE (4x4), R8+R9, 20MHz

DL: 300 MbpsUL: 75 Mbps

UMTSDL: 2.0 Mbps

UL: 2.0 Mbps

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 3/284

November 2012 | LTE Introduction | 3

3GPP work plan

GERAN EUTRAN

UTRAN

Up from Rel. 8

Rel. 9

Rel. 10

Evolution

 Also contained in

Phase 1

Phase 2, 2+

Rel. 95

… 

Rel.7

New

RAN

Rel. 97

Rel. 99

… 

Rel. 7

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 4/284

November 2012 | LTE Introduction | 4

Overview 3GPP UMTS evolution

WCDMA

WCDMAHSDPA/

HSUPAHSPA+

LTE and

HSPA+LTE-

advanced

3GPP Release 73GPP

release

20102008/20092005/6 (HSDPA)

2007/8 (HSUPA)

 App. year of 

network rollout

Round

Trip Time

11 Mbps (peak)128 kbps (typ.)

28 Mbps (peak)384 kbps (typ.)

3GPP Release 83GPP Release 5/63GPP Release 99/4

2003/4

< 50 ms< 100 ms~ 150 ms

LTE: 75 Mbps (peak)HSPA+: 11 Mbps (peak)

11 Mbps (peak)5.7 Mbps (peak)128 kbps (typ.)Uplinkdata rate

LTE: 150 Mbps* (peak)

HSPA+: 42 Mbps (peak)28 Mbps (peak)14 Mbps (peak)384 kbps (typ.)Downlink

data rate

LTE: ~10 ms

100 Mbps high mobility

1 Gbps low mobility

*based on 2x2 MIMO and 20 MHz operation

3GPP StudyItem initiated

3GPPRelease 10

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 5/284

November 2012 | LTE Introduction | 5

Why LTE? Ensuring Long Term Competitiveness of UMTS

l LTE is the next UMTS evolution step after HSPA and HSPA+.

l LTE is also referred to as

EUTRA(N) = Evolved UMTS Terrestrial Radio Access (Network).

l Main targets of LTE:

l Peak data rates of 100 Mbps (downlink) and 50 Mbps (uplink)l Scaleable bandwidths up to 20 MHz

l Reduced latency

l Cost efficiency

l

Operation in paired (FDD) and unpaired (TDD) spectrum

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 6/284

November 2012 | LTE Introduction | 6

Peak data rates and real average throughput (UL)

0,174

0,473

2 2

0,947

0,153

1,8

5,76

11,5

58

0,1

15

0,1

0,03

0,1

0,2

0,50,7

2

5

0,01

0,1

1

10

100

GPRS

(Rel. 97)

EDGE

(Rel. 4)

1xRTT WCDMA

(Rel. 99/4)

E-EDGE

(Rel. 7)

1xEV-DO

Rev. 0

1xEV-DO

Rev. A

HSPA

(Rel. 5/6)

HSPA+

(Rel. 7)

LTE 2x2

(Rel. 8)

Technology

   D  a   t  a  r

  a   t  e   i  n   M   b  p  s

max. peak UL data rate [Mbps] max. avg. UL throughput [Mbps]

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 7/284

November 2012 | LTE Introduction | 7

Comparison of network latency by technology

710

190

320

46

158

85

70

30

0

100

200

300

400

500

600

700

800

GPRS

(Rel. 97)

EDGE

(Rel. 4)

WCDMA

(Rel. 99/4)

HSDPA

(Rel. 5)

HSUPA

(Rel. 6)

E-EDGE

(Rel. 7)

HSPA+

(Rel. 7)

LTE

(Rel. 8)

Technology

   2   G   /   2 .   5

   G

   l  a   t  e  n  c  y

0

20

40

60

80

100

120

140

160

   3   G

   /   3 .   5   G

   /   3 .   9

   G

   l  a   t  e  n  c  y

Total UE Air interface Node B Iub RNC Iu + core Internet

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 8/284

November 2012 | LTE Introduction | 8

Round Trip Time, RTT

Serving

RNC

MSC

SGSN

Iub/Iur  Iu

• ACK/NACK

generation in RNC

MME/SAE Gateway

• ACK/NACK

generation in node B

Node B

eNode B

TTI~10msec

TTI

=1msec

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 9/284

November 2012 | LTE Introduction | 9

Multi-RAT requirements

(GSM/EDGE, UMTS, CDMA)

MIMO multiple antennaschemes

Timing requirements

(1 ms transm.time interval)

New radio transmission

schemes (OFDMA / SC-FDMA)

Major technical challenges in LTE

Throughput / data raterequirements

Scheduling (shared channels,

HARQ, adaptive modulation)

System Architecture

Evolution (SAE)

FDD and

TDD mode

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 10/284

November 2012 | LTE Introduction | 10

Introduction to UMTS LTE: Key parameters

Frequency

Range UMTS FDD bands and UMTS TDD bands 

Channel

bandwidth,

1 Resource

Block=180 kHz 

1.4 MHz  3 MHz  5 MHz  10 MHz  15 MHz  20 MHz 

Resource

Blocks

15 

Resource

Blocks

25 

Resource

Blocks

50 

Resource

Blocks

75 

Resource

Blocks

100 

Resource

Blocks

Modulation

Schemes 

Downlink: QPSK, 16QAM, 64QAM

Uplink: QPSK, 16QAM, 64QAM (optional for handset)

Multiple Access Downlink: OFDMA (Orthogonal Frequency Division Multiple Access)

Uplink: SC-FDMA (Single Carrier Frequency Division Multiple Access)

MIMOtechnology

Downlink: Wide choice of MIMO configuration options for transmit diversity, spatial

multiplexing, and cyclic delay diversity (max. 4 antennas at base station and handset)Uplink: Multi user collaborative MIMO

Peak Data Rate 

Downlink: 150 Mbps (UE category 4, 2x2 MIMO, 20 MHz)

300 Mbps (UE category 5, 4x4 MIMO, 20 MHz) 

Uplink: 75 Mbps (20 MHz)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 11/284

November 2012 | LTE Introduction | 11

E-UTRA

Operating

Band

Uplink (UL) operating band

BS receive UE transmit

Downlink (DL) operating band

BS transmit UE receive Duplex Mode

FUL_low   – FUL_high FDL_low   – FDL_high 

1 1920 MHz  – 1980 MHz 2110 MHz  – 2170 MHz FDD

2 1850 MHz  – 1910 MHz 1930 MHz  – 1990 MHz FDD

3 1710 MHz  – 1785 MHz 1805 MHz  – 1880 MHz FDD

4 1710 MHz  – 1755 MHz 2110 MHz  – 2155 MHz FDD

5 824 MHz  – 849 MHz 869 MHz  – 894MHz FDD

6 830 MHz  – 840 MHz 875 MHz  – 885 MHz FDD

7 2500 MHz  – 2570 MHz 2620 MHz  – 2690 MHz FDD

8 880 MHz  – 915 MHz 925 MHz  – 960 MHz FDD

9 1749.9 MHz  – 1784.9 MHz 1844.9 MHz  – 1879.9 MHz FDD

10 1710 MHz  – 1770 MHz 2110 MHz  – 2170 MHz FDD

11 1427.9 MHz  – 1452.9 MHz 1475.9 MHz  – 1500.9 MHz FDD

12 698 MHz  – 716 MHz 728 MHz  – 746 MHz FDD

13 777 MHz  – 787 MHz 746 MHz  – 756 MHz FDD

14 788 MHz  – 798 MHz 758 MHz  – 768 MHz FDD

17 704 MHz  – 716 MHz 734 MHz  – 746 MHz FDD

18 815 MHz  – 830 MHz 860 MHz  – 875 MHz FDD

19 830 MHz  – 845 MHz 875 MHz  – 890 MHz FDD

20 832 MHz - 862 MHz 791 MHz - 821 MHz FDD

21 1447.9 MHz - 1462.9 MHz 1495.9 MHz - 1510.9 MHz FDD

22 3410 MHz - 3500 MHz 3510 MHz - 3600 MHz FDD

LTE/LTE-A Frequency Bands (FDD)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 12/284

November 2012 | LTE Introduction | 12

LTE/LTE-A Frequency Bands (TDD)

E-UTRA

Operating

Band

Uplink (UL) operating band

BS receive UE transmit

Downlink (DL) operating band

BS transmit UE receiveDuplex Mode

FUL_low   – FUL_high FDL_low   – FDL_high 

33 1900 MHz  – 1920 MHz 1900 MHz  – 1920 MHz TDD

34 2010 MHz  – 2025 MHz 2010 MHz  – 2025 MHz TDD

35 1850 MHz  – 1910 MHz 1850 MHz  – 1910 MHz TDD

36 1930 MHz  – 1990 MHz 1930 MHz  – 1990 MHz TDD

37 1910 MHz  – 1930 MHz 1910 MHz  – 1930 MHz TDD

38 2570 MHz  – 2620 MHz 2570 MHz  – 2620 MHz TDD

39 1880 MHz  – 1920 MHz 1880 MHz  – 1920 MHz TDD

40 2300 MHz  – 2400 MHz 2300 MHz  – 2400 MHz TDD

413400 MHz –

3600MHz

3400 MHz –

3600MHzTDD

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 13/284

November 2012 | LTE Introduction | 13

l OFDM is the modulation scheme for LTE in downlink and

uplink (as reference)

l Some technical explanation about our physical base: radio

link aspects

Orthogonal Frequency Division Multiple Access

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 14/284

November 2012 | LTE Introduction | 14

What does it mean to use the radio channel?

Using the radio channel means to deal with aspects like:

Doppler effectTime variant channel

Frequency selectivity

C

A

D

B

Receiver Transmitter 

MPP

attenuation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 15/284

November 2012 | LTE Introduction | 15

Still the same “mobile” radio problem: Time variant multipath propagation

C

A

D

B

Receiver Transmitter 

 A: free space

B: reflection

C: diffraction

D: scattering

A: free spaceB: reflectionC: diffractionD: scattering 

reflection: object is large

compared to wavelengthscattering: object issmall or its surfaceirregular

Multipath Propagation

and Doppler shift

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 16/284

November 2012 | LTE Introduction | 16

Multipath channel impulse response

  

 path delay path attenuation path phase

1

0

, i

 L j t 

i i

i

h t a t e 

 

The CIR consists of  L resolvable propagation paths

delay spread

|h|²

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 17/284

November 2012 | LTE Introduction | 17

Radio Channel – different aspects to discuss

Bandwidth

Wideband Narrowband

Symbol duration

Short symbol

duration

Long symbol

duration

t t

Repetition rate of pilots?

Channel estimation:Pilot mapping

or 

or 

Time?Frequency?

frequency distance of pilots?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 18/284

November 2012 | LTE Introduction | 18

Frequency selectivity - Coherence Bandwidth

Frequency selectivity

power 

Wideband = equalizer 

Must be frequency selective

Narrowband = equalizer 

Can be 1 - tap

Here: find

Math. Equation

for this curve

Here: substitute with single

Scalar factor = 1-tap

How to combat

channel influence?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 19/284

November 2012 | LTE Introduction | 19

Time-Invariant Channel: Scenario

Transmitter   Fixed Receiver  

Fixed Scatterer  

Delay Delay spread

Transmitter 

Signal

t

Receiver 

Signal

t

→time dispersive 

ISI: Inter SymbolInterference:

Happens, when

Delay spread >

Symbol time

Successive

symbols

will interfere Channel Impulse Response, CIR

collision

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 20/284

November 2012 | LTE Introduction | 20

t  

 f  T SC 

|H(f)| 

Motivation: Single Carrier versus Multi Carrier 

|h(t)| 

t  

 B 

l Frequency Domain

l Coherence Bandwidth Bc < Systembandwidth B

→ Frequency Selective Fading → equalization effort

l Time Domain

l Delay spread > Symboltime TSC 

→ Inter-Symbol-Interference (ISI) → equalization effort

1SC 

 BT 

Source: Kammeyer; Nachrichtenübertragung; 3. Auflage

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 21/284

November 2012 | LTE Introduction | 21

|h(t)| 

t  

t  

 f  

 f  

t  

T SC |H(f)| 

1

SC 

 BT 

1

 MC 

 B f  

 N T 

 MC SC T N T 

Motivation: Single Carrier versus Multi Carrier 

 B 

 B 

|H(f)| 

Source: Kammeyer; Nachrichtenübertragung; 3. Auflage

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 22/284

November 2012 | LTE Introduction | 22

What is OFDM?

Single carrier transmission,

e.g. WCDMA

Broadband, e.g. 5MHz for WCDMA

Orthogonal

Frequency

DivisionMultiplex

Several 100 subcarriers, with x kHz spacing

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 23/284

November 2012 | LTE Introduction | 23

Idea: Wide/Narrow band conversion

One high rate signal:

Frequency selective fading

N low rate signals:

Frequency flat fading

S/P

t / T bt / Ts

…   …  … ƒ 

H(ƒ) h(τ)

τ 

h(τ)

τ 

„Channel 

Memory“ 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 24/284

November 2012 | LTE Introduction | 24

COFDM

X     M   a

   p   p   e   r

X     M   a

   p   p   e   r

 . . . . .OFDM

symbolΣ 

Data

with

FECoverhead

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 25/284

November 2012 | LTE Introduction | 25

OFDM signal generation

00 11 10 10 01 01 11 01 ….  e.g. QPSK

h*(sin jwt + cos jwt) h*(sin jwt + cos jwt)

OFDM

symbol

duration Δt 

Frequency

time

=> Σ h * (sin.. + cos…) 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 26/284

November 2012 | LTE Introduction | 26

Fourier Transform, Discrete FT

;)()(

;)()(

2

2

df e f  H t h

dt et h f  H 

t  f  j

t  f  j

 

 

;1

);2sin()2cos(

1

0

2

1

0

1

0

1

0

/2

 N 

n

 N 

nk  j

nk 

 N 

 N 

 N 

 N nk  j

k n

e H  N 

h

 N 

nk h j N 

nk heh H 

 

 

  

Fourier Transform

Discrete Fourier Transform (DFT)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 27/284

November 2012 | LTE Introduction | 27

OFDM Implementation with FFT(Fast Fourier Transformation)

Receiver 

Transmitter  Channel

n(n)

(k)b

h(n)

r(n)

   S   /   P

   P   /   S

( )ˆ b k    P   /   S

   I   D   F   T

   N   F   F   T

Map

Map

Map

   S   /   P

   D   F   T

   N

   F   F   T

d(0)

d(1)

Demap

Demap

Demap

s(n)

d(FFT-1)

d(FFT-1)

d(0)

d(1)

.

.

.

.

.

.

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 28/284

November 2012 | LTE Introduction | 28

-1 -0.5 0 0.5 1-70

-60

-50

-40

-30

-20

-10

0

10

 

   S  x  x

   

 f   f  -1 

 f  -2 

 f  1 

 f  2 

 f  0 

Problem of MC - FDM

Overlapp of neighbouring subcarriers

 Inter Carrier Interference (ICI).Solution

“Special” transmit gs(t) and receive filter gr (t) and frequencies f k allows orthogonal

subcarrier 

→ Orthogonal Frequency Division Multiplex (OFDM)

Inter-Carrier-Interference (ICI)

ICI 

 MC S f 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 29/284

November 2012 | LTE Introduction | 29

Rectangular Pulse

Δt 

Δf  

t

A(f)

sin(x)/xConvolution

time frequency

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 30/284

November 2012 | LTE Introduction | 30

Orthogonality

Δf  

Orthogonality condition: Δf = 1/Δt 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 31/284

November 2012 | LTE Introduction | 31

ISI and ICI due to channel

lSymbol l-1 l+1

n

h n

Delay spread

Receiver DFT

Window

fade in (ISI)  fade out (ISI) 

S C G

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 32/284

November 2012 | LTE Introduction | 32

ISI and ICI: Guard Intervall

lSymbol l-1 l+1

n

h n

Delay spread

Receiver DFT

Window

GT Delay Spread 

Guard Intervall guarantees the supression of ISI!

G d I t ll C li P fi

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 33/284

November 2012 | LTE Introduction | 33

Receiver DFT

Window

Guard Intervall as Cyclic Prefix

lSymbol l-1 l+1

n

h n

Delay spread

GT Delay Spread 

Cyclic Prefix guarantees the supression of ISI and ICI!

Cyclic Prefix

S h i ti

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 34/284

November 2012 | LTE Introduction | 34

Synchronisation

Cyclic Prefix 

CP  CP  CP CP

:S ymbol OFDM 

 Metric

1l l 1l 

n~

Search window-

DL CP OFDM i l ti h i

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 35/284

November 2012 | LTE Introduction | 35

Frequency Domain Time Domain

DL CP-OFDM signal generation chain

l OFDM signal generation is based on Inverse Fast Fourier Transform

(IFFT) operation on transmitter side:

Datasource

QAMModulator 

1:NN

symbol

streams

IFFT OFDMsymbols

N:1 Cyclic prefixinsertion

Useful

OFDM

symbols

l On receiver side, an FFT operation will be used.

OFDM P d C

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 36/284

November 2012 | LTE Introduction | 36

OFDM: Pros and Cons

Pros:

scalable data rate

efficient use of the available bandwidth

robust against fading

1-tap equalization in frequency domain

Cons:

high crest factor or PAPR. Peak to average power ratio

very sensitive to phase noise, frequency- and clock-offset

 guard intervals necessary (ISI, ICI) → reduced data rate 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 37/284

November 2012 | LTE Introduction | 37

MIMO = 

Multiple Input Multiple Output Antennas 

MIMO i d fi d b th b f R / T A t

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 38/284

November 2012 | LTE Introduction | 38

MIMO is defined by the number of Rx / Tx Antennasand not by the Mode which is supported Mode 

SISOSingle Input Single Output

1 1 Typical todays wireless Communication System

MISOMultiple Input Single Output

1 1

M

Transmit Diversity

l Maximum Ratio Combining (MRC)

l Matrix A also known as STC

l Space Time / Frequency Coding (STC / SFC)

SIMOSingle Input Multiple Output

1 1

M

Receive Diversity

l Maximum Ratio Combining (MRC)

MIMOMultiple Input Multiple Output

1 1

MM

Definition is seen from Channel

Multiple In = Multiple Transmit Antennas

Receive / Transmit Diversity

Spatial Multiplexing (SM) also known as:

l Space Division Multiplex (SDM)

l True MIMO

l Single User MIMO (SU-MIMO)

l Matrix B

Space Division Multiple Access (SDMA) also known as:

l Multi User MIMO (MU MIMO)

l Virtual MIMO

l Collaborative MIMO

Beamforming

MIMO d i LTE

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 39/284

November 2012 | LTE Introduction | 39

MIMO modes in LTE

-Tx diversity

-Beamforming

-Rx diversity

-Multi-User MIMO

-Spatial Multiplexing

Better S/N

Increased

Throughput at

Node B

IncreasedThroughput per 

UE

Di it th ht

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 40/284

November 2012 | LTE Introduction | 40

Diversity – some thoughts

Fading on the air interfaceThe SISO channel:

h11

n sehn shr  j  1111

The transmit signal is modified in amplitude and phase

plus additional noise

 Amplitude

scalingphase

rotation

transmit signal s received signal r 

Di it th ht t h d filt

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 41/284

November 2012 | LTE Introduction | 41

Diversity – some thoughts: matched filter 

nh shnh sehehnh shhr hr j j *

11

2

11

*

111111

*

1111

*

11

*

11

~

  

The SISO channel and matched filter (maximum ratio combining):

h11

transmit signal sreceived signal r 

h*11

estimated signal ř  

Idea: matched filter multiplies received signal with

conjugate of channel -> maximizes SNR

Transmitted signal s is estimated as:

2

11

~~

h

r  s

Di ersit some tho ghts performance of SISO

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 42/284

November 2012 | LTE Introduction | 42

Diversity – some thoughts: performance of SISO

Modulation

scheme

Bit error 

probability

Data rate = bits

per symbol

BPSK 1/(4*SNR) 1

QPSK 1/(2*SNR) 2

16 QAM 5/(2*SNR) 4

noise amplitude

distribution

Detector 

threshold10

Bit error rate

Euclidic distance

Decay with SNR, onlyone channel available -

> fading will deteriorate

RX Diversity

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 43/284

November 2012 | LTE Introduction | 43

RX Diversity

Maximum Ratio Combining depends on different fading of the

two received signals. In other words decorrelated fading

channels

Receive diversity gain SIMO: 1*N

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 44/284

November 2012 | LTE Introduction | 44

Receive diversity gain – SIMO: 1*NRx

time

Transmitantenna

s

 Rx Rx Rx

 RX  RX 

nnn

nn

nhnhnh shhh

 sh sh shr 

*

12

*

121

*

11

2

1

2

12

2

11

*

12

*

121

*

11

......

...~

  

  

NTx NRxh11

h12

h1NRx

Receive antenna 1

r 1=h11s+n1

r 2=h12s+n2

r nrx=h1nrxs+nnrx

Receive antenna 2

Receive antenna NRx

 RxneSNR

 P 1

~

signal after maximum ratio combining

Probability for errors

Said:

diversity

order nRx

TX Diversity: Space Time Coding

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 45/284

November 2012 | LTE Introduction | 45

TX Diversity: Space Time Coding

The same signal is transmitted at differnetantennas

Aim: increase of S/N ratio  

increase of throughput

Alamouti Coding = diversity gain

approachesRX diversity gain with MRRC!

-> benefit for mobile communications

data

Fading on the air interface

*12

*

21

2  s s

 s sS 

Alamouti Coding

 t  i  m e

space

Space Time Block Coding according to Alamouti

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 46/284

November 2012 | LTE Introduction | 46

Space Time Block Coding according to Alamouti(when no channel information at all available at transmitter)

2

1~

SNR P e

2221

*

211

*

22

1121

*

221

*

1

1

'²²

'²²

nd hhr hr hd 

nd hhr hr hd 

e

e

Probability for errors (Alamouti)

From slide before:

 RxneSNR

 P  1~

Compare

with Rx diversity

 Alamouti coding is full diversity gain

and full rate, but it only works for 2 antennas

(due to Alamouti matrix is orthogonal)

MIMO Spatial Multiplexing

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 47/284

November 2012 | LTE Introduction | 47

MIMO Spatial Multiplexing

SISO:

Single Input

Single Output

MIMO:

Multiple Input

Multiple Output

Increasing

capacity per cell

C=B*T*ld(1+S/N) 

  

    ) , min( 

) 1 (  R T    N   N  

 N  

S  ld   B T  C   ?

Higher capacity without additional spectrum!

Spatial multiplexing capacity aspects

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 48/284

November 2012 | LTE Introduction | 48

Spatial multiplexing – capacity aspects

)}1({log2

112 h E C   H   

2      P 

nh sr  11

represents the signal to noise ratio SNR

at the receiver branch

Ergodic mean capacity of a SISO channel calculated as:

h11

Received signal r withsent signal s, channel h11 and

 AWGN with σ=n

 

  

 

 N 

S  BC  1log* 2

Or simplified: With B = bandwidth

and S/N = signal to

noise ratio

Spatial multiplexing capacity aspects

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 49/284

November 2012 | LTE Introduction | 49

Spatial multiplexing – capacity aspects

 

  

  H 

n H  HH n

 I og l  E C  R

  det2

Ergodic mean capacity of a MIMO channel is even worse  

Received signal r with

sent signal s, channel H and

 AWGN with σ=n

n1

n2

nRnT

n2

n1

InR is an Identity matrix with size nT x nR

HH is the Hermetian complex n H  sr 

Spatial multiplexing capacity aspects

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 50/284

November 2012 | LTE Introduction | 50

Spatial multiplexing – capacity aspects

    

 

  

  1log*det 22 R H 

 H 

n H  n E  HH n

 I og l  E C  R

Some theoretical ideas: 

 R

n

 H 

n

 I n

 HH 

limWe increase to number of transmit antennas to ∞, and see: 

So the result is, if the number of Tx antennas is infinity, the

capacity depends on the number of Rx antennas:

 After this heavy mathematics the result: If we increase the

number of Tx and Rx antennas, we can increase the capacity!

The MIMO promise

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 51/284

November 2012 | LTE Introduction | 51

The MIMO promise

l Channel capacity grows linearly with antennas  

l Assumptions  l Perfect channel knowledgel Spatially uncorrelated fading

l Reality  l Imperfect channel knowledgel Correlation ≠ 0 and rather unknown 

Max Capacity ~ min(NTX, NRX)

Spatial Multiplexing

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 52/284

November 2012 | LTE Introduction | 52

Spatial Multiplexing

Throughput:

data

Coding Fading on the air interface

data

100%200%<200%

Spatial Multiplexing: We increase the throughput

but we also increase the interference!

MIMO capacity calculations e g 2x2 MIMO

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 53/284

November 2012 | LTE Introduction | 53

MIMO – capacity calculations, e.g. 2x2 MIMO

100%

s1

s2

n1

n2

r 1

r 2

h11

h22

h12

h21

r 1 = s1*h11 + s2*h21 + n1

r 2 = s2*h22 + s1*h12 + n2

2

1

2

1

2221

1211

2

1*

n

n

 s

 s

hh

hh

This results in the equations:Or as matrix:

General written as: r = s*H +n

To solve this equation, we have to know H

Introduction Channel Model II

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 54/284

November 2012 | LTE Introduction | 54

Correlation of 

propagation

pathes

Transmitter Receiver 

h11

h21

hMR1

h1MT

h12

h22

hMR2

h2MT

hMRMT

s1

s2

sNTx

r 1

r 2

r NRx 

Hs r 

Introduction – Channel Model II

NTx 

antennasNRx 

antennas

Capacity ~ min(NTX, NRX) → max. possible rank! 

But effective rank depends on channel, i.e. the

correlation situation of H 

Rank indicator 

estimates

Spatial Multiplexing prerequisites

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 55/284

November 2012 | LTE Introduction | 55

Spatial Multiplexing prerequisites

Decorrelation is achieved by:

l Decorrelated data content on each spatial stream

l Large antenna spacing

l Environment with a lot of scatters near the antenna

(e.g. MS or indoor operation, but not BS)

l Precoding

l Cyclic Delay Diversity

But, also possible

that decorrelation

is not given

difficult

Channel

condition

Technical

assist

MIMO: channel interference + precoding

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 56/284

November 2012 | LTE Introduction | 56

MIMO: channel interference + precoding

MIMO channel models: different ways to combat against

channel impact:

I.: Receiver cancels impact of channel

II.: Precoding by using codebook. Transmitter assists receiver incancellation of channel impact

III.: Precoding at transmitter side to cancel channel impact

MIMO: Principle of linear equalizing

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 57/284

November 2012 | LTE Introduction | 57

MIMO: Principle of linear equalizing

H

-1

 

LE

s

n

r  r̂ 

HTx

Rx

The receiver multiplies the signal r with the

Hermetian conjugate complex of the transmitting

function to eliminate the channel influence.

R = S*H + n

Transmitter will send reference signals or pilot sequence

to enable receiver to estimate H.

Linear equalization – compute power increase

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 58/284

November 2012 | LTE Introduction | 58

SISO: Equalizer has to estimate 1 channel

Linear equalization – compute power increase

H =h11

h21

h12

h22

h11 H = h11

h11

h12

h21 h22

2x2 MIMO: Equalizer has to estimate 4 channels

transmission – reception model

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 59/284

November 2012 | LTE Introduction | 59

receiver channeltransmitter 

transmission  reception model

 A H R+

noise

s r 

•Modulation,

•Power 

•„precoding“,

•etc.

•detection,

•estimation

•Eliminating channel

impact•etc.

Linear equalizationat receiver is not

very efficient, i.e.

noise can not be cancelled

MIMO – work shift to transmitter

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 60/284

November 2012 | LTE Introduction | 60

MIMO  work shift to transmitter 

Transmitter  Receiver Channel

MIMO Precoding in LTE (DL)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 61/284

November 2012 | LTE Introduction | 61

MIMO Precoding in LTE (DL)Spatial multiplexing – Code book for precoding

Codebookindex

Number of layers   

1 2

0

0

10

01

2

1

1

11

11

2

2

1

1

2

j j

11

2

3

1

1

2

1  -

4

 j1

21   -

5

j

1

2

1  -

Code book for 2 Tx:

 Additional multiplication of the

layer symbols with codebook

entry

MIMO precoding

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 62/284

November 2012 | LTE Introduction | 62

MIMO precoding

+

+

precoding

precoding

t

t

1

1

 t    t  

∑=0

1

-1

1

1

 Ant1

 Ant2

2

 

∑ 

MIMO – codebook based precoding

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 63/284

November 2012 | LTE Introduction | 63

receiver channeltransmitter 

MIMO  codebook based precoding

 A H R+

noise

s r 

Precoding

codebook

Precoding Matrix Identifier, PMI

Codebook based precoding creates

some kind of „beamforming light“ 

MIMO: avoid inter-channel interference – future outlook

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 64/284

November 2012 | LTE Introduction | 64

MIMO: avoid inter channel interference  future outlook

Idea: F adapts transmitted signal to current channel conditions

Link adaptation

Transmitter

F

H+

+

Space time

receiver

xk  yk 

V1,k 

VM,k 

Feedback about H

e.g. linear precoding: Y=H*F*S+V

S

MAS: „Dirty Paper“ Coding – future outlook

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 65/284

November 2012 | LTE Introduction | 65

MAS: „Dirty Paper Coding future outlook

l Multiple Antenna Signal Processing: „Known Interference“ 

l Is like NO interference

l  Analogy to writing on „dirty paper“ by changing ink color accordingly 

„Known 

Interference

is No

Interference“ 

„Known 

Interference

is No

Interference“ 

„Known 

Interference

is No

Interference“ 

„Known 

Interference

is No

Interference“ 

Spatial Multiplexing

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 66/284

November 2012 | LTE Introduction | 66

Spatial Multiplexing

data

Codeword Fading on the air interface

data

Spatial Multiplexing: We like to distinguish the 2 useful

Propagation passes:

How to do that? => one idea is SVD

Codeword

Idea of Singular Value Decomposition

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 67/284

November 2012 | LTE Introduction | 67

Idea of Singular Value Decomposition

know

Singular ValueDecomposition

r = H s + n

s1

s2

r1

r2

channel H

MIMO

wanted

r = D s + n~ ~~

s1

s2

r1

r2

channel D

~

~ ~

~SISO

Singular Value Decomposition (SVD)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 68/284

November 2012 | LTE Introduction | 68

h11

h21

h12

h22

r = H s + n

r = H s + n

Singular Value Decomposition (SVD)

(U*)T (U*)T(U*)T

h11

h21

h12

h22

U (V*)Td1

d2

r = D s + nU (V*)Td1

d2

(U*)T

(U*)

T

(U*)

T

U(V*)T

r = D s + n

d1

d2

~~ ~

Singular Value Decomposition (SVD)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 69/284

November 2012 | LTE Introduction | 69

Singular Value Decomposition (SVD)

r = H s + n

H = U Σ (V*)T 

00

0

00

00

00

3

2

1

 

 

 

U = [u1,...,un] eigenvectors of  (H*)T H

V = [v1,...,vm] eigenvectors of  H (H*)T

i   isingular values

i eigenvalues of (H*)T H 

~r = (U*)T r 

s = (V*)T s~

n = (U*)T n~

r = Σ s + n~ ~~

MIMO and singular value decomposition SVD

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 70/284

November 2012 | LTE Introduction | 70

O a d s gu a a ue deco pos t o S

s1

s2

n1

n2

r 1

r 2

h11

h22

h12

h21

s1

s2

n2

r 1

r 2

U

n1

VH

σ1

σ2

Σ 

Real channel

Channel model with SVD

SVD transforms channel into k parallel AWGN channels

n1

MIMO: Signal processing considerations

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 71/284

November 2012 | LTE Introduction | 71

g p gMIMO transmission can be expressed as

r = Hs+n which is, using SVD = UΣVHs+n

Imagine we do the following:

1.) Precoding at the transmitter:

Instead of transmitting s, the transmitter sends s = V*s

2.) Signal processing at the receiver 

Multiply the received signal with UH, r = r*UH

So after signal processing the whole signal can be expressed as:

r =UH*(UΣVHVs+n)=UHU Σ VHVs+UHn = Σs+UHn

=InTnT =InTnT

s1

s2

n2

r 1

r 2

U VH

σ1

σ2

Σ 

n1

UHV 

MIMO: limited channel feedback

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 72/284

November 2012 | LTE Introduction | 72

s1

s2

n2

r 1

r 2

U VH

σ1

σ2

Σ 

n1

UHV 

Transmitter Receiver 

Idea 1: Rx sends feedback about full H to Tx.

-> but too complex,-> big overhead

-> sensitive to noise and quantization effects

H

Idea 2: Tx does not need to know full H, only unitary matrix V

-> define a set of unitary matrices (codebook) and find one matrix in the codebook thatmaximizes the capacity for the current channel H

-> these unitary matrices from the codebook approximate the singular vector structure

of the channel

=> Limited feedback is almost as good as ideal channel knowledge feedback

Cyclic Delay Diversity, CDD

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 73/284

November 2012 | LTE Introduction | 73

Transmitter 

Time

Delay

A1 

A2 

y y y,

Amp

litud

e

Delay Spread

+

+

precoding

precoding

Multipath propagation

No multipath propagation

 

Time

Delay

„Open loop“ und „closed loop“ MIMO 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 74/284

November 2012 | LTE Introduction | 74

„ p p „ p

n HWsr 

n Hsr 

Open loop (No channel knowledge at transmitter)

Closed loop (With channel knowledge at transmitter 

 Adaptive Precoding matrix („Pre-equalisation“) 

Feedback from receiver needed (closed loop)

Channel

Status, CSI

Rank indicator 

Channel

Status, CSI

Rank indicator 

MIMO transmission modes

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 75/284

November 2012 | LTE Introduction | 75

Transmission mode1

SISO

Transmission mode2

TX diversityTransmission mode3

Open-loop spatial

multiplexing

Transmission mode4

Closed-loop spatialmultiplexing

Transmission mode5

Multi-User MIMO

Transmission mode6

Closed-loop

spatial multiplexing,

using 1 layer 

Transmission mode7

SISO, port 5= beamforming in TDD

7 transmission

modes are

defined

Transmission mode is given by higher layer IE: AntennaInfo 

MIMO transmission modes

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 76/284

November 2012 | LTE Introduction | 76

Transmission mode1

SISO

PDCCH indication via

DCI format 1 or 1A

PDSCH transmission via

single antenna port 0 No feedback regarding

antenna selection or precoding needed

the classic:

1Tx + 1RX

antenna

MIMO transmission modes

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 77/284

November 2012 | LTE Introduction | 77

Transmission mode 2

Transmit

diversity PDCCH indication viaDCI format 1 or 1A

PDSCH transmission via

2 Or 4 antenna ports No feedback regarding

antenna selection or 

precoding needed

1 codeword

Codeword is sent

redundantly over several

streams

PDCCH indication viaDCI format 1 or 1A

MIMO transmission modesNo feedback regarding

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 78/284

November 2012 | LTE Introduction | 78

Transmission mode 3

Transmit diversity or Open loop

spatial multiplexing

PDCCH indication via

DCI format 1A

PDSCH transmission

Via 2 or 4 antenna ports

No feedback regarding

antenna selection or 

precoding needed

1 codeword

PDCCH indication via

DCI format 2A

1codeword

PDSCH spatial multiplexing

with 1 layer 

2codewords

PDSCH spatial multiplexing, using CDD

PMI feedback

MIMO transmission modesClosed loop MIMO =

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 79/284

November 2012 | LTE Introduction | 79

Transmission mode 4

Transmit diversity or Closed loop

spatial multiplexing

PDCCH indication via

DCI format 1A

PDSCH transmission

Via 2 or 4 antenna ports

Closed loop MIMO =

UE feedback needed regarding

precoding and antenna

selection

1 codeword

PDCCH indication via

DCI format 2

1codeword

PDSCH spatial multiplexing

with 1 layer 

2codewords

PDSCH spatial multiplexing

PMI feedbackPMI feedback

 pr  e c  o d 

i  n g

 pr  e c  o d 

i  n g

MIMO transmission modes

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 80/284

November 2012 | LTE Introduction | 80

Transmission mode 5

Transmit diversity or 

Multi User MIMO

PDCCH indication via

DCI format 1A

PDSCH transmission

Via 2 or 4 antenna ports

1 codeword

PDCCH indication

via DCI format 1D

UE1

Codeword

PDSCH multiplexing to several UEs.

PUSCH multiplexing in Uplink

PUSCH

UE2

Codeword

MIMO transmission modesClosed loop MIMO =

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 81/284

November 2012 | LTE Introduction | 81

Transmission mode 6

Transmit diversity or Closed loop

spatial multiplexing with 1 layer 

PDCCH indication via

DCI format 1A

PDSCH transmission

via 2 or 4 antenna ports

Closed loop MIMO =

UE feedback needed regarding

precoding and antenna

selection

1 codeword

PDCCH indication via

DCI format 1B

1codeword

PDSCH spatial multiplexing, only 1 codewordfeedback

Codeword is split intostreams, both streams have

to be combined

MIMO transmission modes

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 82/284

November 2012 | LTE Introduction | 82

Transmission mode 7

Transmit diversity or beamforming 

PDCCH indication via

DCI format 1A

PDSCH transmission

via 1, 2 or 4 antenna ports

1 codeword

PDCCH indication via

DCI format 1

1codeword

PDSCH sent over antenna port 5 = beamforming

Beamforming

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 83/284

November 2012 | LTE Introduction | 83

 Adaptive Beamforming

Closed loop precoded

beamforming

•Classic way

• Antenna weights to adjust beam

•Directional characteristics

•Specific antenna array geometrie

•Dedicated pilots required

•Kind of MISO with channel

knowledge at transmitter 

•Precoding based on feedback

•No specific antenna

array geometrie

•Common pilots are sufficient

Spatial multiplexing vs beamforming

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 84/284

November 2012 | LTE Introduction | 84

Spatial multiplexing increases throughput, but looses coverage

Spatial multiplexing vs beamforming

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 85/284

November 2012 | LTE Introduction | 85

Beamforming increases coverage

Basic OFDM parameter 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 86/284

November 2012 | LTE Introduction | 86

2048

84.3256

115

 FFT 

 FFT  s

 FFT  s

 N 

 Mcps N 

 F 

 f  N  F 

T kHz  f 

LTE

Data symbols

 f 

 

S/P  Sub - carrier Mapping  

CP  insertion 

Size - N  FFT  

Coded symbol rate= R  

 N   TX 

IFFT  

LTE Downlink:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 87/284

November 2012 | LTE Introduction | 87

LTE Downlink:Downlink slot and (sub)frame structure

Ts = 32.522 ns

#0 #0  #1 #1  #2 #2  #3 #3  #19 #19 

One slot, T  slot

 

= 15360  T  s = 0.5 ms 

One radio frame, T  f  = 307200  T  s = 10 ms 

#18 #18 

One subframe 

We talk about 1 slot, but the minimum resource is 1 subframe = 2 slots !!!!!

2048150001s T 

Symbol time, or number of symbols per time slot is not fixed

Resource block definition1 l t 0 5

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 88/284

November 2012 | LTE Introduction | 88

1 slot = 0,5msec

   1   2  s  u

   b  c  a  r  r   i  e  r  s

DLsymb N 

ULsymb N or 

Resource element

Resource block

=6 or 7 symbolsIn 12 subcarriers

6 or 7,

Depending on

cyclic prefix

LTE DownlinkOFDMA ti f lti l i

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 89/284

November 2012 | LTE Introduction | 89

time

frequency

1 resource block =

180 kHz = 12 subcarriers

1 slot = 0.5 ms =

7 OFDM symbols**

1 subframe =

1 ms= 1 TTI*=

1 resource block pair 

OFDMA time-frequency multiplexing

*TTI = transmission time interval

** For normal cyclic prefix duration

Subcarrier spacing = 15 kHz

QPSK, 16QAM or 64QAM modulation

UE1

UE4

UE3UE2

UE5

UE6

LTE: new physical channels for data and control

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 90/284

November 2012 | LTE Introduction | 90

Physical Downlink Control Channel PDCCH:Downlink and uplink scheduling decisions

Physical Downlink Shared Channel PDSCH: Downlink data

Physical Control Format Indicator Channel PCFICH:Indicates Format of PDCCH

Physical Hybrid ARQ Indicator Channel PHICH:ACK/NACK for uplink packets

Physical Uplink Control Channel PUCCH:ACK/NACK for downlink packets, scheduling requests, channel quality info

Physical Uplink Shared Channel PUSCH: Uplink data

LTE Downlink: FDD channel mapping example

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 91/284

November 2012 | LTE Introduction | 91RBSubcarrier #0

LTE – spectrum flexibility

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 92/284

November 2012 | LTE Introduction | 92

l LTE physical layer supports any bandwidth from 1.4 MHz

to 20 MHz in steps of 180 kHz (resource block)l Current LTE specification supports only a subset of 6

different system bandwidths

l All UEs must support the maximum bandwidth of 20 MHz

Transmission

Bandwidth [RB]

Transmission Bandwidth Configuration [RB]

Channel Bandwidth [MHz]

Resourceblock

Chan

neledge

Chan

neledge

DC carrier (downlink only)Active Resource Blocks

Channel

bandwidth

BWChannel 

[MHz] 

1.4  3 5  10  15  20 

FDD and

TDD mode6 15 25 50 75 100

number of resource blocks

LTE Downlink:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 93/284

November 2012 | LTE Introduction | 93

baseband signal generation

OFDM

Mapper 

OFDM signal

generationLayer 

Mapper 

Scrambling

Precoding

Modulation

Mapper 

ModulationMapper 

OFDMMapper 

OFDM signalgeneration

Scrambling

code words layers antenna ports

 Avoid

constantsequences

QPSK

16 QAM64 QAM

For MIMO

Split intoSeveral

streams if 

needed

Weighting

datastreams for 

MIMO

1 OFDM

symbol per stream

1 stream =

several

subcarriers,based on

Physical

ressource

blocks

 Adaptive modulation and coding

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 94/284

November 2012 | LTE Introduction | 94

Transportation block size

FECUser data

Flexible ratio between data and FEC = adaptive coding

Channel Coding Performance

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 95/284

November 2012 | LTE Introduction | 95

 Automatic repeat request, latency aspects

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 96/284

November 2012 | LTE Introduction | 96

Network UE

RoundTrip

Time

Transport block 

•Transport block size = amount of 

data bits (excluding redundancy!)

•TTI, Transmit Time Interval = timeduration for transmitting 1 transport

 block 

ACK/NACK 

Immediate acknowledged or non-acknowledged

feedback of data transmission

HARQ principle: Stop and Wait

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 97/284

November 2012 | LTE Introduction | 97

Tx

Rx

process

Data

Δt = Round trip time

Demodulate, decode, descramble,

FFT operation, check CRC, etc.

ACK /NACK 

Processing time for receiver

DataData Data Data Data Data Data Data Data

Described as 1 HARQ process

HARQ principle: Multitasking

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 98/284

November 2012 | LTE Introduction | 98

t

Tx

Rx

process

Data

Δt = Round trip time

Demodulate, decode, descramble,

FFT operation, check CRC, etc.

ACK /NACK 

Processing time for receiver

Rx

process

Demodulate, decode, descramble,

FFT operation, check CRC, etc.

ACK /NACK 

DataData Data Data Data Data Data Data Data

Described as 1 HARQ process

LTE Round Trip Time RTT

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 99/284

November 2012 | LTE Introduction | 99

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=0 t=1 t=2 t=3 t=4 t=5

   P   D   C   C   H

   U   L

   D  a   t  a

   P   H   I   C   H

   A   C   K   /   N   A   C

   K

   H

   A   R   Q 

   D  a   t  a

Downlink

Uplink

n+4 n+4 n+4

1 frame = 10 subframes

8 HARQ processesRTT = 8 msec

HARQ principle: Soft combining

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 100/284

November 2012 | LTE Introduction | 100

lT i is a e am l o h n e co i g

Reception of first transportation block.

Unfortunately containing transmission errors

HARQ principle: Soft combining

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 101/284

November 2012 | LTE Introduction | 101

l

hi i n x m le f cha n l c ing

Reception of retransmitted

transportation block.

Still containing transmission errors

g

HARQ principle: Soft combining

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 102/284

November 2012 | LTE Introduction | 102

lThis is an example of channel coding

l T i is a e am l o h n e co i g

l hi i n x m le f cha n l c ing

l Thi is an exam le of channel co ing

1st transmission with puncturing scheme P1

2nd transmission with puncturing scheme P2

Soft Combining = Σ of transmission 1 and 2

Final decoding

Hybrid ARQChase Combining = identical retransmission

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 103/284

November 2012 | LTE Introduction | 103

Chase Combining = identical retransmission

Turbo Encoder output (36 bits)

Rate Matching to 16 bits (Puncturing)

Chase Combining at receiver 

Systematic Bits

Parity 1

Parity 2

Systematic Bits

Parity 1

Parity 2

Systematic Bits

Parity 1

Parity 2

Original Transmission Retransmission

Transmitted Bit

Punctured Bit

Hybrid ARQIncremental Redundancy

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 104/284

November 2012 | LTE Introduction | 104

Incremental Redundancy

Turbo Encoder output (36 bits)

Rate Matching to 16 bits (Puncturing)

Incremental Redundancy Combining at receiver 

Systematic Bits

Parity 1

Parity 2

Systematic Bits

Parity 1

Parity 2

Systematic Bits

Parity 1

Parity 2

Original Transmission Retransmission

Punctured Bit

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 105/284

November 2012 | LTE Introduction | 105

LTE Physical Layer:SC-FDMA in uplink

Single Carrier Frequency DivisionMultiple Access

LTE Uplink:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 106/284

November 2012 | LTE Introduction | 106

How to generate an SC-FDMA signal in theory?

LTE provides QPSK,16QAM, and 64QAM as uplink modulation schemes

DFT is first applied to block of NTX modulated data symbols to transform them into

frequency domain

Sub-carrier mapping allows flexible allocation of signal to available sub-carriers IFFT and cyclic prefix (CP) insertion as in OFDM

Each subcarrier carries a portion of superposed DFT spread data symbols

Can also be seen as “pre-coded OFDM” or “DFT-spread OFDM” 

DFT Sub-carrier Mapping 

CP 

insertion

Size-N TX   Size-N FFT  

Coded symbol rate= R 

 N TX symbols

IFFT 

LTE Uplink:SC ?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 107/284

November 2012 | LTE Introduction | 107

How does the SC-FDMA signal look like?

In principle similar to OFDMA, BUT:

In OFDMA, each sub-carrier only carries information related to one specific symbol

In SC-FDMA, each sub-carrier contains information of ALL transmitted symbols

LTE uplinkSC FDMA time frequency multiplexing

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 108/284

November 2012 | LTE Introduction | 108

time

frequency

1 resource block =

180 kHz = 12 subcarriers

1 slot = 0.5 ms =

7 SC-FDMA symbols**

1 subframe =

1 ms= 1 TTI*

SC-FDMA time-frequency multiplexing

*TTI = transmission time interval

** For normal cyclic prefix duration

Subcarrier spacing = 15 kHz

QPSK, 16QAM or 64QAM modulation

UE1

UE4

UE3UE2

UE5 UE6

LTE Uplink:b b d i l ti

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 109/284

November 2012 | LTE Introduction | 109

baseband signal generation

 Avoid

constantsequences

QPSK

16 QAM64 QAM

(optional)

Discrete

Fourier 

Transform

Mapping on

physical

Ressource,

i.e.

subcarriers

not used for 

reference

signals

1 stream =

several

subcarriers,

based on

Physical

ressource

blocks

Modulation

mapper 

Transform

 precoder Scrambling

SC-FDMA

signal gen.

Resource

element mapper 

UE specific

Scrambling code

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 110/284

November 2012 | LTE Introduction | 110

LTE Protocol Architecture

LTE Protocol ArchitectureReduced complexity

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 111/284

November 2012 | LTE Introduction | 111

l Reduced number of transport channels

l Shared channels instead of dedicated channels

l Reduction of Medium Access Control (MAC) entities

l Streamlined concepts for broadcast / multicast (MBMS)

l No inter eNodeB soft handover in downlink/uplink

l No compressed mode

l Reduction of RRC states

Reduced complexity

EUTRAN stack: protocol layers overviewEMM ESM

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 112/284

November 2012 | LTE Introduction | 112

PHYSICAL LAYER 

Medium Access Control

MAC 

Radio Resource Control

RRC 

   C  o  n   t  r  o   l    &   M  e  a  s  u  r  e  m

  e  n   t  s

Radio Link Control

RLC 

Packet Data Convergence

PDCP 

EMM ESM User plane

Transport channels

Logical channels

Radio Bearer 

User plane Header compression (ROHC)

In-sequence delivery at handover 

Duplicate detection

Ciphering for ser/control plane

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 113/284

November 2012 | LTE Introduction | 113

eNB

PHY

UE

PHY

MAC

RLC

MAC

PDCPPDCP

RLC

PDCP = Packet Data Convergence Protocol

RLC = Radio Link Control

MAC = Medium Access ControlPHY = Physical Layer 

SDU = Service Data Unit

(H)ARQ = (Hybrid) Automatic Repeat Request

Ciphering for user/control plane

Integrity protection for control plane

Timer based SDU discard in Uplink… 

 AM, UM, TM

 ARQ

(Re-)segmentation

Concatenation

In-sequence delivery

Duplicate detection

SDU discardReset… 

Mapping between logical and

transport channels

(De)-MultiplexingTraffic volume measurements

HARQ

Priority handling

Transport format selection… 

Control plane Broadcast

Paging

RRC connection setup

R di B C t l

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 114/284

November 2012 | LTE Introduction | 114

EPS = Evolved packet system

RRC = Radio Resource Control

NAS = Non Access Stratum

ECM = EPS Connection Management

eNB

PHY

UE

PHY

MAC

RLC

MAC

MME

RLC

NAS NAS

RRC RRC

PDCP PDCP

Radio Bearer Control

Mobility functions

UE measurement control… 

EPS bearer management

 Authentication

ECM_IDLE mobility handling

Paging origination in ECM_IDLE

Security control… 

EPS Bearer Service Architecture

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 115/284

November 2012 | LTE Introduction | 115

P-GWS-GW Peer  

Entity

UE eNB

EPS Bearer 

Radio Bearer S1 Bearer  

End-to-end Service

External Bearer 

Radio S5/S8

Internet

S1

E-UTRAN EPC

Gi

S5/S8 Bearer 

Channel structure: User + Control plane

P t l t t

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 116/284

November 2012 | LTE Introduction | 116

Protocol structure

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 117/284

November 2012 | LTE Introduction | 117

LTE channel mapping

LTE – channels

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 118/284

November 2012 | LTE Introduction | 118

PBCHPDCCH PDSCH

DL-SCH BCH

DTCHCCCH DCCH

DL logical channels

DL transport channels

DL physical channels

BCCH

PCH

PCCHMTCH MCCH

MCH

PMCH PCFICH PHICH

PRACH PUCCH PUSCH

UL-SCHRACH

DTCHCCCH DCCH

UL logical channels

UL transport channels

UL physical channels

LTE – uplink channelsMapping between logical and transport channels

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 119/284

November 2012 | LTE Introduction | 119

Mapping between logical and transport channels

CCCH DCCH DTCH

UL-SCHRACH

Uplink 

 Logical channels

Uplink Transport channels

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 120/284

November 2012 | LTE Introduction | 120

LTE resource allocation principles

LTE resource allocationScheduling of downlink and uplink data

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 121/284

November 2012 | LTE Introduction | 121

Physical Downlink Shared

Channel (PDSCH)

I would like to receive data on PDSCH 

and / or send data on PUSCH

?

Physical Downlink Control

Channel (PDCCH)

Check PDCCH for your UE ID. You mayfind here Uplink and/or Downlink

resource allocation information

Scheduling of downlink and uplink data

Physical Control Format

Indicator Channel (PCFICH),

Info about PDCCH format

Physical Uplink Shared Channel

(PUSCH)

Resource allocation types in LTE

All ti t DCI F t S h d li A t

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 122/284

November 2012 | LTE Introduction | 122

Allocation type DCI Format Scheduling

Type

Antenna

configuration

Type 0 / 1 DCI 1 PDSCH, onecodeword SISO,TxDiversity

DCI 2A PDSCH, two 

codewords

MIMO, open

loop

DCI 2 PDSCH, two 

codewords

MIMO, closed

loop

Type 2 DCI 0 PUSCH SISO

DCI 1A PDSCH, one

codeword

SISO,

TxDiversity

DCI 1C PDSCH, verycompact

codeword

SISO

Resource allocation types in LTE

Type 0 and 1 for distributed allocation in frequency domain

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 123/284

November 2012 | LTE Introduction | 123

Type 0 and 1 for distributed allocation in frequency domain

Type 2 for contiguous allocation in frequency domain

Channel bandwidth

Channel bandwidth

Transmission bandwidth

Resource Block Group

R i d 1 bl k

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 124/284

November 2012 | LTE Introduction | 124

Reminder: 1 resource block =

12 subcarriers in frequency domain

Resource allocation is performed

based on resource block groups.

1 resource block group may consist of 1, 2, 3 or 4 resource blocks

Resource block groups,

RBG sizes

Resource allocation type 0

Type 0 (for distributed frequency allocation of Downlink resource

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 125/284

November 2012 | LTE Introduction | 125

Type 0 (for distributed frequency allocation of Downlink resource,

SISO and MIMO possible)

l Bitmap to indicate which resource block groups, RBG are allocated

l One RBG consists of 1-4 resource blocks:

lGranularity is RBG size

l Number of resource block groups NRBG 

is given as:

l Allocation bitmap has same length than NRBG

Channel

bandwidth

RBG size P

≤10 1

11-26 227-63 3

64-110 4

 P  N  N  RBG /DLRB

Resource allocation type 0 exampleCalculation example for type 0:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 126/284

November 2012 | LTE Introduction | 126

l Channel bandwidth = 10MHz

l -> 50 resource blocksl -> Resource block group RBG size = 3

l -> bitmap size = 17

 P  N  N  RBG /DLRB = round up, i.e. = 4 5.3

 P  N  /DLRB = round down, i.e. = 3 49.3

Calculation example for type 0:

if  0modDL

RB  P  N  then one of the RBGs is of size  P  N  P  N  /DLRB

DLRB

i.e. here 50 mod 3 = 16, so the last resource block group has the size 2.

-> some allocations are not possible, e.g. here you can allocate

48 or 50 resource blocks, but not 49!

reminder 

Resource allocation type 0: exampleChannel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 127/284

November 2012 | LTE Introduction | 127

1 2 3 16 17 18 19 20 21 22 23 3 DL

 RB N  2 DL

 RB N  1 DL

 RB N 0

RBG#0 RBG#1 RBG#NRBG-1

 Allocation bitmap (17bit): 10000011000000001

´f 

RBG#6

Granularity: 1 bit allocates 1 ressource block group

Resource allocation type 1Type 1 (for distributed frequency allocation of Downlink resource,

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 128/284

November 2012 | LTE Introduction | 128

yp ( q y ,

SISO and MIMO possible)

One Resource Block Group

consists of 1-4 resource blocks:

l RBs are divided into

RBG subsets

l Granularity is resource block

l Bitmap indicates RBs inside a RBG subset allocated to the UE

l Resource block assignment consists of 3 fields:l Field to indicate the selected RBG

l Field to indicate a shift of the resource allocationl Field to indicate the specific RB within a RBG subset

Channelbandwidth

RBG size P

≤10 1

11-26 2

27-63 3

64-110 4

)(log2 P 

Resource allocation type 1Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 129/284

November 2012 | LTE Introduction | 129

1 2 3 16 17 18 19 20 21 22 23 3 DL

 RB N  2 DL

 RB N  1 DL

 RB N 0

RBG#0 RBG#1 RBG#NRBG-1

RBG#0 RBG#3 RBG#6 RBG#9 RBG#12

RBG#1 RBG#4 RBG#7 RBG#10 RBG#13

RBG#2 RBG#5 RBG#8 RBG#11 RBG#14

 P  P 

 N  p

 P  P 

 N  p

 P 

 P 

 N  p

 P  P 

 N 

 P  N  P  P 

 N 

 P  P 

 P 

 N 

 p N 

mod1

,

mod1

,

mod1

,

1

1mod)1(1

1

)(

 DL

RB

 DL

RB

 DL

RB

2

 DL

RB

 DL

RB2

 DL

RB

2

 DL

RB

subsetRBG

RB

RBG#15RBG subset #0

RBG#16 RBG subset #1

RBG subset #2

)(log2 P 

P= Number of RBG subsets with length:

Number of bits to indicate subset

Size 18 resource blocks

Size 17 resource blocks

Size 15 resource blocks

Resource allocation type 1Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 130/284

November 2012 | LTE Introduction | 130

1 2 3 16 17 18 19 20 21 22 23 2 DL

 RB N  1 DL

 RB N 0

RBG#0 RBG#1 RBG#NRBG-1

RBG#1 RBG#4 RBG#7 RBG#10 RBG#13

RBG#2 RBG#5 RBG#8 RBG#11 RBG#14RBG#0 RBG#3 RBG#6 RBG#9 RBG#12 RBG#15

RBG subset #0

RBG#16 RBG subset #1

RBG subset #2

 Allocation bitmap (17bit): 01 0 00011000000001 

Field 1: RBG subset selection

RBG subset#1 is selected

Field 2: offset shift indication

Bit = 0, no shift

Field 3: resource block allocation

3 4 5 12 13 14 21 22 23 30 31 32 39 40 41 48 49 Resource blocks

assignment

Size 17 resource blocks

Size 14 bits

Resource allocation type 1Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 131/284

November 2012 | LTE Introduction | 131

RBG#1 RBG#4 RBG#7 RBG#10 RBG#13 RBG#16 RBG subset #1

 Allocation bitmap (17bit): 01 0 10000000000001 RBG subset#1 is selected

Bit = 0, no shift

3 4 5 12 13 14 21 22 23 30 31 32 39 40 41 48 49 Resource blocks

assignment

The meaning of the shift offset bit:

Number of resource blocks in one RBG subset is bigger than the allocation bitmap-> you can not allocate all the available resource blocks

-> offset shift to indicate which RBs are assigned

17 resource blocks belonging to the RBG subset#1

14 bits in allocation bitmap

Resource allocation type 1Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 132/284

November 2012 | LTE Introduction | 132

RBG#1 RBG#4 RBG#7 RBG#10 RBG#13 RBG#16 RBG subset #1

 Allocation bitmap (17bit): 01 1 10000000000001 RBG subset#1 is selected

Bit = 1, offset shift

3 4 5 12 1

3

14 21 22 23 30 31 32 39 40 41 48 49 Resource blocks

assignment

The meaning of the shift offset bit:

Number of resource blocks in one RBG subset is bigger than the allocation bitmap-> you can not allocate all the available resource blocks

-> offset shift to indicate which RBs are assigned

17 resource blocks belonging to the RBG subset #1

14 bits in allocation bitmap

Resource allocation types in LTE

Type 0 allows the allocation based on resource block groups granularity

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 133/284

November 2012 | LTE Introduction | 133

Type 0 allows the allocation based on resource block groups granularity

Type 1 allows the allocation based on resource block granularity

Channel bandwidth

Channel bandwidth

Example: RBG size = 3 RBs

1 resource block, RB

Resource allocation type 2

Localized mode

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 134/284

November 2012 | LTE Introduction | 134

Localized mode

Channel bandwidth

Transmission bandwidth

Resource block offset

Number of allocated Resource blocks NRB

RB#0

Starting resource block: RBStartLCRB, length of contiguously allocated RBs

Resource indication value, RIV

Type 0: bitmap used to indicate the resource allocation:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 135/284

November 2012 | LTE Introduction | 135

Type 0: bitmap used to indicate the resource allocation:

= Length of allocation bitmap (17bit): 10000011000000001  P  N  /DLRB

Type 1: bitmap used to indicate the resource allocation, with 3 fields:

Resource block group subset, shift indictor + resource allocation

 Allocation bitmap (17bit): 01 1 10000000000000 

if  2/)1( DL

 RBCRBs N  L

then

 start CRBs

 DL

 RB RB L N  RIV  )1(

else

)1()1(  start 

 DL

 RBCRBs

 DL

 RB

 DL

 RB RB N  L N  N  RIV 

Type 2: TS 36.213 section 7.1.6.3. gives formula to calculate RIV:

RIV = bin to

dec

conversion

Resource indication value, RIV in type 2 allocationHow to calculate the RIV value in allocation type 2, according to TS 36.213

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 136/284

November 2012 | LTE Introduction | 136

 Assumptions and given:

Localized mode, RBStart = 5, LCRB = 20NDL

RB = 50

Starting resource block: RBStart=5

LCRB, length of contiguously allocated RBs=20

 start CRBs

 DL

 RB RB L N  RIV  )1( Formula from TS

36.213

Here:

RIV = 50 * (20-1) + 5

RIV = 955

Benefit of localized or distributed mode„static UE“: frequency selectivity is not time variant -> localized allocation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 137/284

November 2012 | LTE Introduction | 137

„high velocity UE“: frequency selectivity is time variant -> distributed allocation

Multipath causes frequency

Selective channel,

It can be time variant or 

Non-time variant

Resource allocation Uplink

Allocation type DCI Format Scheduling Antenna

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 138/284

November 2012 | LTE Introduction | 138

Allocation type DCI Format Scheduling

Type

Antenna

configuration

Type 0 / 1 DCI 1 PDSCH, one codeword SISO, TxDiversity

DCI 2A PDSCH, two 

codewords

MIMO, open loop

DCI 2 PDSCH, two 

codewords

MIMO, closed loop

Type 2 DCI 0 PUSCH SISO

DCI 1A PDSCH, one codeword SISO, TxDiversity

DCI 1C PDSCH, very compact

codeword

SISO

Channel bandwidth

RB#0

Starting resource block: RBStart LCRB, length of contiguously allocated RBs

LTE Uplink uses

Type 2 allocation

LTE Uplink: allocation of UL ressourceScheduled UL

bandwidth

UL bandwidth

configuration

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 139/284

November 2012 | LTE Introduction | 139

ULRB

PUSCHRB

532 532 N  M     

bandwidth g

Scheduled number of ressource blocks in UL must fullfill

formula above(αx are integer). Possible values are:

1 2 3 4 5 6 8 9 10 12

15 16 18 20 24 25 27 30 32 36

40 45 48 50 54 60 64 72 75 80

81 90 96 100

Relaying

eICIC

enhancements

The LTE evolution

R l 10

Rel-9

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 140/284

November 2012 | LTE Introduction | 140

CoMP

In-device

co-existenceDiverse Data

Application

eMBMS

enhancements

LTE Release 8

FDD / TDD

DL UL

DL UL

Rel-10

Relaying

SON

enhancements

Carrier 

Aggregation

MIMO 8x8 MIMO 4x4Enhanced

SC-FDMA

eICICRel-11

eMBMS

Positioning

Dual Layer 

Beamforming

Multi carrier /Multi-RAT

Base Stations

Home eNodeB

Self Organizing

Networks

Public Warning

System

What are antenna ports?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 141/284

November 2012 | LTE Introduction | 141

l 3GPP TS 36.211(Downlink)

“An antenna port is defined such that the channel over which a symbol on the

antenna port is conveyed can be inferred from the channel over which another 

symbol on the same antenna port is conveyed.” 

l What does that mean?

l The UE shall demodulate a received signal – which is transmitted over a

certain antenna port – based on the channel estimation performed on the

reference signals belonging to this (same) antenna port.

What are antenna ports?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 142/284

November 2012 | LTE Introduction | 142

l Consequences of the definition

l There is one sort of reference signal per antenna portl Whenever a new sort of reference signal is introduced by 3GPP (e.g. PRS),

a new antenna port needs to be defined (e.g. Antenna Port 6)

l 3GPP defines the following antenna port / reference signal

combinations for downlink transmission:

l Port 0-3: Cell-specific Reference Signals (CS-RS)

l Port 4: MBSFN-RS

l Port 5: UE-specific Reference Signals (DM-RS): single layer (TX mode 7)

l Port 6: Positioning Reference Signals (PRS)

l Port 7-8: UE-specific Reference Signals (DM-RS): dual layer (TX mode 8)

l Port 7-14: UE specific Referene Signals for Rel. 10l Port 15 – 22: CSI specific reference signals, channel status info in Rel. 10

What are antenna ports?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 143/284

November 2012 | LTE Introduction | 143

l Mapping „Antenna Port“ to „Physical Antennas“ 

 AP7

 AP8

 AP0

 AP2

 AP3

 AP1

 AP4

 AP6

 AP5

Antenna Port Physical Antennas

PA0

PA1

PA2

PA3

… 

1

1

1

1

W5,0

W5,1

W5,2

W5,3

The way the "logical" antenna ports are mapped to the "physical" TX antennas liescompletely in the responsibility of the base station. There's no need for the base station

to tell the UE.

… 

… … 

LTE antenna port definition

 Antenna ports are linked to the reference signals

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 144/284

November 2012 | LTE Introduction | 144

p g

-> one example:

Cell Specific RS 

PA - RS 

PCFICH  / PHICH  / PDCCH 

Normal CP 

PUSCH or No Transmission 

UE in idle mode, scans for 

 Antenna port 0, cell specific RS

UE in connected mode, scans

Positioning RS on antenna port 6

to locate its position

eMBMSPhysical Layer Scenarios

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 145/284

November 2012 | LTE Introduction | 145

l Dedicated and mixed mode.

l Dedicated: carrier is only for MBMS = Single-cell MBMS.l MBMS/Unicast mixed mode: MBMS and user data are transmitted using

time division duplex. Certain subframes carry MBMS data.

l Dedicated mode (single-cell scenario) offers use of new

subscarrier spacing, longer cyclic prefix (CP), 3 OFDM symbols.

ConfigurationOFDM

Symbols 

Sub-

carrier 

Cyclic Prefix Length

in Samples

Cyclic Prefix

Length in µs

Normal CP

∆f = 15 kHz 7

12

160 for 1st symbol

144 for other symbols

5.2 for 1st symbol

4.7 for other symbols

Extended CP

∆f = 15 kHz 

6 512 16.7

Extended CP

∆f = 7.5 kHz 3 24 1024 33.3 eMBMS

(Single cell scenario)

Resource block definition for MBMS Δf=1/TSYMBOL=15kHz

1 Resource

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 146/284

November 2012 | LTE Introduction | 146

7 OFDM symbols

CP CP CP CP CP CPOFDMSymbol

OFDMSymbol

OFDMSymbol

OFDMSymbol

OFDMSymbol

OFDMSymbol

f f 0 f 1  f 2 

1 2 3 4 5 6 7

Block =

12 subcarriers

CP CP CPOFDMSymbol

OFDMSymbol

OFDMSymbol

 Δf=7.5kHz

1 Resource

Block =

24 subcarriers For MBMS

only!

6 OFDM symbols

Multimedia Broadcast Messaging Services, MBMS

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 147/284

November 2012 | LTE Introduction | 147

Broadcast:

Public info for 

everybody

Multicast:

Common info for 

User after authentication

Unicast:

Private info for dedicated user 

LTE MBMS architecture

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 148/284

November 2012 | LTE Introduction | 148

MBMS in LTE

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 149/284

November 2012 | LTE Introduction | 149

MBMS

GW

eNB

MCE |   

    |  

M1

M3 MBMS GW: MBMS Gateway

MCE: Multi-Cell/Multicast Coordination Entity

M1: user plane interface

M2: E-UTRAN internal control plane interface

M3: control plane interface between E-UTRAN and EPC

MME

   |M2

Logical architecture for MBMS

MBMS broadcast service provision

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 150/284

November 2012 | LTE Introduction | 150

Service announcement 

Data transfer  

MBMS notification 

Session Start

Session Stop 

See 3GPP TS23.246, Section 4.4.3

MBMS broadcast service provision

ti

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 151/284

November 2012 | LTE Introduction | 151

UE1 

time 

UE  localservice

activation 

Broadcast service Announcement 

Stop

announcment 

Data

transfer  

Service 1 Session 2 

Service 1 session1 

UE2 

Local service de  - 

activation 

Start Broadcast

Service

announcement 

Broadcast session start 

Data

transfer  

Session stop 

Idle period

of seconds 

Data

transfer  

How is theUE informed about all

this in detail?

MBMS Signaling

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 152/284

November 2012 | LTE Introduction | 152

l New logical Channels:

l MBMS point-to-multipoint ControlChannel (MCCH)

l MBMS point-to-multipoint Traffic

Channel (MTCH)

l MBMS point-to-multipoint Scheduling

Channel (MSCH)

l Reception of MSCH is optional

l MxCH channels are mapped on

Multicast Channel MCH

FTP   WAP   HTTP   MMS  SIP  

POC   VoIP  

TCP / UDP  

GMM

PDCPRRC

RLC

PHY

GMMREG 

GMMSM 

GC  NT  DC 

UM  PUM 

PDCP 

MCH 

GMMMM 

TC CTC SM

SNSM 

SMREG 

MM

MMTC 

IP  

MAC

DCCH  / 

DTCH MTCH  MSCH MCCH 

New SIB 13 informs

about MBMS configuration

MBSFNMBSFN, Multicast/Broadcast Single Frequency Network

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 153/284

November 2012 | LTE Introduction | 153

Cells belonging to MBSFN area are co-ordinated

and transmit a time-synchronized common waveform

eNodeBs within an MBSFN area are synchronized.

From point of view of the terminal, this appears to be a single

transmission as if originating from one large cell(with correspondingly large delay spread).

Cyclic prefix is utilized to cover the difference in the propagation delays

from the multiple cells. MBMS therefore uses an extended cyclic prefix

MBSFN – MBMS Single Frequency Network

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 154/284

November 2012 | LTE Introduction | 154

Mobile communication network

each eNode B sends individualsignals

Single Frequency Network

each eNode B sends identicalsignals

MBSFN

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 155/284

November 2012 | LTE Introduction | 155

If network is synchronised,

Signals in downlink can be

combined

evolved Multimedia Broadcast Multicast Services Multimedia Broadcast Single Frequency Network (MBSFN) area

U f l if i ifi b f h d

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 156/284

November 2012 | LTE Introduction | 156

l Useful if a significant number of users want to consume the same data

content at the same time in the same area!

l Same content is transmitted in a specific area is known as MBSFN area.l Each MBSFN area has an own identity (mbsfn- AreaId 0…255 ) and can consists of 

multiple cells; a cell can belong to more than one MBSFN area.

l MBSFN areas do not change dynamically over time.

52

1

3

4

6

7

9

11

12

13

10

MBSFN area 0

14

 A cell can belong to

more than one MBSFN

area; in total up to 8.

MBSFN area 1

13

8

MBSFN area 255

MBSFN reserved cell.

 A cell within the MBSFN

area, that does not support

MBMS transmission.

15

eMBMSDownlink Channels

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 157/284

November 2012 | LTE Introduction | 157

l Downlink channels related to MBMS

l MCCH Multicast Control Channell MTCH Multicast Traffic Channel

l MCH Multicast Channel

l PMCH Physical Multicast Channel

l MCH is transmitted over MBSFN in

specific subrames on physical layer 

l MCH is a downlink only channel (no HARQ, no RLC repetitions)

l Higher Layer Forward Error Correction (see TS26.346)

l Different services (MTCHs and MCCH) can be multiplexed

eMBMS channel mapping

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 158/284

November 2012 | LTE Introduction | 159

Subframes 0 and 5 are not MBMS, because

of PBCH and Sync Channels

Subframes 0,4,5 and 9 are not MBMS, because

Of paging occasion can occur here

eMBMS allocation based on SIB2 information

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 159/284

November 2012 | LTE Introduction | 160

011010

Reminder:

Subframes

0,4,5, and 9

 Are non-MBMS

eMBMS: MCCH position according to SIB13

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 160/284

November 2012 | LTE Introduction | 161

LTE Release 9Dual-layer beamforming

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 161/284

November 2012 | LTE Introduction | 162

l 3GPP Rel-8 – Transmission Mode 7 = beamforming without

UE feedback, using UE-specific reference signal pattern,l Estimate the position of the UE (Direction of Arrival, DoA),

l Pre-code digital baseband to direct beam at direction of arrival,

l BUT single-layer beamforming, only one codeword (TB),

l 3GPP Rel-9 – Transmission Mode 8 = beamforming with or without UE feedback (PMI/RI) using UE-specific reference

signal pattern, bu t dual-layer,

l Mandatory for TDD, optional for FDD,

l 2 (new) reference signal pattern for two new antenna ports 7 and 8,

l New DCI format 2B to schedule transmission mode 8,l Performance test in 3GPP TS 36.521 Part 1 (Rel-9) are adopted to

support testing of transmission mode 8.

LTE Release 9Dual-layer beamforming – Reference Symbol Details

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 162/284

November 2012 | LTE Introduction | 163

l Cell specificantenna port 0 andantenna port 1 reference symbols

 Antenna Port 0  Antenna Port 1

 Antenna Port 7 Antenna Port 8

l UE specific antenna

port 7 and antenna

port 8 reference

symbols

2 layer beamforming

throughput

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 163/284

November 2012 | LTE Introduction | 164

Spatial multiplexing increases throughput, but looses coverage

coverage

Spatial multiplexing: increase throughput but less coverage

1 layer beamforming: increase coverage

SISO: coverage and throughput, no increase

2 layer beamforming

Increases throughput andcoverage

Location based servicesl Location Based Services“ 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 164/284

November 2012 | LTE Introduction | 165

l Products and services which need location

information

l Future Trend:

 Augmented Reality

Where is Waldo?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 165/284

November 2012 | LTE Introduction | 166

Location based services

The idea is not new, … so what to discuss? 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 166/284

November 2012 | LTE Introduction | 167

Satellite based services

Network based services

Location

controller 

Who will do the measurements? The UE or the network? = „assisted“ 

Who will do the calculation? The UE or the network? = „based“ 

So what is new?

Several ideas are defined and hybrid mode is possible as well,

Various methods can be combined.

E-UTRA supported positioning methods

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 167/284

November 2012 | LTE Introduction | 168

LTE Release 9LTE positioning

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 168/284

November 2012 | LTE Introduction | 169

l The standard positioning methods supported for E-UTRAN

access are:l network-assisted GNSS (Global Navigation Satellite System) methods

 – These methods make use of UEs that are equipped with radio receivers

capable of receiving GNSS signals, e.g. GPS.

l downlink positioning

 – The downlink (OTDOA – Observed Time Difference Of Arrival) positioning

method makes use of the measured timing of downlink signals received from

multiple eNode Bs at the UE. The UE measures the timing of the received

signals using assistance data received from the positioning server, and the

resulting measurements are used to locate the UE in relation to the

neighbouring eNode Bs.

l enhanced cell ID method

 – In the Cell ID (CID) positioning method, the position of an UE is estimated withthe knowledge of its serving eNode B and cell. The information about the

serving eNode B and cell may be obtained by paging, tracking area update, or 

other methods.

E-UTRA supported positioning network architectureControl plane and user plane signaling

LCS4)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 169/284

November 2012 | LTE Introduction | 170

Secure User Plane

SUPL= user plane

signaling

LCS

Server (LS)

SUPL / LPP

LPPa

1) SLP – SUPL Location Platform, SUPL – Secure User Plane Location 2) E-SMLC – Evolved Serving Mobile Location Center 3) GMLC – Gateway Mobile Location Center 4) LCS – Location Service5) 3GPP TS 36.455 LTE Positioning Protocol Annex (LPPa)6) 3GPP TS 36.355 LTE Positioning Protocol (LPP) 

LTE base station 

eNodeB (eNB)

E-SMLC2)

SLP1)

Mobile

Management

Entity (MME)

Serving

Gateway

(S-GW)

Packet

Gateway

(P-GW)

SLs

S1-MME

S5

LTE-capable deviceUser Equipment, UE

(LCS Target)

S1-U Lup

LCS4)

Client

GMLC3)

LPP

SLs

Location positioning

protocol LPP =

control plane

signaling

E-UTRAN UE Positioning Architecturel In contrast to GERAN and UTRAN, the E-UTRAN positioning

capabilities are intended to be forward compatible to other access

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 170/284

November 2012 | LTE Introduction | 171

capabilities are intended to be forward compatible to other access

types (e.g. WLAN) and other positioning methods (e.g. RAT uplink

measurements).

l Supports user plane solutions, e.g. OMA SUPL 2.0

Source: 3GPP TS 36.305

UE = User Equipment

SUPL* = Secure User Plane LocationOMA* = Open Mobile Alliance

SET = SUPL enabled terminal

SLP = SUPL locaiton platform

E-SMLC = Evolved Serving Mobile

Location Center 

MME = Mobility Management Entity

RAT = Radio Access Technology

*www.openmobilealliance.org/technical/release_program/supl_v2_0.aspx

Global Navigation Satellite Systems

GNSS Gl b l N i ti S t llit S t t

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 171/284

November 2012 | LTE Introduction | 172

http://www.hindawi.com/journals/ijno/2010/812945/

l GNSS – Global Navigation Satellite Systems; autonomous

systems:

l GPS – USA 1995.

l GLONASS – Russia, 2012.

l Gallileo – Europe, target 201?.

l Compass (Beidou) – China, under 

development, target 2015.

l IRNSS – India, planning process.

lGNSS are designed for continuous

reception, outdoors.

l Challenging environments:

urban, indoors, changing

locations.

GALLILEO GPS GLONASS

Signal f Carrier [MHz] Signal f Carrier  [MHz] Signal f Carrier  [MHz]

E1 1575,420 L1C/A 1575,420 G1 1602±k*0,5625

E6 1278,750 L1C 1575,420 G21246±k*0,562

5

E5 1191,795 L2C 1227,600 k = -7 … 13 

E5a 1176,450 L5 1176,450

E5b 1207,140

1164 1215 1237 1260 1300 1559 1591

161015871563

E5a

L5 L5b L2 G2

E1

L1 G1E6

f [MHz]

 Assisted GNSS (A-GNSS)

Th t k i t th d i GNSS i

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 172/284

November 2012 | LTE Introduction | 173

l The network assists the device GNSS receiver 

to improve the performance in several aspects:l Reduce GNSS start-up and acquisition times.

l Increase GNSS sensitivity, reduce power consumption.

l UE-assisted.

l Device (= User Equipment, UE)

transmits GNSS measurementresults to network server, where

position calculation takes place.

l UE-based.

l UE performs GNSS measurements

and position calculation, supported by:

 – Data to assist these measurements, e.g.reference time, visible satellite list etc.

 – Data providing for position calculation, e.g.

reference position, satellite ephemeris, etc.

Source:

TS 36.355

LTE Positioning

Protocol (LPP)

LTE Positioning Protocol (LPP) 3GPP TS 36.355LPP position methods- A-GNSS  Assisted Global Navigation Satellite System

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 173/284

November 2012 | LTE Introduction | 174

UE E-SMLC

LPP over SUPL

User plane solution

LPP over RRC

Control plane solution

SET SLP

Target

Device

LPPLocation

Server  Assistance data

Measurements based on reference sources*

eNB

LTE radiosignal

g y

- E-CID Enhanced Cell ID

- OTDOA Observed time differerence of arrival

*GNSS and LTE radio signals

SUPL enabled

Terminal

SUPL location

platform

Enhanced Serving

Mobile Location Center 

LPP and lower layers

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 174/284

November 2012 | LTE Introduction | 175

LPP PDU Transfer 

eNB

Source: 3GPP TS 36.305

User plane stackSUPL occupies the application layer in the LTE user plane stack,

with LPP (or another positioning protocol !) transported as another layer

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 175/284

November 2012 | LTE Introduction | 176

with LPP (or another positioning protocol !) transported as another layer 

above SUPL.

Source: 3GPP TS 36.305

GNSS positioning methods supportedl Autonomeous GNSS

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 176/284

November 2012 | LTE Introduction | 177

l Assisted GNSS (A-GNSS)

l The network assists the UE GNSS receiver to

improve the performance in several aspects:

 – Reduce UE GNSS start-up and acquisition times

 – Increase UE GNSS sensitivity

 –  Allow UE to consume less handset power 

l UE Assisted – UE transmits GNSS measurement results to E-SMLC where the position calculation

takes place

l UE Based

 – UE performs GNSS measurements and position calculation, suppported by data … 

 – … assisting the measurements, e.g. with reference time, visible satellite list etc. 

 – … providing means for position calculation, e.g. reference position, satellite ephemeris, etc. 

Source: 3GPP TS 36.305

GNSS candidates and augmentation systems

l GPS/Modernized GPS – Global Positioning System (USA, since 1995)

l Galileo (E rope nder de elopment target 2013)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 177/284

November 2012 | LTE Introduction | 178

l Galileo (Europe, under development, target 2013)

l GLONASS (Russia)l Compass, Beidou-2 (China, under development, target 2015)

l IRNSS (India, in process of planning)

l SBAS – Satellite based augmentation systems

 – Geostationary satellites supporting error corrections by overlay signals

 – WAAS – Wide Area Augmentation System (USA)

 – EGNOS – European Geostationary Navigation Overlay Service (Europa)

 – MSAS – Mulit-Functional Satellite Augmentation System (Japan)

 – QZSS – Quasi-Zenith Satellite System (Japan, supports GPS, expected 2013)

 – GAGAN – GPS Aided Geo Augmented Navigation (India)

GNSS band allocations

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 178/284

November 2012 | LTE Introduction | 179

E1

L5 E5b L2 G2 E6 L1 G1

1164 1215 1260 1300 1559 1610

E5a

1237 15911563 1587

f/MHz

GPS and GLONASS satellite orbits

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 179/284

November 2012 | LTE Introduction | 180

GPS:26 Satellites

Orbital radius 26560 km

GLONASS:

26 Satellites

Orbital radius 25510 km

Position Determination

R Δt

tsj trj

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 180/284

November 2012 | LTE Introduction | 181

l „Pseudo distance“ Satellite – Receiver 

l R j = c · Δt j=c· (trj-tsj) = ρ j + c· Δclock + ΔIono + ΔTropo + ΔMpath + ΔInt + ΔNoise

 – ρ j = real distance („error -free“)  – c· Δclock = Clock error (4th unknown variable → 4th satellite required)

 – ΔIono , ΔTropo = „speed of light“ error due to ionosphere and troposhere 

 – ΔMpath , ΔInt , ΔNoise = trj uncertainty due to multipath propagation, interference,

noise

l Each satellite j broadcasts its current position ρSAT,j and local time tsj.

l With ρSAT,j and ρ j the receiver position can be evalutated

l Additional signal phase measurements to increase accuracy

R j = c·Δt j 

Backup basic terms

l Ephemeris

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 181/284

November 2012 | LTE Introduction | 182

l Ephemeris

l Table of values that gives the positions of objects in the sky at a given timel Almanach

l Set of data that every satellite transmits. It includes information about the

state (health) of the entire satellite constellation and coarse data on every

satellite‘s orbit. 

l Cold startl No ephemeris, almanac or location data available (reset state)

l Hot start

l Location data available

Why is GNSS not sufficent?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 182/284

November 2012 | LTE Introduction | 183

l Global navigation satellite systems (GNSSs) have restricted

performance in certain environments

l Often less than four satellites visible: critical situation for GNSS

positioning support required (Assisted GNSS)

alternative required (Mobile radio positioning)

Critical scenario Very critical scenario GPS Satellites visibility (Urban)

Reference [DLR]

(A-)GNSS vs. mobile radio positioningmethods

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 183/284

November 2012 | LTE Introduction | 184

(A-)GNSS  Mobile radio systems 

Low bandwidth (1-2 MHz) High bandwidth (up to 20 MHz for LTE)

Very weak received signals Comparatively strong received signals

Similar received power levels from all satellites One strong signal from the serving BS,strong interference situation

Long synchronization sequences Short synchronization sequences

Signal a-priori known due to low data ratesComplete signal not a-priori known to

support high data rates, only certain pilots

Very accurate synchronization of the satellites

by atomic clocksSynchronization of the BSs not a-priori guaranteed

Line of sight (LOS) access as normal case

not suitable for urban / indoor areas

Non line of sight (NLOS) access as normal case

suitable for urban / indoor areas

3-dimensional positioning 2-dimensional positioning

Measurements for positioning

l UE-assisted measurements l eNB-assisted measurements

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 184/284

November 2012 | LTE Introduction | 185

l UE assisted measurements.

l Reference Signal Received

Power 

(RSRP) and Reference Signal

Received Quality (RSRQ).

l RSTD – Reference Signal Time

Difference.

l UE Rx –Tx time difference.

l eNB assisted measurements.

l eNB Rx – Tx time difference.

l TADV – Timing Advance.

 – For positioning Type 1 is of 

relevance.

l  AoA – Angle of Arrival.

l UTDOA – Uplink Time Difference

of Arrival.

RSRP, RSRQ are

measured on reference

signals of serving cell i

Serving cell i

Neighbor cell j

RSTD  – Relative time difference

between a subframe received from

neighbor cell j and corresponding

subframe from serving cell i:

TSubframeRxj - TSubframeRxi

Source: see TS 36.214 Physical Layer measurements for detailed definitions

UE Rx-Tx time difference is defined

as TUE-RX  – TUE-TX, where TUE-RX is the

received timing of downlink radio frame

#i from the serving cell i and TUE-TX the

transmit timing of uplink radio frame #i.

DL radio frame #i

UL radio frame #i

eNB Rx-Tx time difference is definedas TeNB-RX  – TeNB-TX, where TeNB-RX is the

received timing of uplink radio frame #i

and TeNB-TX the transmit timing of 

downlink radio frame #i.

UL radio frame #iDL radio frame #i

TADV (Timing Advance)= eNB Rx-Tx time difference + UE Rx-Tx time difference

= (TeNB-RX  – TeNB-TX) + (TUE-RX  – TUE-TX)

Observed Time difference

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 185/284

November 2012 | LTE Introduction | 186

If network is synchronised,

UE can measure time difference

Observed Time

Difference of ArrivalOTDOA

Methods‘ overview CID E-CID (RSRP/TOA/TADV) E-CID (RSRP/TOA/TADV) [Trilateration]

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 186/284

November 2012 | LTE Introduction | 187

E-CID (AOA) [Triangulation] Downlink / Uplink (O/U-TDOA) [Multilateration] RF Pattern matching

To be updated!!

Cell ID

l Not new other definition: Cell of Origin (COO)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 187/284

November 2012 | LTE Introduction | 188

l Not new, other definition: Cell of Origin (COO).

lUE position is estimated with the knowledge of the geographicalcoordinates of its serving eNB.

l Position accuracy = One whole cell .

Enhanced-Cell ID (E-CID)

l UE positioning compared to CID is specified more

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 188/284

November 2012 | LTE Introduction | 189

l UE positioning compared to CID is specified more

accurately using additional UE and/or E UTRAN radiomeasurements:

l E-CID with distance from serving eNB position accuracy: a circle.

 – Distance calculated by measuring RSRP / TOA / TADV (RTT).

l E-CID with distances from 3 eNB-s position accuracy: a point.

 – Distance calculated by measuring RSRP / TOA / TADV (RTT).

l E-CID with Angels of Arrival position accuracy: a point.

 – AOA are measured for at least 2, better 3 eNB‘s. 

RSRP – Reference Signal Received Power 

TOA – Time of Arrival

TADV – Timing Advance

RTT – Round Trip Time

TADV – Timing Advance (Round Trip Time, RTT) l Base station measures:

eNB Rx-Tx = TeNB-Rx  – TeNB-Tx eNB Rx Timing of subframe n

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 189/284

November 2012 | LTE Introduction | 190

l eNB orders the device tocorrect its uplink timing: TA =

eNB Rx-Tx.

l Timing Advance command

(MAC).

l UE measures and reports:UE Rx-Tx = TUE-Rx  – TUE-Tx

l LPP_IE: ue-RxTxTimeDiff.

l eNB calculates and reports to

LS: TADV = eNB Rx-Tx + UERx-Tx

l LPPa_IE: timingAdvanceType1/2

l TADV = Round Trip Time (RTT).

UE Rx Timing of subframe n

eNB Tx Timing of subframe n

UE Tx Timing of subframe n

eNB Rx-Tx

UE Rx-Tx

l Distance of UE to eNB is

estimated as d=c*RTT/2.

l c = speed of light.

l Advantage: No

synchronization

between eNB‘s. 

 Angle of Arrival (AOA) 

l AoA = Estimated angle of a UE with respect to a reference

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 190/284

November 2012 | LTE Introduction | 191

l AoA Estimated angle of a UE with respect to a reference

direction (= geographical North), positive in a counter-clockwise direction, as seen from an eNB.

l Determined at eNB antenna based

on a received UL signal (SRS).

l Measurement at eNB:

l

eNB uses antenna array to estimatedirection i.e. Angle of Arrival (AOA).

l The larger the array, the more

accurate is the estimated AOA.

l eNB reports AOA to LS. 

l  Advantage: No synchronization

between eNB‘s. 

l Drawback: costly antenna arrays.

OTDOA – Observed Time Difference of  Arrival

l UE position is estimated based on measuring TDOA of

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 191/284

November 2012 | LTE Introduction | 192

l UE position is estimated based on measuring TDOA of 

Positioning Reference Signals (PRS) embedded into overallDL signal received from different eNB’s. 

l Each TDOA measurement describes a hyperbola (line of constant

difference 2a), the two focus points of which (F1, F2) are the two

measured eNB-s (PRS sources), and along which the UE may be

located.

l UE’s position = intersection of hyperbolas for at least 3 pairs of eNB’s. 

LTE Release 9UE positioning – Reference Symbol Details

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 192/284

November 2012 | LTE Introduction | 193

l PRS is a pseudo-random QPSKsequence similar to CRS

l PRS pattern (baseline for further 

discussion and CR drafting):

l Diagonal pattern with time

varying frequency shift,

l PRS mapped around CRS (to

avoid collisions)

 Antenna Port 0

Positioning Reference Signals (PRS) for OTDOADefinition

l Cell-specific reference signals (CRS) are not sufficient for 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 193/284

November 2012 | LTE Introduction | 194

p g ( )

positioning, introduction of positioning reference signals(PRS) for antenna port 6.

l SINR for synchronization

and reference signals of 

neighboring cells needs to

be at least -6 dB.

l PRS is a pseudo-randomQPSK sequence similar 

to CRS; PRS pattern:

l Diagonal pattern with time

varying frequency shift.

l PRS mapped around CRS to avoid collisions;never overlaps with PDCCH; example shows

CRS mapping for usage of 4 antenna ports.

Uplink (UTDOA)

l UTDOA = Uplink Time Difference of Arrival

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 194/284

November 2012 | LTE Introduction | 195

l UE positioning estimated based on:

 – measuring TDOA of UL (SRS) signals received in different eNB-s

 – each TDOA measurement describes a hyperbola (line of constant difference 2a),the 2 focus points of which (F1, F2) are the two receiving eNB-s (SRSreceiptors), and along which the UE may be located.

 – UE’s position = intersection of hyperbolas for at least three pairs of eNB-s(= 3 eNB-s)

 – knowledge of the geographical coordinates of the measured eNode Bs

l Method as such not specified for LTE Similarity to 3G assumed

Location

Server 

- eNB-s measure and

report to eNB_Rx-Tx to LS

-LS calculates UTDOA

and estimates the UE

position

What is Self Organizing Networks, SON?

l SON = Self-Organizing Networks, methods for automatic configuration

and optimization of the network

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 195/284

November 2012 | LTE Introduction | 196

p

l 3 components:

l Self-Configuration:

l basic setup: IP address configuration, association with a

Gateway, software download,… 

l Initial radio configuration: neighbour list configuration,… 

l Self-Optimization:

l Neighbour list optimization, coverage/capacity

optimization,… 

l Self-Healing:

l Failure detection/localization,… 

Motivation for SON

Heterogeneous Networks:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 196/284

November 2012 | LTE Introduction | 197

Heterogeneous Networks:

No way without SON

Source: Deutsche Telekom

Overview SON

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 197/284

November 2012 | LTE Introduction | 198

Connect eNB

eNB failure

 Architecture

Centralized

O&M SON

Centralized SON

Distributed SON

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 198/284

November 2012 | LTE Introduction | 199

O&M

O&M O&MSON

SON

SON

eNB eNB

SON SON

Hybrid SON

Energy Savings

l Match Network Capacitiy to the required traffic

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 199/284

November 2012 | LTE Introduction | 200

p y q

lSwitch on / off cell on demand

l Vodafone contribution on NGMN:

Self Healing

l Automatic detection of failures (Sleeping Cells)

l Usually detected by performance statistics

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 200/284

November 2012 | LTE Introduction | 201

l

Unreliable, because statistics sometimes fluctuate largely

l Cell Outage Compensation

l Recovery actions

 – Fallback to previous SW

 – Switching to backup units for HW

l Self optimization of the surrounding NW

 Automatic Configuration of Physical Cell IDRelease 8

l Automatic configuration of new deployed eNodeBs

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 201/284

November 2012 | LTE Introduction | 202

l Automatic configuration of new deployed eNodeBs

l 504 Physical Cell IDs are supported

l Selection of Physical Cell ID must be

l Collision free

 – The ID is unique in the area the cell covers

l Confusion free

 –  A cell shall not have neighboring cells with identical IDs

l Definitely a must for Femto-Cells (HeNBs)

l Centralized or Distributed Architecture

Mobility Robustness Optimization (MRO)Release 9

l Manually setting of HO parameters

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 202/284

November 2012 | LTE Introduction | 203

l Manually setting of HO parameters

l Time consuming → Often neglected l Optimal settings may depend on momentary radio conditions

 – Difficult to control manually

l Incorrect HO parameter setting may lead to

l Non-optimal use of network resources – Unnecessary handovers

 – Prolonged connection to a non-optimal cell

l HO failures

 – Degradation of the service performance

l Radio Link failures – Combined impact on user experience and network performance

 – The main objective of MRO is to reduce RLF

Coverage and Capacity Optimization

Trade-Off between coverage and capacityCell edge performance

Pilot pollution (Interference)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 203/284

November 2012 | LTE Introduction | 204

eNodeB

g p y

Coverage has priority

Detection of unintended coverage holes

eNodeB

eNodeB

Measurement by Network:

l Call drop rates→ Indication of  

insufficient coverage

l Traffic counters

→ Capacity problems 

Mobility Load Balancing (MLB) OptimizationRelease 9

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 204/284

November 2012 | LTE Introduction | 205

IMT-Advanced Requirements 

l A high degree of commonality of functionality worldwide while

t i i th fl ibilit t t id f i d

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 205/284

November 2012 | LTE Introduction | 206

retaining the flexibility to support a wide range of services and

applications in a cost efficient manner,

l Compatibility of services within IMT and with fixed networks,

l Capability of interworking with other radio access systems,

l High quality mobile services,

l User equipment suitable for worldwide use,

l User-friendly applications, services and equipment,

l Worldwide roaming capability; and

l Enhanced peak data rates to support advanced services and

applications,

l 100 Mbit/s for high and

l 1 Gbit/s for low mobility

were established as targets for research,

Do you Remember?Targets of ITU IMT-2000 Program (1998)

IMT-2000

The ITU vision of global wireless access

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 206/284

November 2012 | LTE Introduction | 207

 The ITU vision of global wireless access

in the 21

 st 

century

Satellite

MacrocellMicrocell

UrbanIn-Building

Picocell

Global

Suburban

Basic Terminal

PDA TerminalAudio/Visual Terminal

l Flexible and global – Full coverage and mobility at 144 kbps .. 384 kbps

 – Hot spot coverage with limited mobility at 2 Mbps

 – Terrestrial based radio access technologies

l The IMT-2000 family of standards now supports four different multiple

access technologies:

l FDMA, TDMA, CDMA (WCDMA) and OFDMA (since 2007) 

IMT Spectrum

MHz

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 207/284

November 2012 | LTE Introduction | 208

Next possible spectrum

allocation at WRC 2015!

MHz

MHz

MHz

Expected IMT-Advanced candidates

Long

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 208/284

November 2012 | LTE Introduction | 209

Source: TTA‘s workshop for the future of IMT-Advanced technologies, June 2008

Term

Evolution

Ultra

Mobile

Broadband

 AdvancedMobile

WiMAX

IMT – International Mobile Communication

l IMT-2000

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 209/284

November 2012 | LTE Introduction | 210

l Was the framework for the third Generation mobile communication

systems, i.e. 3GPP-UMTS and 3GPP2-C2K

l Focus was on high performance transmission schemes:

Link Level Efficiency

l Originally created to harmonize 3G mobile systems and to increase

opportunities for worldwide interoperability, the IMT-2000 family of 

standards now supports four different access technologies, includingOFDMA (WiMAX), FDMA, TDMA and CDMA (WCDMA).

l IMT-Advanced

l Basis of (really) broadband mobile communication

l Focus on System Level Efficiency (e.g. cognitive network

systems)l Vision 2010 – 2015

System level efficiencyl Todays mobile communication networks use static frequency allocation

l Network planning

l  Adaptation to traffic load over cell boarder not possible

l Dynamic spectrum allocation to increase system efficiency

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 210/284

November 2012 | LTE Introduction | 211

l Dynamic spectrum allocation to increase system efficiency

l Radio resource management to configure the occupied bandwidth of each celll Dynamic management for inter-cell interference reduction

l Cognitive networks (self organizing networks SON) which adjust automatically totraffic load and interference conditions.

l Application oriented source and channel codingl Typically, source and channel coding are separated, i.e. MPEG and convolutional

coding. Joint Source & Channel Coding (JSCC) promises better efficiency

l Base stations are on 24/7 – but why?l Basisstations/Relaystations operate in „sleep“ or „off“ modes 

l Enhancements of interference situations and energy consumption

l Too many interfaces reduce the throughputl Reducing the amount of components in the network structure

l Heterogenuous networks

l Usage of various radio access technologies of same core network

LTE-AdvancedPossible technology features

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 211/284

November 2012 | LTE Introduction | 212

Cognitive radio

methods

Enhanced MIMO

schemes for DL and UL

Interference management

methods

Relayingtechnology

Cooperative

base stations

Radio network evolution Further enhanced

MBMS

Wider bandwidthsupport

Bandwidth extension with Carrier aggregation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 212/284

November 2012 | LTE Introduction | 213

LTE-AdvancedCarrier Aggregation

Component carrier CC

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 213/284

November 2012 | LTE Introduction | 214

Contiguous carrier aggregation

Non-contiguous carrier aggregation

 Aggregationl Contiguous

l Intra-Band

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 214/284

November 2012 | LTE Introduction | 215

l Non-Contiguousl Intra (Single) -Band

l Inter (Multi) -Band

l Combination

l Up to 5 Rel-8 CC and 100 MHz

l Theoretically all CC-BW combinations possible (e.g. 5+10+20 etc)

Motivation

l 1) Higher data rate through

more spectrum allocation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 215/284

November 2012 | LTE Introduction | 216

more spectrum allocation

l to fulfill 4G requirements

l 1 Gbit/s in downlink (up to 5

component carriers, up to 100

MHz)

l Other methods (spectral

efficiency etc.) alreadyexploited or not relevant

l 2) Exploit the total

(combined) BW assigned in

form of separated bandsl scattered spectrum

l Two or more component carriers are aggregated in LTE-Advanced

in order to support wider bandwidths up to 100 MHz

Carrier aggregation (CA)General comments

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 216/284

November 2012 | LTE Introduction | 217

in order to support wider bandwidths up to 100 MHz.

l Support for contiguous and non-

contiguous component carrier 

aggregation (intra-band) and

inter-band carrier aggregation.

l Different bandwidths per 

component carrier (CC) are possible.l Each CC limited to a max. of 110 RB

using the 3GPP Rel-8 numerology

(max. 5 carriers, 20 MHz each).

l Motivation.

l Higher peak data rates to meetIMT-Advanced requirements.

l NW operators: spectrum aggregation, enabling Heterogonous Networks.

Frequency band A Frequency band B

Frequency band A Frequency band B

Frequency band A Frequency band B

Intra-band contiguous

Intra-band non-contiguous

Inter-band

Component

Carrier (CC)

2012 © by Rohde&Schwarz 

Overviewl Carrier Aggregation (CA) 

enables to aggregate up to 5 differentcells (component carriers CC), so that amaximum system bandwidth of 100 MHz

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 217/284

November 2012 | LTE Introduction | 219

maximum system bandwidth of 100 MHz

can be supported (LTE-Advancedrequirement).

l Each CC = Rel-8 autonomous cell

 – Backwards compatibility

l CC-Set is UE specific

 – Registration Primary (P)CC

 –  Additional BW Secondary (S)CC-s 1-4

l Network perspective

 – Same single RLC-connection for one UE(independent on the CC-s)

 – Many CC (starting at MAC scheduler)operating the UE

l For TDD

 – Same UL/DL configuration for all CC-s

UE1 U3

UE3

UE2

UE4

UE1

UE4 UE3 UE4 U2

CC1CC2

CC1CC2

Cell 1 Cell 2

Carrier aggregation (CA)General comments, cont’d. l A device capable of carrier aggregation has 1 DL primary component

carrier and 1 associated primary UL component carrier.

l Basic linkage between DL and UL is signaled in SIB Type 2.

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 218/284

November 2012 | LTE Introduction | 220

l Configuration of primary component carrier (PCC) is UE-specific. – Downlink: cell search / selection, system information, measurement and

mobility.

 – Uplink: access procedure on PCC, control information (PUCCH) on PCC.

 – Network may decide to switch PCC for a device handover procedure is

used.

l Device may have one or several secondary component carriers. SecondaryComponent Carriers (SCC) added in RRC_CONNECTED mode only.

 – Symmetric carrier aggregation.

 –  Asymmetric carrier aggregation (= Rel-10).

SCC PCC PCC SCC

Downlink Uplink

SCC SCC SCCSCCSCCSCC

PDSCH, PDCCH is optional

PDSCH and PDCCH

PUSCH only

PUSCH and PUCCH

2012 © by Rohde&Schwarz 

LTE-AdvancedCarrier Aggregation – Initial Deployment

l Initial LTE-Advanced deployments will likely be limited to

the use of two component carrier

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 219/284

November 2012 | LTE Introduction | 221

the use of two component carrier.

l The below are focus scenarios identified by 3GPP RAN4.

Bandwidthl General

 – Up to 5 CC

 – Up to 100 RB-s pro CC

MHz3.06.0

1.0 spacingchannel Nominal

)2()1()2()1(

Channel Channel Channel Channel  BW  BW  BW  BW 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 220/284

November 2012 | LTE Introduction | 222

 – Up to 500 RB-s aggregated

l Aggregated transmission

bandwidth

 – Sum of aggregated channel

bandwidths – Illustration for Intra band

contiguous

 – Channel raster 300 kHz

l Bandwidth classes

 – UE Capability

Bands / Band-Combinations (I)l E-UTRA CA Band

l Band / Band-Combinatios specified in RAN4 for CA scenarios

l  Already 4 CA Bands specified

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 221/284

November 2012 | LTE Introduction | 223

 – For inter frequency bands without practical interest to guarantee quickprogress of the work

Bands / Band-Combinations (II)l Under discussion

l 25 WI-s in RAN4 with

practical interest

– Inter band (1 UL CC)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 222/284

November 2012 | LTE Introduction | 224

  Inter band (1 UL CC)

 – Intra band cont (1 UL CC)

 – Intra band non cont

(1 UL CC)

 – Inter band (2 UL CC)

l Release independencyl Band performance is

release independent

 – Band introduced in Rel-11

 – Performance tested for Rel-

10

Carrier aggregation - configurationsl CA Configurations

l E-UTRA CA Band + Allowed BW= CA Configuration

– Intra band contiguous

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 223/284

November 2012 | LTE Introduction | 225

  Intra band contiguous

 – Most requirements

 – Inter band

 – Some requirements

 – Main interest of many companies

 – Intra band non contiguous

 – No configuration / requirements

 – Feature of later releases?

l CA Requirement applicability – CL_X Intra band CA

 – CL_X-Y Inter band

 – Non-CA no CA

(explicitely stated for the Test pointwhich are tested differently for CAand not CA)

UE categories for Rel-10 NEW!  UE categories 6…8 (DL and UL) 

UE

Category

Maximum number 

of DL-SCH transport

block bits received

Maximum number of bits

of a DL-SCH transport

block received within a TTI

Total number of 

soft channel bits

Maximum number of 

supported layers for 

spatial multiplexing in DL

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 224/284

November 2012 | LTE Introduction | 226

within a TTI

block received within a TTI spatial multiplexing in DL

…  …  …  …  … 

Category 6 301504149776 (4 layers)

75376 (2 layers)3654144 2 or 4

Category 7 301504149776 (4 layers)

75376 (2 layers)3654144 2 or 4

Category 8 2998560 299856 35982720 8

~3 Gbps peak

DL data rate

for 8x8 MIMOUE

Category 

Maximum number 

of UL-SCH

transport

block bits

transmitted

within a TTI 

Maximum number 

of bits of an UL-SCH

transport block

transmitted within a

TTI 

Support

for 

64Q

AM

in UL 

…  …  …  … 

Category 6 51024 51024 No

Category 7 102048 51024 No

Category 8 1497760 149776 Yes

Total layer 2

buffer size

[bytes]

… 

3 300 000

3 800 000

42 200 000

~1.5 Gbps peak

UL data rate, 4x4 MIMO

Deployment scenarios

F1 F2

3) Improve coverage

l #1: Contiguous frequency aggregationCo located & Same coverage

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 225/284

November 2012 | LTE Introduction | 227

 – Co-located & Same coverage

 – Same f 

l #2: Discontiguous frequency aggregation – Co-located & Similar coverage

 – Different f  

l #3: Discontiguous frequency aggregation – Co-Located & Different coverage

 – Different f  

 –  Antenna direction for CC2 to cover blank spots 

l #4: Remote radio heads – Not co-located

 – Intelligence in central eNB, radio heads = only transmissionantennas

 – Cover spots with more traffic

 – Is the transmission of each radio head within the cell thesame? 

l #5:Frequency-selective repeaters – Combination #2 & #4

 – Different f 

 – Extend the coverage of the 2nd CC with Relays

Physical channel arrangement in downlink

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 226/284

November 2012 | LTE Introduction | 228

Each component

carrier transmits P-

SCH and S-SCH,Like Rel.8

Each component

carrier transmitsPBCH,

Like Rel.8

Non-Contiguous spectrum allocation

Contiguous spectrum allocation

LTE-AdvancedCarrier Aggregation – Scheduling

l There is one transport block (in

absence of spatial multiplexing)

and one HARQ entity per Dynamic

RLC transmission buffer 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 227/284

November 2012 | LTE Introduction | 229

and one HARQ entity per 

scheduled component carrier 

(from the UE perspective),

l A UE may receive multiple

component carriers

simultaneously,

l Two different approaches arediscussed how to inform the UE

about the scheduling for each

band,l Separate PDCCH for each carrier,

l Common PDCCH for multiple carrier,

Datamod.

Mapping

Channelcoding

HARQ

Datamod.

Mapping

Channelcoding

HARQ

Datamod.

Mapping

Channelcoding

HARQ

Datamod.

Mapping

Channelcoding

HARQ

Dynamic

switching

[frequency in MHz]

e.g. 20 MHz

LTE-AdvancedCarrier Aggregation – Scheduling

Non-Contiguous spectrum allocation

Contiguous spectrum allocation

Dynamic

switching

RLC transmission buffer 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 228/284

November 2012 | LTE Introduction | 230

Datamod.

Mapping

Channelcoding

HARQ

Datamod.

Mapping

Channelcoding

HARQ

Datamod.

Mapping

Channelcoding

HARQ

Datamod.

Mapping

Channelcoding

HARQ

switching

[frequency in MHz]

e.g. 20 MHz

Each component

Carrier may use its

own AMC,

= modulation + codingscheme

Carrier Aggregation – Architecture downlink

 Radio Bearers

ROHC ROHC... ROHC ROHC... ROHC ROHC

 Radio Bearers

1 UE using carrier aggregation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 229/284

November 2012 | LTE Introduction | 231

HARQ HARQ

DL-SCH

on CC1

...

Segm.

 ARQ etc

Multiplexing UE1 Multiplexing UEn

 BCCH PCCH 

Unicast Scheduling / Priority Handling

 Logical Channels

 MAC 

Security Security...

CCCH 

 MCCH 

Multiplexing

 MTCH 

MBMS Scheduling

 PCH  BCH MCH 

 RLC 

 PDCP 

Segm.

 ARQ etc...

Transport Channels

Segm.

 ARQ etc

Security Security...

Segm.

 ARQ etc...

Segm. Segm.

...

...

...

DL-SCH

on CC x

HARQ HARQ

DL-SCH

on CC1

...

DL-SCH

on CC y

In case of CA, the multi-carrier nature of the physical layer is only exposed

to the MAC layer for which one HARQ entity is required per serving cell

Multiplexing

...

Scheduling / Priority Handling

Transport Channels

 MAC 

 RLC 

 PDCP 

Segm.

 ARQ etc

Segm.

 ARQ etc

 Logical Channels

Security Security

CCCH 

HARQ HARQ

UL-SCH

on CC1

...

UL-SCH

on CC z 

Common or separate PDCCH per Component Carrier? 

Time

up to 3 (4) symbols

per subframe 1 subframe = 1 ms

1 slot = 0.5 ms

l No cross-carrier scheduling.

l PDCCH on a component carrier 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 230/284

November 2012 | LTE Introduction | 232

No cro ss-carr ier 

schedul ing 

   F  r  e  q  u  e  n  c  y

   P   D   C   C   H

   P   D

   C   C   H

   P   D   C   C   H PDSCH

PDSCH

PDSCH    P   D   C   C   H

Cross-carrier 

schedul ing 

   P   D   C   C   H

   P   D   C   C   H PDSCH

PDSCH

PDSCH

assigns PDSCH resources on thesame component carrier (and

PUSCH resources on a single 

linked UL component carrier).

l Reuse of Rel-8 PDCCH structure

(same coding, same CCE-based

resource mapping) and DCI formats.

l Cross-carrier scheduling.

l PDCCH on a component carrier 

can assign PDSCH or PUSCH

resources in one of multiple component

carriers using the carrier indicator field.

l Rel-8 DCI formats extended with

3 bit carrier indicator field.

l Reusing Rel-8 PDCCH structure (same

coding, same CCE-based resource

mapping).

  P  C  C 

Carrier aggregation: control signals + schedulingEach CC has

its own control

channels,

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 231/284

November 2012 | LTE Introduction | 233

like Rel.8

Femto cells:

Risk of interference!-> main component

carrier will send

all control information.

Cross-carrier scheduling

l Main motivation for cross carrier scheduling: Interference

management for HetNet (eICIC); load balancing.

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 232/284

November 2012 | LTE Introduction | 234

g ( ) g

l Cross carrier scheduling is optional to a UE.

l  Activated by RRC signaling, if not activated no CFI is present.

l Component carriers are numbered, Primary Component Carrier 

(PCC) is always cell index 0.

l Scheduling on a component carrier is only possible from ONE  

component, independent if cross-carrier scheduling is ON or OFF:

l If cross carrier-scheduling active, UE needs to be informed about

PDSCH start on component carrier  RRC signaling.

PDCCH

PDSCH

ComponentCarrier #1 ComponentCarrier #2 ComponentCarrier #5

… not possible,

transmission

can only be

scheduled by

one CC

PDCCH

PDCCH

PDSCH start

signaled by RRC

PCFICH

DCI control elements: CIF field

New field: carrier indicator field gives information,

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 233/284

November 2012 | LTE Introduction | 235

Carrier Indicator Field, CIF, 3bits

f f f 

which component carrier is valid.=> reminder: maximum 5 component carriers!

Component carrier 1 Component carrier 2 Component carrier N

PDSCH start field

Example: 1 Resource block

Of a component carrier 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 234/284

November 2012 | LTE Introduction | 236

   R    R    RPCFICH PCFICH PCFICH

e.g. PCC

Primary componentcarrier  PDSCH start

field indicates

position

In cross-carrier scheduling,the UE does not read the PCFICHandPDCCH on SCC, thus it has to know the start of the

PDSCH

PDCCHe.g. SCC

Secondary component

carrier 

Component Carrier  – RACH configuration

 Asymmetric carrier 

 Aggregation possible,

Downlink

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 235/284

November 2012 | LTE Introduction | 237

gg g p

e.g. DL more CC than UL

Uplink

Each CC has its own RACH All CC use same RACH preamble

Network responds on all CCs

Only 1 CC contains RACH

Symmetryl DL-UL

l Number of CC

 – TDD: DL = UL

 – FDD: DL >= UL

l Component Carrier 

 – However position of DC

not known to System

Simulator 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 236/284

November 2012 | LTE Introduction | 238

l Bandwidth

l Both

 Addition, modification, release of additional CC

l RRCConnectionReconfigurat ion Message contains new Rel-

10 information element:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 237/284

November 2012 | LTE Introduction | 239

DL: bandwidth, antennas, MBSFN subframeconfiguration, PHICH configuration, PDSCH

configuration, TDD config (if TD-LTE SCell)

UL: bandwidth, carrier frequency, additional

spectrum emission, P-Max, power control info,

uplink channel configuration (PRACH, PUSCH)

UE-specifc information; DL: cross-carrier 

scheduling, CSI-RS configuration, PDSCH

UL: PUSCH, uplink power control, CQI, SRS

UE  EUTRAN 

Default EPS bearer setup (3GPP LTE Rel-8) 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 238/284

November 2012 | LTE Introduction | 240

Initial access and RRC connection establishment

attach request and PDN connectivity request

 Authentication

NAS security

UE capability procedure

 AS security

RRC connection reconfiguration

 Attach accept and default EPS bearer context request

Default EPS bearer context accept

 Additional information

being submitted by a

3GPP Rel-10 device… 

UE capability information transfer 3GPP Rel-10 add on’s 

l New IE’s within the for a 3GPP Rel-10 device:Carrier aggregation capabilities

are signaled separately for DL, UL.

Not all combinations

are allowed!

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 239/284

November 2012 | LTE Introduction | 241

What frequency bands, band combination (CA

and MIMO capabilities, inter-band, intra-band

contiguous and non-contiguous, bandwidth class

does the device support?

!

2012 © by Rohde&Schwarz 

Carrier Aggregation - Activation

l A new MAC control element for Component Carrier Management is

defined containing at least the activation respectively deactivation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 240/284

November 2012 | LTE Introduction | 242

command for the secondary DL component carriers configured for a UE. The new MAC CE is identified by a unique LCID

l  

l For actual deactivation and activation signalling for the DL SCCs,

the MAC CE for CC Management includes a 4/5-bit bitmap where

each bit is representing one of the DL CCs that can be configuredin the UE. A bit set to 1 denotes activation of the corresponding DL

CC, a bit set to 0 respectively denotes deactivation

l New timer for implicit CC deactivation

l CC's are "just" additional resources. UL scheduling will assume

we do not have different QOS (delay/loss) on different CC's

Carrier Aggregation

l The transmission mode is not constrained to be the same

on all CCs scheduled for a UE

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 241/284

November 2012 | LTE Introduction | 243

l A single UE-specific UL CC is configured semi-statically for 

carrying PUCCH A/N, SR, and periodic CSI from a UE

l Frequency hopping is not supported simultaneously withnon-contiguous PUSCH resource allocation

l UCI cannot be carried on more than one PUSCH in a given

subframe.

Carrier Aggregation

l Working assumption is confirmed that a single set of PHICH

resources is shared by all UEs (Rel-8 to Rel-10)

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 242/284

November 2012 | LTE Introduction | 244

l If simultaneous PUCCH+PUSCH is configured and there is

at least one PUSCH transmission

l UCI can be transmitted on either PUCCH or PUSCH with a

dependency on the situation that needs to be further discussed

l  All UCI mapped onto PUSCH in a given subframe gets mapped onto

a single CC irrespective of the number of PUSCH CCs

UE Architectures

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 243/284

November 2012 | LTE Introduction | 245

l Possible TX architecturesl Same / Different antenna (connectors) for each CC

l D1/D2 could be switched to support CA or UL MIMO

LTE – Advanced solutions from R&SR&S® SMU200 Vector Signal Generator 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 244/284

November 2012 | LTE Introduction | 246

Ref -20 dBm Att 5 dB

RBW 2 MHz

VBW 5 MHz

SWT 2.5 ms

 

A -30

-20

LTE – Advanced solutions from R&SR&S® FSQ Signal Analyzer 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 245/284

November 2012 | LTE Introduction | 247

Center 2.17 GHz Span 100 MHz10 MHz/

1 AP

CLRWR 

3DB

EXT

-120

-110

-100

-90

-80

-70

-60

-50

-40

Date: 8.OCT.2009 14:13:24

LTE-Advanced – An introduction

 A. Roessler | October 2009 | 247

20 MHz

E-UTRA carrier 2f c,E-UTRA carrier 2 = 2205 MHz

-10 dB

20 MHz

E-UTRA carrier 2f c,E-UTRA carrier 2 = 2135 MHz

Enhanced MIMO schemes 

l Increased number of layers:

l Up to 8x8 MIMO in downlink.

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 246/284

November 2012 | LTE Introduction | 248

l Up to 4x4 MIMO in uplink. 

l In addition the downlink reference signal structure has been

enhanced compared with LTE Release 8 by:

l Demodulation Reference signals (DM-RS) targeting PDSCH demodulation.

 – UE specific, i.e. an extension to multiple layers of the concept of Release 8 UE-

specific reference signals used for beamforming.

l Reference signals targeting channel state information (CSI-RS) estimation

for CQI/PMI/RI/etc reporting when needed.

 – Cell specific, sparse in the frequency and time domain and punctured into the dataregion of normal subframes.

Downlink reference signals in LTE-Advanced

l Define two types of RS,

l RS targeting PDSCH demodulation,

l RS t ti CSI ti (f

l RS and data are subject to the same

pre-coding operation,

l complementary use of Rel-8 CRS by

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 247/284

November 2012 | LTE Introduction | 249

l RS targeting CSI generation (for CQI/PMI/RI/etc reporting when

needed),

l RS targeting PDSCH demodulation

(for LTE-Advanced operation) are

l UE specific

 – Transmitted only in scheduled RBs and

the corresponding layers – Different layers can target the same or 

different UEs

 – Design principle is an extension of the

concept of Rel-8 UE-specific RS (used for 

beamforming) to multiple layersDetails on

UE-specific RS pattern, location, etc are

FFS

l RS on different layers are mutuallyorthogonal,

the UE is not precluded,

l RS targeting CSI generation (for 

LTE-A operation) are

l Cell specific and sparse in frequency

and time

l Rel-8 transmission schemes using

Rel-8 cell-specific and/or UE-specific RS still supported,

Cell specific Reference Signals vs. DM-RSLTE Rel.8 LTE-Advanced (Rel.10)

s1 s1

CRS0 DM-RS0 CRS0 + CSI-RS0

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 248/284

November 2012 | LTE Introduction | 250

l Demodulation-Reference signals DM-RS and data are precodedthe same way, enabling non-codebook based precoding and

enhanced multi-user beamforming.

s2

sN

........

Pre-

coding

s2

sN

........

Pre-

coding

Cell specific

Reference signalsN

DM-RSN Cell specific

reference signalsN +

Channel status information

reference signals 0

Ref. signal mapping: Rel.8 vs. LTE-Advancedl Example:

l 2 antenna ports, antenna port 0,

CSI-RS configuration 8.

l PDCCH (control) allocated in the

f O

LTE (Release 8) LTE-A (Release 10)0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

      0

x x x x 1

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 249/284

November 2012 | LTE Introduction | 251

first 2 OFDM symbols.

l CRS sent on all RBs; DTX sent

for the CRS of 2nd antenna

port.

l DM-RS sent only for scheduledRBs on all antennas; each set

coded differently between the

two layers.

l CSI-RS punctures Rel. 8 data;

sent periodically over allotted

REs (not more than twice per 

frame)

x x x x 1

      E

x x x x S

      A

      E

x x x x L

      E

      R

x x x x

      8

x x x x

      E

x x x x S

      A

      E

x x x x L

      E

      R

x x x x

PDSCH PDCCH CRS DM-RS CSI-RS

DL MIMOExtension up to 8x8

l Max number of transport blocks: 2

l Number of MCS fields

lone for each transport block

Codeword to layer mapping for spatial multiplexing 

Number 

of layers 

Number 

of code

words 

Codeword-to-layer mapping

110 layer 

 symb M  , ,i

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 250/284

November 2012 | LTE Introduction | 252

one for each transport blockl ACK/NACK feedback

l 1 bit per transport block for evaluation

as a baseline

l Closed-loop precoding supported

l Rely on precoded dedicated

demodulation RS (decision on DL RS)

l Conclusion on the codeword-to-layer mapping:

l DL spatial multiplexing of up to eight

layers is considered for LTE-Advanced,

l Up to 4 layers, reuse LTE codeword-to-

layer mapping,

l  Above 4 layers mapping – see table

l Discussion on control signalingdetails ongoing

5 2

6 2

7 2

8 2

)34()()24()(

)14()(

)4()(

)1()7(

)1()6(

)1()5(

)1()4(

id i xid i x

id i x

id i x

)34()(

)24()(

)14()(

)4()(

)0()3(

)0()2(

)0()1(

)0()0(

id i x

id i x

id i x

id i x

)34()()24()()14()(

)4()(

)1()6(

)1()5(

)1()4(

)1()3(

id i xid i xid i xid i x

)23()()13()(

)3()(

)0()2(

)0()1(

)0()0(

id i xid i xid i x

)23()(

)13()(

)3()(

)1()5(

)1()4(

)1()3(

id i x

id i x

id i x

)23()()13()(

)3()(

)0()2(

)0()1(

)0()0(

id i xid i xid i x

)23()()13()(

)3()(

)1()4(

)1()3(

)1()2(

id i xid i xid i x

)12()(

)2()()0()1(

)0()0(

id i x

id i x

32 )1(

symb

)0(

symb

layer 

symb M  M  M 

33)1(

symb

)0(

symb

layer 

symb M  M  M 

43)1(

symb

)0(

symb

layer 

symb M  M  M 

44)1(

symb

)0(

symb

layer 

symb M  M  M 

MIMO – layer and codeword

Codeword 1:

111000011101

1 0 1

1 0 1

1 0 0Codeword 1:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 251/284

November 2012 | LTE Introduction | 253

111000011101

Codeword 2:

010101010011

0 1 1

1 0 0

0 0 0

1 1 1

1 1 1

0 0 1

111000011101

Codeword 2:010101010011

 ACK ACK

 ACK

Up to 8 timesthe data ->

8 layers

Receiver onlySends

2 ACK/NACKs

Scheduling of Transmission Mode 9 (TM9) l NEW DCI format 2C with 3GPP Rel-10.

l Used to schedule transmission mode 9 (TM9), which is spatial

multiplexing with DM-RS support of up to 8 layers (multi-layer 

transmission).

DM RS scrambling and number of layers are jointly signaled in a 3 bit

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 252/284

November 2012 | LTE Introduction | 254

 – DM-RS scrambling and number of layers are jointly signaled in a 3-bit

field.

l DCI format 2C.

 – Carrier indicator [3 bit].

 – Resource allocation header [1 bit]

 – Resource Allocation Type 0 and 1. – TPC command for PUCCH [2 bit].

 – Downlink Assignment Index1) [2 bit].

 – HARQ process number 

[3 bit (FDD), 4 bit (TDD)].

 –  Antenna ports, scrambling identiy

and # of layers; see table [3 bit]. – SRS request1) [0-1 bit].

 – MCS, new data indicator, RV for 2 transport block [each 5 bit].

One Codeword:

Codeword 0 enabled,

Codeword 1 disabled

Two Codewords:

Codeword 0 enabled,

Codeword 1 enabled

Value Message Value Message

0 1 layer, port 7, nSCID=0 0 2 layers, ports 7-8, nSCID=0

1 1 layer, port 7, nSCID=1 1 2 layers, ports 7-8, nSCID=1

2 1 layer, port 8, nSCID=0 2 3 layers, ports 7-9

3 1 layer, port 8, nSCID=1 3 4 layers, ports 7-10

4 2 layers, ports 7-8 4 5 layers, ports 7-11

5 3 layers, ports 7-9 5 6 layers, ports 7-12

6 4 layers, ports 7-10 6 7 layers, ports 7-13

7 Reserved 7 8 layers, ports 7-14

1) TDD only

Uplink MIMOExtension up to 4x4l Rel-8 LTE.

l UEs must have 2 antennas for reception.

l But only 1 amplifier for transmission is available (costs/complexity).

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 253/284

November 2012 | LTE Introduction | 255

l UL MIMO only as antenna switching mode (switched diversity).

l 4x4 UL SU-MIMO is needed to fulfill peak data rate requirement of 

15 bps/Hz.

l Schemes are very similar to DL MIMO modes.

l UL spatial multiplexing of up to 4 layers is considered for LTE-Advanced.

l SRS enables link and SU-MIMO adaptation.

l

Number of receive antennas are receiver-implementationspecific.

l  At least two receive antennas is assumed on the terminal side.

UL MIMO – signal generation in uplink

layerscodewords antenna ports

Similar to Rel.8 Downlink:

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 254/284

November 2012 | LTE Introduction | 256

ScramblingModulation

mapper 

Layer 

mapper Precoding

Resource element

mapper 

SC-FDMA

signal gen.

Resource element

mapper 

SC-FDMA

signal gen.Scrambling

Modulation

mapper 

Transform

 precoder 

Transform

 precoder 

 Avoid

periodic bit

sequenceQPSK

16-QAM

64-QAM

Up to

4 layer 

DFT,

as in Rel 8,

but non-

contiguous

allocation possible

UL MIMO – layers and codewords

Number of layers Number of codewords Codeword-to-layer mapping

1,...,1,0layer symb M i  

1 1 )()( )0()0( id i x  )0(

symblayer symb M  M   

)2()( )0()0( idi

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 255/284

November 2012 | LTE Introduction | 257

2 1 )12()(

)2()()0()1(

)0()0(

id i x

id i x

 

2)0(

symblayer symb M  M   

)()()0()0(

id i x  2 2

)()()1()1(

id i x  

)1(symb

)0(symb

layer symb M  M  M   

3 2

)()( )0()0( id i x  

)12()(

)2()()1()2(

)1()1(

id i x

id i x

 

2)1(symb

)0(symb

layer symb M  M  M   

)12()(

)2()()0()1(

)0()0(

id i x

id i x

 4 2

)12()(

)2()(

)1()3(

)1()2(

id i x

id i x

 

22)1(

symb)0(

symblayer symb M  M  M   

Up to 4

Layers

(Rel.11)2 codewords

UL MIMO scheduling – DCI format 4 NEW! l Carrier indicator [0-3 bit].

l Resource Block Assignment:

l [bits] for Resource Allocation

Type 0

l Downlink Assignment Index [2

bit].

l TDD only, UL-DL config. 1-6.

l CSI request [1 or 2 bit].

l 2 bit for cells with more than two ULUL

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 256/284

November 2012 | LTE Introduction | 258

l [bits] for Resource Allocation

Type 1.

l TPC command for PUSCH [2

bit].

l Cyclic shift for DM RS and

OCC index [2 bit].

l UL index [2 bit].

l TDD only for UL-DL

configuration 0.

l 2 bit for cells with more than twocells in the DL (carrier 

aggregation).

l SRS request [2 bit].

l Resource Allocation Type [1

bit].

l Transport Block 1.

l MCS, RV [5 bit].

l New data indicator [1 bit].

l Transport Block 2.

l MCS, RV [5 bit].

l New data indicator [1 bit].

l Precoding information.

  

   )2/)1((log

ULRB

ULRB2 N  N 

 

 

 

 

 

 

 

 

4

1/

log2

 P  N UL

 RB

LTE-AdvancedEnhanced uplink SC-FDMA

l The uplink

transmission

scheme remains

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 257/284

November 2012 | LTE Introduction | 259

scheme remainsSC-FDMA.

l The transmission of 

the physical uplink

shared channel

(PUSCH) uses DFTprecoding.

l Two enhancements:

l Control-data

decoupling

l Non-contiguousdata transmission

Physical channel arrangement - uplink

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 258/284

November 2012 | LTE Introduction | 260

Simultaneous transmission of 

PUCCH and PUSCH from

the same UE is supported

Clustered-DFTS-OFDM

= Clustered DFT spread

OFDM.

Non-contiguous resource block allocation => will cause higher Crest factor at UE side

LTE-AdvancedEnhanced uplink SC-FDMA

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 259/284

November 2012 | LTE Introduction | 261

Unused subcarriers

LTE-AdvancedEnhanced uplink SC-FDMA

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 260/284

November 2012 | LTE Introduction | 262

Due to distribution we get active subcarriers beside

non-active subcarriers: worse peak to average ratio,

e.g. Crest factor 

Simultaneous PUSCH-PUCCH transmission, multi-cluster transmission l Remember, only one UL carrier in 3GPP Release 10;

scenarios:

l Feature support is indicated by PhyLayerParameters-v1020 IE*)

PUCCH d PUCCH d f ll

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 261/284

November 2012 | LTE Introduction | 263

f [MHz]

l Feature support is indicated by PhyLayerParameters-v1020 IE .

PUCCH PUSCH

PUCCH and

allocated PUSCH

PUCCH and fully

allocated PUSCH

PUCCH and partially

allocated PUSCH

partially

allocated PUSCH

f [MHz]

f [MHz] f [MHz]

*) see 3GPP TS 36.331 RRC Protocol Specification

Benefit of localized or distributed mode„static UE“: frequency selectivity is not time variant -> localized allocation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 262/284

November 2012 | LTE Introduction | 264

„high velocity UE“: frequency selectivity is time variant -> distributed allocation

Multipath causes frequency

Selective channel,

It can be time variant or 

Non-time variant

Resource Allocation types in the uplink 

l Uplink Resource Allocation Type 0.

l Contiguous allocation as today in 3GPP Release 8.

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 263/284

November 2012 | LTE Introduction | 265

l Uplink Resource Allocation Type 1.

lUL bandwidth is divided into two sets of Resource Blocks (RB).

l Each set has a number of Resource Block Groups (RBG) of size P.

l Combinatorial index r, indicates RBG starting and ending index for 

both set of RB (s0, s1-1 | s2, s3-1.

 – M = 4, N is bandwidth dependent,

System

Bandwidth

RBG

Size (P )

≤10  1

11 – 26 2

27 – 63 3

64 – 110 4

1

0

 M i

i

 N sr 

 M i

1/ULRB P  N  N 

1

0

 M 

i i s

11 ,

i i i s N s s

l Example: LTE 10 MHz (50 RB), P = 3 leads to 17 RBG.

l Combinatorial index r indicates RBG starting indices for RB set #1

(s0

, s1

-1, defining cluster #1) and RB set #2 (s2

, s3

-1, defining cluster 

#2)

Multi-cluster allocationUplink Resource Allocation Type 1

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 264/284

November 2012 | LTE Introduction | 266

#2).

l Range for s0, s1, s2, s3 for 10 MHz (50 RB): 1 to 18 (see previous

slide).

l  Applied rule: s0 < s1 < s2 < s3 (see previous slide).

l Example: s0=2, s1=9, s2=10, s3=11: “START” 

(s0)“END” 

(s1-1)“START” 

(s2) “END” (s3-1)

Cluster #1 Cluster #2

RBG#11 RBG#13 RBG#15RBG#1 RBG#3 RBG#5 RBG#7 RBG#9

RBG#0 RBG#8 RBG#12 RBG#14 RBG#16RBG#10RBG#2 RBG#4 RBG#6

What are the effects of “Enhanced SC-FDMA”? 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 265/284

November 2012 | LTE Introduction | 267

Sou rce: http :/ /www.3gpp.org /f tp/tsg_ran/WG4_Radio/TSGR4_54/Documen ts/R4-101056.zip 

Significant step towards 4G: Relaying ?

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 266/284

November 2012 | LTE Introduction | 268

Source: TTA‘s workshop for the future of IMT-Advanced technologies, June 2008

Radio Relaying approach

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 267/284

November 2012 | LTE Introduction | 269

Source: TTA‘s workshop for the future of IMT-Advanced technologies, June 2008

No Improvement of SNR resp. CINR

L1/L2 Relaying approach

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 268/284

November 2012 | LTE Introduction | 270

Source: TTA‘s workshop for the future of IMT-Advanced technologies, June 2008

LTE-AdvancedRelaying

l LTE-Advanced extends LTE Release 8 with support for 

relaying in order to enhance coverage and capacity

l Classification of relays based on

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 269/284

November 2012 | LTE Introduction | 271

Classification of relays based onl implemented protocol knowledge… 

 – Layer 1 (repeater)

 – Higher Layer (decode and forward or even mobility management, session

set-up, handover)

l … and whether the relay has its own cell identity 

 – Type 1 relay effectively creates its own cell (own ID and own

synchronization and reference channels

 – Type 2 relay will not have its own Cell_ID

Type 1

Type 2

LTE-Advanced: Relaying

The relay node (RN) is wirelessly connected to a donor cell of a

donor eNB via the Un interface, and UEs connect to the RN via

the Uu interface

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 270/284

November 2012 | LTE Introduction | 272

RN eNBUE

UnUu EPC

the Uu interface

Inband: 2 links operate in the same frequency

Outband: 2 links operate in different frequencies

Co-operative Relaying Approaches

l Receiver in MS (or BS) gains from both, the signal origin and the relay

station

l Co-operative Relaying creates virtual MIMO

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 271/284

November 2012 | LTE Introduction | 273

p y g

• RSs are „decode-and-forward“ devices 

LTE-AdvancedCoordinated Multipoint Tx/Rx (CoMP)

CoMP

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 272/284

November 2012 | LTE Introduction | 276

Coordination between cells

Coordinated Multipoint, CoMPController 

Controller 

CSI

feedback

UE estimates

Various DL

+ feedback 

Info about CoMP,

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 273/284

November 2012 | LTE Introduction | 277

Each eNB

Estimates Uplink 

UE estimates various

Downlink + feedbac

No info about CoMP

at UE

Controller 

CSI

feedback

CoMPInfo

Info about CoMP,UE perform signal

processing

LTE-A: PCFICH indicating PDCCH size

Subframe where

PCFICH is sent 

Subframe 1 and 6

in TDD mode

1, 2 2

Number of OFDM symbols for PDCCH when

10DLRB  N  10DL

RB  N 

PCFICH content in LTE R-8 PCFICH content in LTE-A

PCFICH can

indicate up to 4

OFDM symbols

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 274/284

November 2012 | LTE Introduction | 278

PDSCH

PDCCH

PCFICH

PBCH

S-SCH

P-SCH

Frequency

Subframe 0 in FDD

mode

1, 2, 3 2, 3, 4

   T   i  m  e

OFDM symbolsfor used by PDCCH

LTE-A: Multiple Access MAC layer conceptTransport block 1 Transport block K

Segmentation Segmentation

FEC FEC FEC FEC

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 275/284

November 2012 | LTE Introduction | 279

Non-frequency adaptive Frequency adaptive

Mapping on dispersed chunks Mapping on frequency optimal chunks

Bit interleaved coded modulation

Quasi cyclic block low density partity check

 Antenna summation, linear precoding

IFFT + CP insertion

Resource scheduler 

Packet processing

Bit interleaved coded modulation

Quasi cyclic block low density partity check

RF generation

LTE-Advanced: C-Plane latency

Connected

Dormant Active

10ms

Already fullfills ITU

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 276/284

November 2012 | LTE Introduction | 280

Idle

50ms

 Already fullfills ITU

Requirement with Rel.8,

but ideas to speed up:

•Combined RRC Connection Request and NAS Service Request•Reduced processing delays in network nodes

•Reduced RACH scheduling period: 10ms to 5ms

Shorter PUCCH cycle: requests are sent faster 

Contention based uplink: UE sends data without previous request

LTE Registration – R8 to R10…. incl. security activation UE SS

RRC ConnectionnSetup

RRC ConnectionSetupComplete

NAS ATTACH REQUEST

NAS AUTHENTICATION REQUEST

contains 

RRC ConnectionnRequest

PDN CONNECTIVITY REQUEST

NAS

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 277/284

November 2012 | LTE Introduction | 281

NAS : AUTHENTICATION REQUEST

NAS : AUTHENTICATION RESPONSE

NAS : SECURITY MODE COMMAND

NAS : SECURITY MODE COMMAND COMPLETE

RRC : SECURITY MODE COMMAND

RRC : SECURITY MODE COMMAND COMPLETE

RRC ConnectionReconfiguration

NAS ATTACH ACCEPT

NAS : ACTIVATE DEFAULT EPS BEARER CONTEXT REQ

RRC ConnectionReconfigurationComplete

NAS : ATTACH COMPLETE

NAS : ACTIVATE DEFAULT EPS BEARER CONTEXT

 ACCEPT

contains 

NASRegistration

 Already in RRC

Connection

Request

Present Thrust- Spectrum EfficiencyMomentary snapshot of frequency spectrum allocation

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 278/284

November 2012 | LTE Introduction | 282

l FCC Measurements:- Temporal and geographical variations in the utilization of the assignedspectrum range from 15% to 85%.

Why not use this

part of the spectrum?

ODMA – some ideas… BTS

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 279/284

November 2012 | LTE Introduction | 283

Mobile devices behave as

relay station

Cooperative communicationHow to implement antenna arrays in mobile handsets?

Multi-access

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 280/284

November 2012 | LTE Introduction | 284

Each mobile

is user and relay 3 principles of aid:

•Amplify and forward

•Decode and forward

•Coded cooperation

Independent

fading paths

Cooperative communication

Multi-access

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 281/284

November 2012 | LTE Introduction | 285

Higher signaling

System complexity

Cell edge coverage

Group mobility

Independent

fading paths

Virtual

 Antenna

 Array

Mobile going GREEN

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 282/284

November 2012 | LTE Introduction | 286

Ubiquitous communication 

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 283/284

November 2012 | LTE Introduction | 287

There will be enough topics

for future trainings  

8/22/2019 LTE eutran rsanov2012

http://slidepdf.com/reader/full/lte-eutran-rsanov2012 284/284

Thank you for your attention!