TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

Embed Size (px)

DESCRIPTION

This document if very good for people whom want to study RNP

Citation preview

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    1/173

    Do not delete this graphic elements in here:

    All Rights Reserved Alcatel-Lucent 2013

    9400

    eUTRAN LA5.0 Radio Network PlanningFundamentalsSTUDENT GUIDETMO54093_V1.0-SG Edition 01

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    2/173

    3COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Course objectives

    By the end of the course, participants will be able to:

    Describe briefly the structure of an RNP tool and the stepsof the RNP process;

    Describe the LTE RNP inputs in regard to frequency spectrum,traffic parameters, equipment parameters and RNP requirements;

    Calculate the cell range for a given service by doing a manual link budget

    in Uplink; have the theoretical background to create an initial networkdesign using a RNP tool (the RNP tool is only used by the trainer fordemonstration);

    Define basic radio network parameters (neighborhood and PR/codeplanning);

    Discuss briefly optimization possibilities in terms of capacity and coverage;Describe briefly the interference mechanisms due to LTE/UMTS/GSM co-location and the solutions for antenna systems.

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    3/173

    7COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    4/173

    8COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.1 Basics and principles

    Objective: to get the necessary background information in regards of LTE basics and RNP principles for a

    good start in LTE Radio Network Planning.

    Prerequisites: GSM Radio Network Engineering Fundamentals

    Introduction to UMTS/LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    5/173

    9COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.2 Wireless Technology Feature Comparison

    This study provides an evaluation of the key technical features of the main

    cellular systems and considers the relative merits of each in relation to thenetwork performances and thus in the context of the Network Designprocess.

    The Wireless Technologies included in this analysis can be broadlycategorised into their associated standards bodies ie:

    3GPP2 3GPP

    IEEE

    GSM-GPRS

    EDGE

    UMTS-FDD

    UMTS-FDD HSDPA

    UMTS-FDD HSUPA

    WiMAXWiFi

    CDMA2000

    CDMA2000 EV-DO

    802.20

    3GPP

    3GPP2

    IEEE

    LTE (Rel.8)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    6/173

    10COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    The following table provides a summary of the major wireless cellular

    technologies and their associated categories. This analysis will focus onwhat can be considered the 3rdand 4thgeneration systems

    System Release / Generation Standards Body

    CDMA IS95 2G 3GPP2

    CDMA 3G1X 2.5G 3GPP2

    3G1X EVDO 3G 3GPP2GSM 2G 3GPP

    W-CDMA 3G 3GPP

    LTE (ADV) 3/4G 3GPP802.16d 3G IEEE

    802.16e 4G IEEE

    802.16m, n, ac 4G IEEE

    Non ALU System

    ALU Planned Convergence

    1 LTE Introduction

    1.2 Wireless Technology Feature Comparison

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    7/173

    11COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.3 3GPP: the LTE standardization

    Members:ETSI (Europe) ARIB/TTC (Japan) CCSA (China)

    ATIS (USA,Canada) TTA (South Korea)

    LTE system specifications: Access Network

    LTE (eUTRAN + OFDMA + SC-FDMA) Core Network

    All-IP

    Note: 3GPP has also taken over the GSM recommendations (previously written by ETSI)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    8/173

    12COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.4 LTE specification

    Interesting specifications forLTE Radio Network Planning:

    3GPP TS 36.101: UE radio transmission and reception 3GPP TS 36.104: E-UTRA (BS) radio transmission and reception

    3GPP TS 36.133: Requirements for support of radio resource management

    3GPP TS 36.141: Base Station (BS) conformance testing

    3GPP TS 36.213: Physical layer procedures

    3GPP TS 36.214: Physical layer - measurements

    3GPP TS 36.942: RF system scenarios

    3GPP specifications:

    http://www.3gpp.org/ftp/Specs/archive/36_series/

    Specifications:

    UMTS: series 21 - 35

    LTE: series 36

    Multiple radio access technology: series 37

    Specification numbering andoverview of all UMTS/LTE series:

    http://www.3gpp.org/specification-numbering

    and 3GPP 21.101

    http://www.3gpp.org/ftp/Specs/archive/36_series/http://www.3gpp.org/specification-numberinghttp://www.3gpp.org/specification-numberinghttp://www.3gpp.org/specification-numberinghttp://www.3gpp.org/specification-numberinghttp://www.3gpp.org/ftp/Specs/archive/36_series/
  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    9/173

    13COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.4 LTE specification [cont.]

    LTE frequency bands (3GPP TS 36.101 ) The first frequency bands usable by the operators are the DD bands and the

    2.6 GHz bands. It will also possible to reuse 2G, 3G or CDMA bands for LTE (refarming)

    700 MHzUS DD

    FDD

    800 MHzEDD(European Didital Dividend)

    FDD

    1GHz 2GHz

    2.6 GHzNew band for LTE only

    FDD and TDD

    2.3 GHzTDD

    AWS

    1900MhzPCS

    DCS1800 Mhz

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    10/173

    14COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.5 Mobile evolution and 3GPP releases

    2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

    2G 2.5G 4G3G 3.5G

    Media Streaming Real-timeVoice, SMS Web Browsing VoIP Mutlimedia

    Services

    TDM ATM, FR, HDLC IP/Ethernet

    RANTransport

    GSM GPRS EDGE W-CDMA HSPA HSPA+ LTE (adv.)R99 R5 R6 R7 R8 R9 (R10)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    11/173

    15COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.6 On the road to LTE with W-CDMAW-CDMA HSPA HSPA+ LTE

    TransportATM/Mixed ATM &IP

    ATM/Mixed ATM& IP

    Possibly All IP All IP

    Bandwidth 5 MHz 5 MHz 5 MHzScaleable from 1.4,3, 5, 10 to 20MHz

    Modulation UL BPSK QPSK QPSK/16QAM QPSK/16QAM

    Modulation DL QPSK QPSK/16QAMQPSK/16QAM64QAM

    QPSK/16QAM/64QAM

    Antenna Systems Rx Diversity Rx Diversity 2x2 MIMO 2x2-4X4-2x4 arraycross pol.MIMO

    IMS/VoIP IMS/VoCS IMS/VoCS IMS/VoIP IMS/VoIP

    NetworkStructure

    Node B + RNC Node B + RNCNode B + RNC

    Or eHSPA NodeB

    eNode B

    Services Circuit & PacketSwitched

    Circuit & PacketSwitched

    PS butCompatible toCS

    PS Only

    Radio Access CDMA CDMA CDMAOFDMA DLSC-FDMA UL

    Preparing network and services to 4G4G Compliant

    3G Compliant

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    12/173

    16COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.7 LTE vs UMTS/HSPA

    LTE

    HSPA+

    HSPA

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    13/173

    17COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.8 LTE Performances Evaluation

    Uplink Downlink

    HSPA: 1Tx, 2Rx: 0.3 bps/Hz

    LTE:

    No MIMO(1Tx, 2Rx): 0.7 bps/Hz

    No MIMO(1Tx, 4Rx): 1.1 bps/Hz

    HSPA

    1Tx, 2Rx: 0.5 bps/Hz LTE:

    No MIMO (1Tx, 2Rx): 1.3 bps/Hz

    MIMO 2x2: 1.7 bps/Hz

    MIMO 4x2: 1.9 bps/Hz

    MIMO 4x4: 2.7 bps/Hz

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    14/173

    18COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.9 LTE network architecture

    Entities and interfaces

    Network simplification

    User Plane: 3 functional entities : eNode B, Serving Gateway and PDN Gateway

    (the gateways can be combined into a single physical entity)

    GGSN S/P-GW

    Control plane:

    SGSN MME (Mobility Management Entity)

    RNC eNode B

    eNode B

    3GLTE S/P GW

    IP transport

    backbone

    Multi-standard

    User Database

    Application

    servers

    Service IP

    backbone

    MD

    S

    S1

    X2

    eNode B MME

    UE

    Uu

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    15/173

    19COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.9 LTE network architecture [cont.]

    GERAN

    UTRAN

    S11

    S3

    S5

    SGi

    eUTRAN

    HSS

    S4

    S1-U

    S1-MME

    MME

    Gx

    S6a

    PCRF

    SGSN

    S12

    OtherNon-Trusted Access

    User-plane centric networkelement(s)

    Anchor point for bearers

    Support IP address management

    Policy & QoS enforcement point

    Signaling-plane element

    User mobility management

    Access & attachment control

    Paging, handovers & roaming

    Serving

    Gateway

    OtherTrusted Access

    IP Network

    S2a

    S2b

    PDN

    Gateway

    X2

    X2X2

    UE

    Uu

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    16/173

    21COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1 LTE Introduction

    1.9 LTE network architecture [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    17/173

    22COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2 RNP process

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    18/173

    23COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2 RNP process

    2.1 Goal of radio network design

    What is radio network planning?

    Site selection and configuration

    Efficient deployment ofnetwork

    Minimizing cost

    Why radio network planning?

    Network performance tomeet market targets

    Lower cost for network operator: Initial deployment Network upgrades

    and optimization

    Limitations

    Approximation: propagation modelEstimation: traffic predictionConstraints: site availability in real world

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    19/173

    24COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2 RNP process

    2.2 Overview of radio network design process

    InputRadio network

    planning phases Output

    LTEtechnology

    Market and

    engineeringrequirements

    Environmentparameters

    Selected sites

    Site parameters

    Predicted

    coverage map

    Designed capacity

    eNode B

    configuration

    Performance

    analysis

    Next Steps: RNP study to confirm site count and locationsNetwork optimization

    Radio network

    dimensioningcell

    dimensions

    Radio cell

    planningcell

    locations

    RNP

    optimization

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    20/173

    25COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2.2 Overview of radio network design process

    2.2.1 InputLTE technology

    Multipleantennatechniques

    Air interface Flexible bandwidth Flexible spectrum

    Duplex mode

    Radio accesstechnology

    Transmit diversity SU-MIMO / SM

    MU-MIMO / SDMA

    DL: OFDMA

    UL: SC-FDMA

    2 2 O i f di k d i

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    21/173

    26COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2.2 Overview of radio network design process

    2.2.2 Input - market and engineering requirements

    Quality of Service:

    Reliability

    Coverage probability

    Targeted service at cell edge

    Indoor penetration level

    Coverage:

    Area

    Type of mobilityTraffic:

    Number of subscribers

    Traffic profiles

    Offered services

    Network:

    LTE frequency

    LTE maximum bandwidth

    2 2 O i f di t k d i

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    22/173

    27COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2010TODAY

    UMTS2100 MHz GSM

    900MHz

    UMTS2100 MHz

    Smooth LTE introduction inexisting band, pre-empting a

    narrow BW in GSM, 5 MHzcarrier in UMTS

    GSM900 MHz

    UMTS2100 MHz

    LTE2600 MHz

    Capacity drivenNew spectrum

    application, Hot spots ,20MHz possible

    GSM900 MHz

    UMTS2100MHz

    GSM1800 MHz

    1800 MHz900MHz

    UMTSGSMLTE

    2100 MHz

    Free 900 MHz needs for 1800MHz contiguous coverage, butwill provide favourable range

    Free 1800 MHz more adapted tohot spots capacity driven

    scenario

    GSM900 MHz

    GSM900 MHz

    UMTS2100 MHz

    2.2 Overview of radio network design process

    2.2.3 LTE Spectrum

    Reuse spectrum or new spectrum deployment

    2 2 O i f di t k d i

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    23/173

    28COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2.2 Overview of radio network design process

    2.2.4 Input - environment parameters

    Site co-ordinates

    Traffic Maps

    2 RNP p ocess

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    24/173

    29 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    2 RNP process

    2.3 Exercise

    1. With radio network planning site locations and configurations are

    selected.

    2. The goal of radio network planning is an efficient deployment of thenetwork while minimizing the costs.

    3. Radio network planning is only necessary for greenfield deployment.

    4. Good network design makes sure that the network is deployed with amaximum number of sites.

    5. Approximations have to be used to build a propagation model that

    represents the characteristics for the radio propagation in certain radiofrequencies and environment.

    6. The expected traffic in terms of number of users and volume is fix andknown at the beginning of radio network planning.

    Select all correct statements

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    25/173

    30 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    26/173

    31 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3.1 OFDM Basics

    ConventionalFDM

    Frequency

    Carrier

    saved bandwidthOFDM

    Frequency

    Subcarrier

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    27/173

    32 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3.1 OFDM Basics [cont.]

    Time

    OFDM symbol 2OFDM symbol 1 (via path 1)

    OFDM symbol 1 * (via path 2)OFDM symbol 1 ** (via path 3)

    OFDM symbol 2

    Time

    OFDM symbol 1 (via path 1)

    OFDM symbol 1 * (via path 2)

    OFDM symbol 1 ** (via path 3)

    Path 1

    Path 2

    Path 3

    ISI

    Copy

    CP

    Guard time

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    28/173

    33 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3.2 OFDM The full transmission chain

    OFDM transmitterNsamples ofOFDM symbol

    ksubcarrier

    addCP

    Parallelto serial

    Serialto

    parallel

    datastream .

    .

    ....

    N-pointIDFT

    (IFFT)

    OFDM receiverksubcarrierNsamples ofOFDM symbol

    N-pointDFT(FFT)

    Parallelto

    serial

    .

    .

    .

    .

    .

    .

    Serialto

    parallel

    removeCP

    Fast FourierTransform (FFT)

    algorithm

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    29/173

    34 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3.2 OFDM The full transmission chain [cont.]

    Frequency

    1 Subcarrier

    Bandwidth

    Time

    1 OFDMsymbol

    FrequencyBandwidth

    TimeUser 1

    User 2

    User 3

    Orthogonal Frequency Division Multiple Access (OFDMA)

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    30/173

    35 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3.3 Scalable OFDMA

    Different UEsassigned differentsets of subcarriers

    Scalable OFDMAused for downlink

    Fixed symboltime: 66.7 s

    Total number ofsubcarriers varieswith bandwidth

    Different FFT sizes:5 MHz 512-point FFT,20 MHz 2048-point FFTetc.

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    31/173

    36 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 Air Interface LTE

    3.4 Exercise

    1. In OFDMA the subcarriers overlap.

    2. Orthogonal subcarriers interfere with each other.3. In OFDMA different users get different subcarriers.

    4. The cyclic prefix is inserted to combat inter-symbol interference and inter-carrierinterference caused by multi-path delay spread.

    5. OFDM modulation and demodulation can be efficiently implemented using the Fast FourierTransform (FFT) algorithm.

    6. Central part of an OFDM receiver is an N-point Inverse Discrete Fourier Transform (IDFT)which is implemented by an Inverse Fast Fourier Transform (IFFT).

    7. 512-point FFT means that 512 samples are taken within the OFDM symbol time.

    8. For all bandwidths the same FFT size is used.

    9. The subcarrier spacing depends on the bandwidth.

    Select all correct statements

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    32/173

    37 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Subframe (1 ms)

    Frequency

    Time

    3 Air Interface LTE

    3.5 Frame structure

    Slot(0.5 ms)

    Slot(0.5 ms)

    1 2 3 4 5 6 7

    Bandwidth

    OFDMsymbol

    Resourceelement

    Physical Resource Block

    12subcarrier

    180 kHz

    Subframe0

    Subframe1

    Subframe2

    Subframe3

    Subframe4

    Subframe5

    Subframe6

    Subframe7

    Subframe8

    Subframe9

    Frame (10 ms)

    3.5 Frame structure

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    33/173

    38 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.5 Frame structure

    3.5.1 Frame structure detailsOFDM symbol

    OFDM symbol

    Useful OFDM symbol time66.7 s

    Normal

    CP4.7 s

    7 symbols per slot

    14 symbols per subframe

    Useful OFDM symbol time66.7 s

    CP

    Useful OFDM symbol time66.7 s

    Extended

    CP16.7 s

    6 symbols per slot

    12 symbols per subframe

    3.5 Frame structure

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    34/173

    39 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3 5 a e s uc u e

    3.5.2 Frame structure details - PRB

    Bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

    Number of occupiedsubcarriers

    72 180 300 600 900 1200

    Number of PRBs 6 15 25 50 75 100

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    35/173

    40 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.6 Answer the questions

    How long is the duration of one frame (in milliseconds)

    10 ms

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    36/173

    41 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.6 Answer the questions [cont.]

    How long is the duration of one subframe (in milliseconds)

    1 ms

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    37/173

    42 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.6 Answer the questions [cont.]

    What is the bandwidth of one subcarrier (in kilo Hertz)

    15 kHz

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    38/173

    43 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.6 Answer the questions [cont.]

    Select all correct statements.

    A physical resource block spans 12 subcarriers over 1 slot.

    The minimum unit that can be allocated to a user is

    a physical resource block.

    One slot contains always 7 OFDM symbols.

    The number of physical resource blocks depends on the

    total bandwidth available.

    3 Air Interface LTE

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    39/173

    44 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.6 Answer the questions [cont.]

    Assign the bandwidth in the left column to the number of physical resource

    blocks in the right column.

    1,4 MHz 6

    3 MHz 15

    5 MHz 25

    20 MHz 100

    3 Air Interface LTE

    d d l d d

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    40/173

    45 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.7 Adaptive modulation and coding

    Radio link quality

    Modulation64QAM 16QAM QPSK

    UL schedulinggrant, MCS

    Data

    Coding3/5 1/3 3/5 1/6 1/121/211/12

    Data

    CQI

    3 Air Interface LTE

    3 8 A h i

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    41/173

    46 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.8 Answer the questions

    A UE near the cell edge encounters very poor radio conditions.

    Select the modulation and coding scheme that will be used bythe eNode B.

    64 QAM

    16 QAM3/5

    QPSK - 3/5

    QPSK1/12

    3 Air Interface LTE

    3 9 D li k Ph i l h l (1)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    42/173

    47 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.9 Downlink: Physical channels (1)

    3 Air Interface LTE

    3 10 D li k PRB t t

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    43/173

    48 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.10 Downlink: PRB structure

    Frequency

    Time

    1 physicalresource block

    Reference signal overhead:

    1 antenna: 4.8%2 antennas: 9.5%

    4 antennas: 14.3%

    1 subframe

    Reference signalantenna 1

    Reference signalantenna 2

    PCFICHPDCCHPHICH

    3 Air Interface LTE

    3 11 A th ti

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    44/173

    49 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.11 Answer the questions

    Calculate the control information and reference signal overhead (in %) for:

    - 1 OFDM symbol used for control information (PCFICH, PDCCH,PHICH)

    - 2 transmit antennas

    Assumption: normal cyclic prefix is used.

    Pay attention to the short explanation how to calculate it!

    Select the correct result.

    10.7

    14.3

    25.0

    28.6

    3 Air Interface LTE

    3 11 A th ti [ t ]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    45/173

    50 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.11 Answer the questions [cont.]

    Calculate the control information and reference signals overhead (in %) for:

    - 3 OFDM symbols used for control information (PCFICH, PDCCH, PHICH)- 2 transmit antennas

    Assumption: normal cyclic prefix is used.

    Pay attention to the short explanation how to calculate it!

    Select the correct result.

    10.7

    14.3

    25.0

    28.6

    3 Air Interface LTE

    3 12 D li k Ph i l h l (2)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    46/173

    51 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.12 Downlink: Physical channels (2)

    3 Air Interface LTE

    3 13 Downlink: Synchronization channels & PBCH

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    47/173

    52 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.13 Downlink: Synchronization channels & PBCH

    Subframe 0 1 2 3 4 5 6 7 8 9

    Slot 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    20MHz

    10MHz

    5MHz

    3MHz

    1.4MHz6 PRB1.08 MHz

    Secondary Synch. Channel Primary Synch. Channel

    PBCH

    504 Physical cell identities

    Cell group number: 0 .. 167 Cell number in cell group: 0, 1, 2

    3 Air Interface LTE

    3 14 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    48/173

    53 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.14 Answer the questions

    Calculate the PBCH overhead (in %) for:

    - 20 MHz bandwidth- 2 transmit antennas

    Assumption: normal cyclic prefix is used.

    Pay attention to the short explanation how to calculate it!

    Select the correct result.

    0.16

    0.6

    2.6

    5.0

    3 Air Interface LTE

    3 14 Answer the questions [cont ]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    49/173

    54 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.14 Answer the questions [cont.]

    Calculate the Synchronization Channel overhead (in %) for:

    - 20 MHz bandwidth- 2 transmit antennas

    Assumption: normal cyclic prefix is used.

    Pay attention to the short explanation how to calculate it!

    Select the correct result.

    0.17

    0.7

    2.9

    6.2

    3 Air Interface LTE

    3 15 Downlink: Physical channels (3)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    50/173

    55 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.15 Downlink: Physical channels (3)

    3 Air Interface LTE

    3 16 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    51/173

    56 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.16 Answer the questions

    Select for each task descriptionthe appropriate physicaldownlink channel.

    1. Carries downlink traffic and transmits tracking area codeandcell usage restrictions.

    2. Transmits downlink resource allocation, uplink schedulinggrant and uplinkpowercontrolcommands.

    3. Contains number of OFDM symbols that are used for PDCCH.

    4. Carries important basic systeminformation for all UEs ina cell likethesystembandwidth.

    5. Allows UE to get timing and frequency synchronization with the cell and carriesphysicalcell identity.

    6. Used to acknowledge uplink transmission.

    a. PHICH

    b. Synchronization Channels

    c. PBCHd. PCFICH

    e. PDCCH

    f. PDSCH

    3 Air Interface LTE

    3 17 Uplink: SC FDMA

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    52/173

    57 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.17 Uplink: SC-FDMA

    SC-FDMA

    SC-FDMA transmitter:

    SC-FDMAreceiver:

    IFFT Parallel to

    serial

    DFTSerial

    to parallel

    .

    .

    ....

    .

    .

    .

    Serialtoparallel

    FFTIDFTParalleltoserial

    .

    .

    ....

    .

    .

    .

    High PAPR in OFDMA

    3 Air Interface LTE

    3 18 Uplink: Physical channels

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    53/173

    58 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.18 Uplink: Physical channels

    3 Air Interface LTE

    3 19 Uplink: PUCCH

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    54/173

    59 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    PUSCH

    PUCCH

    PUCCH

    3.19 Uplink: PUCCH

    Frequency

    Time

    1 subframe

    Bandwidth

    Carries: CQI ACK/NACK

    Scheduling request

    Physical resource blocks: At extreme ends of

    bandwidth Number based on required

    amount of control

    Never transmitted with PUSCH

    3 Air Interface LTE

    3 20 Uplink: Sounding & demodulation reference signals

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    55/173

    60 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    UE 1

    UE 2

    3.20 Uplink: Sounding & demodulation reference signals

    Frequency

    Time

    1 subframe

    Bandwidth

    PUSCH

    PUCCH

    PUCCH

    Soundingreferencesignal

    Demodulationreferencesignal

    3 Air Interface LTE

    3 21 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    56/173

    61 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.21 Answer the questions

    Calculate the PUCCH overhead (in %) for:

    - 5 MHz bandwidth- 8 physical resource blocks reserved for PUCCH

    Pay attention to the short explanation how to calculate it!

    Select the correct result.

    2 %

    8 %

    32 %

    33.3 %

    3 Air Interface LTE

    3 22 Uplink: Random access

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    57/173

    62 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.22 Uplink: Random access

    PUSCH: Data

    Response (timing alignment, uplink allocation)

    PRACH: random access preamble

    PRACH: random access preamble

    No response

    Initial access

    Handoff

    Uplink synchronization

    3 Air Interface LTE

    3 23 Uplink: PRACH

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    58/173

    63 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.23 Uplink: PRACH

    Time

    PRACH cycle

    Frequency

    6 PRB(1.08 MHz)

    PRACHopportunities

    CP PreambleGuardperiod

    1ms, 2ms or 3ms

    3 Air Interface LTE

    3 24 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    59/173

    64 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.24 Answer the questions

    Select for each task description the appropriate physical uplink channel.

    1. Carries scheduling request for uplink transmission, hybrid ARQfeedback for downlink transmission and Channel Quality Indicator(CQI).

    2. Used for initial access and uplink timing alignment.

    3. Carries traffic, hybrid ARQ feedback for downlink transmission andChannel Quality Indicator (CQI).

    a. PRACH

    b. PUSCH

    c. PUCCH

    3 Air Interface LTE

    3 25 Uplink: Power control

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    60/173

    65 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Classical open loop power control

    All users achieve same target SINR

    Poor spectral efficiency

    3.25 Uplink: Power control

    Fractional power control

    Flexible trade-offbetween spectralefficiency and celledge rates

    TargetSINR

    Others

    Fractional power control basedon path loss difference

    3GPP general definition

    Downlink reference signal

    Broadcast:target SINR, uplink interference

    UE specific power factors

    ,

    3 Air Interface LTE

    3 26 Uplink: Inter-cell power control

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    61/173

    66 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.26 Uplink: Inter cell power control

    Interference

    Overload indicator (X2 interface)

    MeasureInterference

    Adapt powercontrolparameters

    3 Air Interface LTE

    3.27 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    62/173

    67 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.27 Answer the questions1. Open loop power control allows the UE to autonomously adjust thetransmit power level to compensate for path loss and shadowing.

    Is this statement true or false?

    true

    2. For open loop power control the UE measures the downlink referencesignal and computes the path loss at downlink. The UE sets its transmitpower to achieve the SINR target, broadcasted by the eNode B.

    Is this statement true or false?true

    3. Fractional Power Control tries to achieve the same SINR valueeverywhere in the cell.

    Is this statement true or false?false

    3 Air Interface LTE

    3.28 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    63/173

    68 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    3.28 Answer the questions

    1. Interference within a cell is the dominant source of interference in LTE.

    Is this statement true or false?

    false

    2. Inter-cell power control is based on overload indicators exchanged

    directly between neighboring eNode Bs via the X2 interface.

    Is this statement true or false?

    true

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    64/173

    69 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    4 Summary

    4 Summary

    4.1 You are now able to:

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    65/173

    70 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    4.1 You are now able to:

    Find information about relevant specifications

    Describe main requirements and targets of LTEIdentify basic components and interfaces of LTE

    network

    Explain goal of radio network planning

    Explain process and major steps of radio network planning

    Identify input parameters for radio network planning

    Explain aspects of LTE air interface relevant for radio network planning:

    OFDMA and Frame structure

    SC-FDMA concepts

    Physical channels

    in uplink and Uplink power control

    downlink

    4 Summary

    4.2 Crossword

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    66/173

    71 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    4.2 Crossword

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    1314

    15

    16

    17

    4 Summary

    4.3 Crossword questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    67/173

    72 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    q

    1 Antenna characteristic

    2 Component of an LTE network that performs radio resource management functions andallocates the radio resources in uplink and downlink

    3 Component of an LTE network which is the mobility anchor point and routes and forwards

    packets4 Part of the physical cell identity in the secondary synchronization channel.

    5 Central part of a OFDM transmitter

    6 Component of an LTE network that manages user mobility, selects the gateways andkeeps location information

    7 Used by UEs to make an initial request

    8 Modulation scheme

    9 Input to radio network planning

    10 Inter-cell power control is based on it

    11 Radio access technology used in downlink

    12 Means to reduce inter-symbol interference and inter-carrier interference

    13 Technique to increase the cell capacity even in challenging radio conditions at the celledge14 Radio network planning phase

    15 In the 5 MHz bandwidth we have 300 . . . . .

    16 Minimum resource unit that can be allocated to a user

    17 Component of an LTE network that allocates the UE IP address

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    68/173

    74 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    5 Antennas in LTE

    5 Antennas in LTE

    5.1 Basic antenna data for radio network planning

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    69/173

    75 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    p g

    Basic antennas(isotropic / dipole)

    Antenna gain

    Effective isotropicradiated power(EIRP)

    Antenna downtilt

    Radiation patterns:

    Half power beamwidth Front-to-back ratio

    Main lobe, side lobes,null directions

    Standard antenna

    5 Antennas in LTE

    5.2 Basic antennas

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    70/173

    76 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    single transmit point sphere pattern

    Isotropic antenna

    wavelength conductor doughnut shaped pattern

    Dipole antenna

    Antenna gaindipole:0 dBd

    isotropic:0 dBi

    real antenna:5.15 dBi = 3 dBd + 2.15 dB

    = 2.15 dBi

    5 Antennas in LTE

    5.3 Effective isotropic radiated power (EIRP)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    71/173

    77 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    p p ( )

    Power = 45 dBm

    Gain = 11 dBi

    EIRP = Power + Gain= 45 dBm + 11 dBi= 56 dBm

    IsotropicradiatedPower

    Radiatedpower

    5 Antennas in LTE

    5.4 Radiation patterns

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    72/173

    78 COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    p

    Backlobe

    Sidelobes

    Nulls

    Mainlobe

    Nullfill

    Front-to-backratio

    -3 dB level

    Halfpowerbeam-width

    Horizontal or azimuth pattern Vertical or elevation pattern

    5 Antennas in LTE

    5.5 Antenna downtilt

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    73/173

    79COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Electrical downtilt

    Backlobepeak

    Horizontalpattern (disc)

    Axis ofrotation

    Mainlobepeak

    Vertical pattern Horizontal pattern

    Tilt:

    Horizontal patternVertical pattern

    Mechanical downtilt

    Horizontalpattern (cone)

    Backlobepeak Main

    lobepeak

    5 Antennas in LTE

    5.6 Standard antennas

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    74/173

    80COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Horizontal beam width:

    65or 90

    Azimuth:0, 120 and 240

    (3 sectored site)

    Gain:17 dBi - 18 dBi

    Height (above ground):20 m - 25 m (urban)30 m - 35 m (suburban)

    Electrical downtilt:0 - 10 adjustable

    5 Antennas in LTE

    5.7 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    75/173

    81COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    What is the EIRP for the following antenna:

    Power: 45 dBmGain: 18 dBi

    0 dBm

    27 dBm

    63 dBm

    65.15 dBm

    What is the gain expressed in dBi of a real antenna with a gain of 3.85 dBd?

    0 dBm

    1.7 dBm3.65 dBm

    6.0 dBm

    5 Antennas in LTE

    5.8 Multiple antenna techniques

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    76/173

    82COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Diversity

    Press the buttonsto get moreinformation!

    M x N

    transmit antennasX

    receive antennas

    SU-MIMO /Spatial Multiplexing MU-MIMO /

    Spatial DivisionMultiple Access

    5 Antennas in LTE

    5.9 Diversity

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    77/173

    83COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Receive diversity:Same data stream to multiple receiveantennas

    Improved reliability

    Better coverage

    Space Frequency Block Coding (SFBC)

    Transmit diversity:Same data stream from multiple transmitantennas to same user

    Improved reliabilityBetter coverageLess power or higher throughput

    f1 -S2*

    f2 S1*

    f1 S1

    f2 S2

    S2 S1

    5 Antennas in LTE

    5.10 SU-MIMO / Spatial Multiplexing (SM)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    78/173

    84COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    S2 S1

    S1

    S2

    W11

    W21

    W1

    2

    W22

    Pre-coding matrix: W= [ W11 W12 ]W21 W22

    Multiple data streams sent to same user

    Used in good radio conditions (high SINR) Single-user throughput gains

    a, b, c,d

    a, b c,d

    5 Antennas in LTE

    5.11 Closed-loop and open-loop

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    79/173

    85COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Open-loop Closed-loop

    CQI

    RIPMI

    Modulation & coding Rank (number of datastreams) to be used in SM

    Preferred pre-coding matrixto be used in SM

    Adaptive MIMO Switching (AMS)

    SpatialMultiplexing

    TransmitDiversity

    Fall back

    SpatialMultiplexing

    Rank-1Pre-coding

    Fall back

    Uses RI & PMI Suitable for low speed scenarios Received SNR/throughput maximized

    Uses RI Suitable for high mobility scenarios

    5 Antennas in LTE

    5.12 Rank-1 pre-coding

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    80/173

    86COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    S1

    S1

    S2

    W11

    W21

    W12

    W22

    Pre-coding matrix: W= [ W11 W12 ]W21 W22

    S2

    S1

    W= [ W1 ]W2Pre-coding vector:

    W1

    Spatial MultiplexingRank-1 Pre-coding

    W2

    5 Antennas in LTE

    5.13 MU-MIMO / Spatial Division Multiple Access (SDMA)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    81/173

    87COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Different data streams transmitted simultaneously on the same frequencies

    Used in low SINR conditions Capacity in terms of number of connected users improved Cell throughput improved

    5 Antennas in LTE

    5.14 Multiple antenna techniques summary

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    82/173

    88COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Link level simulation: 5 MHz, downlink, 30 km/h, 16QAM:

    0 5 10 15 20 25 30 35 40

    20

    1816

    14

    12

    10

    8

    6

    4

    2

    0

    SINR [dB]

    Thro

    ughput[Mbit/s]

    Coding = 2/3

    0 5 10 15 20 25 30 35 40

    20

    1816

    14

    12

    10

    8

    6

    4

    2

    0

    SINR [dB]

    Thro

    ughput[Mbit/s]

    Coding = 1/3 no MIMOSU-MIMO 2x2

    Coverage Capacity Peak throughput

    SU-MIMO / SM + + ++

    Rank-1 pre-coding ++ ++ +

    MU-MIMO (uplink) + ++

    Transmit diversity ++ + +

    5 Antennas in LTE

    5.15 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    83/173

    89COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Select for every description thecorresponding multiple antenna technique.

    1. Copies of thesame data streamare sent from multiple antennas to sameuser.

    2. Independent data streams are sent from multiple antennas to the same user.

    3. Different data streams are transmitted simultaneously on the samefrequencies.

    a. MU-MIMO

    b. SU-MIMO

    c. Transmit diversity

    5 Antennas in LTE

    5.15 Answer the questions [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    84/173

    90COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Transmit diversity is used to increase the reliability of a single data stream in goodradio conditions.

    Is this statement true or false? false

    Transmit diversity mainly improves the coverage.

    Is this statement true or false?true

    SU-MIMO is used in good radio conditions to increase the throughput for one user.

    Is this statement true or false?true

    SU-MIMO is used in good radio conditions to increase the throughput for one user.

    Is this statement true or false? true

    5 Antennas in LTE

    5.15 Answer the questions [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    85/173

    91COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Open-loop spatial multiplexing uses RI and PMI reported from the UE to

    select the rank and the pre-coding matrix.

    Is this statement correct? False

    MU-MIMO in uplink is used in good radio conditions to improve the capacity

    in terms of number of connected users.

    Is this statement true or false? False

    MU-MIMO in uplink is used in challenging radio conditions, e.g. at the edge

    of the cell to improve the capacity in terms of number of connected users.

    Is this statement true or false? true

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    86/173

    92COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    6 Radio network planning process

    6 Radio network planning process

    6.1 Overview of radio network planning process

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    87/173

    93COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    InputRadio networkplanning phases Output

    LTEtechnology

    Market andengineeringrequirements

    Environmentparameters

    Selected sites

    Site parameters

    Predictedcoverage map

    Designed capacity

    eNode Bconfiguration

    Performanceanalysis

    Radio networkdimensioningcelldimensions

    Radio cellplanningcelllocations

    RNP

    optimization

    6 Radio network planning process

    6.2 Radio network plannning phases

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    88/173

    94COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Radio networkdimensioning

    LTE link budgetPropagation model

    Radio cell planning

    Capacity planning

    Network simulations

    RF design

    Site placement & configurationCoverage prediction

    RF configuration parametersCell neighbor planningPhysical cell id. planningFrequency planning

    Site candidate selection& acceptance

    6 Radio network planning process

    6.3 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    89/173

    95COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Select the appropriate task for each radio network planning step:

    Radio networkdimensioning

    RF design

    RF configuration parameters

    Capacity planning

    Site candidate selection &acceptance

    -Use network simulations to modelimpact of traffic distribution andserviceusageprofiles.

    -Select real site locations

    -Plan physicalcell identities andfrequency reuse

    -Use coverage predictions to improve

    site locations and configurations

    -Calculate Maximum Allowable PathLoss between transmitterandreceiver

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    90/173

    96COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    7 Link Budget

    7 Link Budget

    7.1 What is a link budget

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    91/173

    97COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    MaximumUE transmitpower

    MaximumAllowable PathLoss (MAPL)

    Cell radius

    Maximum distance between transmitter and receiver?Signal must be received with defined quality levelCalculate Maximum Allowable Path Loss (MAPL)

    Requiredreceived signal

    7 Link Budget

    7.2 Uplink MAPL calculation

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    92/173

    98COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Max. UEtransmitpower

    Losses andmargins- Gains+

    eNode Breceiversensitivity- MAPL=-Interference

    Cable,

    connector,feeder losses

    Shadowing

    Penetration loss

    Body loss

    eNode Bantenna gain

    UE antennagain

    Handoff gain

    Cellradius

    Propagationmodel

    7 Link Budget

    7.3 eNode B receiver sensitivity

    P bl k

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    93/173

    99COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Examples of typical values considered in uplink link budget (at 2.6 GHz):

    Minimum required signal level to reach given quality when

    facing only thermal noise

    At eNode B within requiredbandwidth

    Packet services

    UL data rate [kbps] 64 256 2000

    Modulation QPSK QPSK QPSK

    Coding rate 0.379 0.679 0.664Nbr. of resource blocks 2 5 40

    SINR target

    [dB]

    EVehA3 -3.6 -2.4 -3.3

    EVehA50 -2.1 -0.5 -1.7

    UL Sensitivity[dBm]

    EVehA3 -119.6 -114.4 -106.2

    EVehA50 -118.0 -112.5 -104.6

    Per resource block To reach given data rate and quality Depends on service Derived from link level simulations /

    equipment measurements

    Sensitivity [dBm] = SINR_Target + ThermalNoise

    NoiseFigure_eNB + 10log10(ThermalNoiseDensity NbrRB BandwidthRB)

    Depends on supplier;typical value: 2.5 dB

    Depends on service;BandwidthRB = 180kHz

    10log10(ThermalNoiseDenisty)= -174 [dBm/Hz]

    UE speed: 3km/h: dense urban,

    urban, suburban indoor 50km/h: rural

    7 Link Budget

    7.4 Interference margin (IoT)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    94/173

    100COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Received power at eNode B: CS[dBm] Sensitivity + IoT

    Typical interference margin: 3 dB

    Interference rise overthermal noise Inter-cell

    interference

    1

    2

    34

    5

    6

    7

    8

    9

    -6 -5 -4 -3 -2 -1 0 1Cell edge SINR target (dB)

    Averag

    e

    IoT

    (dB)

    7 Link Budget

    7.5 Shadowing margin

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    95/173

    101COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Examples:

    Shadowing = slow fading due to obstacles

    Shadowing margin: signal received well with given probability

    Probability(CS[dBm] Sensitivity + IoT) CoverageProbability

    Modeled (in dB) as Gaussian variable: Mean: 0 dB Standard deviation:

    depends on the environment; typically 510 dB

    Shadowing standarddeviation

    Cell area coverageprobability

    Cell edge coverageprobability

    Shadowingmargin

    8 dB 95% 86.2% 8.7 dB

    7 dB 90% 73.3% 4.3 dB

    Typical coverage probabilities: Dense urban, urban and suburban

    environments: 95% Rural environments: 90%

    Typical dense urban, urbanand suburban deploymentconditions with 3 km/h UEspeed.

    Typical rural conditionswith 50 km/h UE speed.

    7 Link Budget

    7.6 Penetration losses

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    96/173

    102COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Typical penetration margins:

    Rural

    incar

    Suburban

    indoor

    Urban

    indoor

    Dense urban

    deep indoor

    700 MHz 5 dB 11 dB 14 dB 17 dB

    900 MHz 6 dB 12 dB 15 dB 18 dB

    2.6 GHz 9 dB 15 dB 18 dB 21 dB

    Penetration losses due to in-building and in-car usage:

    Characterize level of indoor coverage(deep indoor, in-car, outdoor, etc.)

    Depend on wall materials, numberof walls/windows and frequency

    Specified as "worst case" penetration margin.

    7 Link Budget

    7.7 Body loss

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    97/173

    103COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Body loss = losses induced by user

    Derived from statistical measurements.

    Typical values:

    Voice services:3 dB

    Data services:0 dB

    7 Link Budget

    7.8 Handoff gain

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    98/173

    104COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Examples:

    highshadowing

    lowershadowing

    Hard handoff

    Shadowing standarddeviation

    Cell area coverageprobability

    Shadowingmargin UE speed Handoff gain

    8 dB 95% 8.7 dB 3 km/h 3.6 dB

    7 dB 90% 4.3 dB 50 km/h 2.6 dB

    Models exist to derive hard handoff gain.

    7 Link Budget

    7.9 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    99/173

    105COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1. The minimum required signal level to reach the given quality when facing onlythermal noise.

    2. Takes into account the interference rise over thermal noise due to inter-cell

    interference.3. Ensures that the signal is received with enough quality with a given coverage

    probability.

    4. Characterizes the level of indoor coverage that is required.

    5. Takes into account the presence of a user that reduces the power transmittedor received by a UE.

    6. Takes into account that a UE can use a neighbor cell with more favorableshadowing.

    a. Shadowing margin

    b. eNode B receiver sensitivity

    c. Handoff gaind. Body loss

    e. Interference margin

    f. Penetration margin

    7 Link Budget

    7.10 Example for urban environment (VehA 3km/h)

    Max UE eNode B

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    100/173

    106COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    = 131.6(3+3+8.7+18) + (0+18+3.6) (-122.7) 3

    MAPL for indoor coverage [dB] 131.6

    23

    Data RateVoIP (12.2 kbps uplink

    data rate)

    Number of resource blocks 1

    eNode B noise figure [dB] 2.5

    Required SINR [dB] -3.7Maximum UE transmit power [dBm] 23

    UE antenna gain [dB] 0

    Body loss [dB] 3

    eNode B antenna gain [dB] 18

    Cable loss [dB] 3

    Required sensitivity [dBm] -122.7

    Interference margin [dB] 3Shadowing margin [dB] 8.7

    Handoff gain [dB] 3.6

    Penetration losses [dB] 18

    Max. UEtransmitpower

    Losses andmargins- Gains+

    eNode Breceiversensitivity

    - MAPL=-Interference

    7 Link Budget

    7.11 Answer the questions

    Wh t i th MAPL f i d f th f ll i k t i

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    101/173

    107COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    What is the MAPL for indoor coverage for the following packet service:

    - UE maximum transmit power: 23 dBm

    - UE antenna gain: 0 dB- Body loss: 0 dB

    - eNode B antenna gain: 18 dB

    - Cable loss: 3 dB

    - Required sensitivity: -113.0 dBm

    - Interference margin: 3 dB- Shadowing margin: 8.7 dB

    - Handoff gain: 3.6 dB

    -Penetration loss: 18 dB

    -81.7 dB

    -124.9 dB

    -142.9 dB

    -128.6 dB

    7 Link Budget

    7.12 Propagation model

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    102/173

    108COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    eNode Bantennaheight

    Clutter

    UE antennaheight

    Frequency

    Distance

    Path loss

    Propagation Models Okumura-Hata COST-231 Hata Modified COST-231 Hata etc.

    Cell radius

    MAPL

    Tune model

    7 Link Budget

    7.13 Okumura-Hata and Cost-Hata propagation models

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    103/173

    109COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    COST-231 Hata

    A1 = 46.30A2 = 33.90A3 = -13.82B1 = 44.90B2 = -6.55

    modified COST-231 Hata

    PathLoss = + 33.9log10(2000) + 20log10(F/2000

    Okumura-HataA1 = 69.55

    A2 = 26.16A3 = -13.82B1 = 44.90B2 = -6.55

    PathLoss = A1 + A2log10(F) + A3log10(HeNodeB)

    + (B1 B2log10(HeNodeB))log10(Distance) a(HUE)+ Kclutter

    F Frequency [MHz]HeNodeB eNode B antenna heightabove ground [m]

    Distance eNode B - UE [km]HUE UE antenna height above

    ground [m]a(HUE) Correction function if

    HUE is not1.5 mKclutter Correction function for

    different clutter

    7 Link Budget

    7.14 Cell range

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    104/173

    110COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    MAPL = K1 + K2 log(CellRange)

    eNodeBantennaheight

    Morphologycorrection

    factor

    UE antennaheight

    Operatingfrequency

    Example:

    Propagationmodel

    Modified COST-231 Hata for2.6GHz

    Denseurban

    Urban Suburban Rural

    K1 140,9 136,8 127,8 118,1

    K2 35,7 35,2 35,2 34,4

    eNodeB antenna height [m] 25 30 30 40

    Correction factor [db] 0 -3 -12 -20

    7 Link Budget

    7.15 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    105/173

    111COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Calculate the cell range for the following services in urban environment

    (VehA 3km/h).Use the modified COST-231 Hata propagation model for 2.6GHz :

    Service

    VoIP AMR12.2

    with TTI bundling

    Packet service

    256 kbps

    MAPL for Indoor Coverage [db] 131,1 126,2

    Cell range [km] 0,69 0,5

    7 Link Budget

    7.16 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    106/173

    112COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Which statement about propagation models is correct?

    1. Apropagationmodel can be used optionally to define the maximumcellradius.

    2. Apropagationmodel is a fixedmathematical formula that can be usedfor allsituationswithoutanyadjustment.

    3. Apropagationmodel predicts radio wave propagation and combinedwiththeMaximumAllowablePathLossit defines the cell radius.

    4. Apropagationmodel only takesinto account the clutter or type of landuse.

    7 Link Budget

    7.17 Impact of RRH and TMA

    Remote Radio Head Tower Mounted Amplifier

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    107/173

    113COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Remote Radio Head(RRH)

    Enhance uplink coverage of eNode Bs with

    high feeder losses between eNode B andantenna

    Reduce global noise figure ofeNode B

    Compensate feeder losses

    Tower Mounted Amplifier(TMA)

    Separate RF part of eNode B

    Locate RF part physically close to antenna

    More effective radiated power

    on downlink Lower losses on uplink

    7 Link Budget

    7.18 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    108/173

    114COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Select all correct statements:

    1. Sites with RRH have higher losses on the uplink.

    2. Sites with RRH have a more effective radiated power on downlink.

    3. With Tower Mounted Amplifiers wehave a typical gain of around 2.7dBon theMAPL.

    4. Tower MountedAmplifiers do not affect the link budget.

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    109/173

    115COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    8 Planning tool

    8 Planning tool

    8.1 Input data

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    110/173

    116COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    9955 Radio

    Network PlanningTool

    Traffic data

    ServicesUser profiles

    UE characteristics

    Traffic data

    ServicesUser profiles

    UE characteristics

    Propagation model

    Radio data

    LTE frame configuration

    Modulation and coding schemesReception characteristics

    eNode B characteristics

    Radio channel characteristics

    Radio data

    LTE frame configuration

    Modulation and coding schemesReception characteristics

    eNode B characteristics

    Radio channel characteristics

    Geographic data

    Topographic map (terrain heights)

    Morphographic map (clutter)

    Clutter classes

    Geographic data

    Topographic map (terrain heights)

    Morphographic map (clutter)

    Clutter classes

    8 Planning tool

    8.2 Geographic data - Clutter Class

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    111/173

    117COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Name

    Standard

    Deviation(dB)

    Indoor

    Loss(dB)

    SU-MIMO

    Gain Factor(dB)

    Additional

    Transmit

    Diversity Gain(dB)

    Additional

    Receive

    Diversity Gain(dB)

    open 6 0 0.2 3 3

    inlandwater 8 0 0.2 3 3

    residential 8 6 0.7 3 3

    meanurban 8.5 9 0.9 3 3

    denseurban 9 12 1 3 3

    buildings 10 9 1 3 3

    village 9 3 0.2 3 3

    industrial 9 6 0.5 3 3

    openurban 9 0 0.7 3 3

    forest 8 3 0.8 3 3

    parks 8 3 0.8 3 3

    8 Planning tool

    8.3 Radio data - LTE Frame

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    112/173

    118COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Cyclic prefix: normal orextended

    Number of symbols for

    PDCCH, PCFICH,PHICH

    Number of physicalresource blocks forPUCCH

    (Network settings properties)

    8 Planning tool

    8.4 Radio data - LTE Bearer

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    113/173

    119COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Useful bits persymbol

    Exact coding

    rate

    8 Planning tool

    8.5 Radio data - LTE Equipment

    Properties

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    114/173

    120COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    NameProperties

    LTE Bearer Selection Quality MIMO

    Default Cell Equipment

    Default UE Equipment

    Mobility Type(speed)

    SINR (dB)

    Through

    put(bits/s/Hz)

    QPSK 1/8

    QPSK 1/2

    16QAM 1/2

    64QAM 4/5

    8 Planning tool

    8.5 Radio data - LTE Equipment [cont.]

    Properties

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    115/173

    121COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Namep

    LTE Bearer Selection Quality MIMO

    Default Cell Equipment

    Default UE Equipment

    8 Planning tool

    8.5 Radio data - LTE Equipment [cont.]

    Properties

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    116/173

    122COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Namep

    LTE Bearer Selection Quality MIMO

    Default Cell Equipment

    Default UE Equipment

    Transmitdiversity gain

    SU-MIMO gain

    8 Planning tool

    8.6 Radio data - Transmitter

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    117/173

    123COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Losses, noise figure,additional equipment

    MIMO setting

    Antennaconfiguration

    8 Planning tool

    8.7 Radio data - Cell

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    118/173

    124COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Frequency,bandwidth,

    duplex mode

    Reference signal

    quality threshold

    UL/DL trafficloads

    LTE equipment

    MIMO support

    8 Planning tool

    8.8 Traffic data - Service

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    119/173

    125COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Name TypeBodyLoss

    (dB)

    Best BearerPrio

    Max.Throughput

    Demand (kbps)

    Min.Throughput

    Demand (kbps)

    RequestedAverage

    Rate (kbps)

    ActivityFactor

    DL UL DL UL DL UL DL UL DL UL

    FTP Download Data 0 15 15 0 1000 100 0 0 10 10 1 1

    Video Conferencing Voice 0 15 15 2 64 64 64 64 64 64 0.5 0.5

    VoIP Voice 3 15 15 3 12.2 12.2 12.2 12.2 12.2 12.2 0.6 0.6

    Web Browsing Data 0 15 15 1 128 64 64 32 64 32 1 1

    LTE Bearer

    Capacity demand0: lowest priority

    8 Planning tool

    8.9 Traffic data - Terminal (UE)

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    120/173

    126COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Name Min.power

    Max.power

    NoiseFigure

    (dB)

    Losses(dB)

    AntennaGain(dBi)

    LTEEquipment

    DiversitySupport

    Number of

    Antenna Ports

    Transmission Reception

    MIMO Terminal -40 23 8 0 0Default UEEquipment

    MIMO 2 2

    Mobile Terminal -40 23 8 0 0Default UEEquipment

    none 1 1

    MIMO configurationTechnical data

    LTE equipment

    8 Planning tool

    8.10 Traffic data - User profile

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    121/173

    127COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Traffic density

    8 Planning tool

    8.11 Output

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    122/173

    128COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Link budget

    calculation

    Traffic simulation

    Cell neighbors

    Physical cell id. planning

    Frequency allocation

    Coverage

    prediction

    8 Planning tool

    8.12 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    123/173

    129COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Which information can be foundin the Clutter Class?

    1. Standard deviation to calculate shadowinglosses

    2. Available modulation and coding schemes

    3. Capacity demand of a certain type of traffic

    4. Technical data of a UE

    8 Planning tool8.12 Answer the questions [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    124/173

    130COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Drag and dropeach informationabout radio data to the data structurewhereitcan befound:

    1. LTE Frame

    2. LTE Bearer

    3. LTE Equipment

    4. Transmitter5. Cell

    a. SINR threshold to select a modulation andcoding scheme

    b. Available modulation and coding schemes

    c. Number of symbols for PDCCH, PCFICH, PHICHd. Losses and noise figure of eNodeB

    e. Frequency

    8 Planning tool8.12 Answer the questions [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    125/173

    131COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Drag and dropeach informationabout traffic data to the datastructurewhereitcanbefound:

    1. Service

    2. Terminal

    3. User profile

    a. Technical data of a UE

    b. Capacity demand of a certain type of traffic

    c. Services and traffic density of a type ofuser

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    126/173

    132COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    9 RF design

    9 RF design9.1 Steps

    Initial site placement

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    127/173

    133COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    p& configuration

    Final site placement& configuration

    Prediction

    Identifyproblems

    Adjustconfiguration

    Coverage holes Over-coverage / interference

    Clutter information Propagation model Coverage requirements

    Antenna height, beamwidth Downtilt, azimuth Site location, additional site

    Coverage predictions

    9 RF design9.2 Coverage prediction

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    128/173

    134COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Signal quality

    Effective signal level

    Site placement &configuration

    Path loss

    Cell

    Loadconditions:

    Non-interfering user: service mobility type

    terminaldefined by operator

    RS, SCH/PBCH, PDSCH, PUSCH

    SINR: RS, SCH/PBCH, PDSCH,PUSCH

    Best bearer: UL & DL

    Throughput: UL & DL

    Quality indicator: UL & DL

    9 RF design9.3 Coverage prediction - examples

    Coverage by DL SINR

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    129/173

    135COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    MIMO with 2x2antenna

    >= 30>= 25>= 20>= 15>= 10

    >= 5>= 0>= -5

    SINR (dB)

    withoutMIMO

    Isotropic receiver antenna Directional receiver antenna

    Coverage by PUSCH SINRSINR improved forlow values

    9 RF design9.4 Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    130/173

    136COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Which statements about RF designare correct?

    1. The goal of RF design is to findpossiblelocations for the real sites.

    2. RF design is a cyclic process where site locations and configurationsarefinetuned.

    3. RF design is a linear process where site locations and configurationsaredefined.

    4. The main steps are "Create coverage prediction", "Identify problems"and "Adjustconfiguration".

    9 RF design9.4 Answer the questions [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    131/173

    137COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    A coverage prediction takes a realistic user distribution into account.

    Is this statement true or false? False

    A coverage prediction is created to find problems like coverage holes orareas of interference.

    Is this statement true or false? True

    With coverage predictions the effective signal levels and the signal qualitycan be analyzed.

    Is this statement true or false? True

    9 RF design9.4 Answer the questions [cont.]

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    132/173

    138COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Select all possible actions tosolve coverage problems.

    1. Correct clutter information for the area

    2. Tune propagation model

    3. Change antenna heights and beamwidths

    4. Change antenna downtilt and azimuth

    5. Change site location6. Add new site

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    133/173

    139COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    10 configuration parameters

    10 configuration parameters10.1 Cell neighbors

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    134/173

    140COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    AutomaticRNP tool

    Manual

    RNP tool

    10 configuration parameters10.2 Cell neighbors

    Cell BParameters:

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    135/173

    141COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    AutomaticRNP tool

    Manual

    CellNbr. of

    NeighborsNeighbor

    Distance

    (m)

    Site0_1 5 Site0_2 0

    Site0_1 5 Site0_3 0

    Site0_1 5 Site35_1 447

    Site0_1 5 Site64_2 2567Site0_1 5 Site64_3 2567

    Site0_2 6 Site0_1 0

    Site0_2 6 Site0_3 0

    Cell A

    Best serverarea

    Cell BBest server

    area

    Parameters: Maximum number of neighbors Maximum inter-site distance Coverage conditions:

    Overlapping Shadowing Indoor coverage

    Overlapping

    Handover start(dB)

    Handover end(dB)

    Reference signalthreshold (dB)

    Cell

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    136/173

    Physical cell identitiesSubframe 0 5

    Slot 0 10

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    137/173

    143COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Primary Synch. Channel

    3 x cell group + cell number

    504 physical cell identities

    Slot 0 10

    Bandwidth

    6 PRB1.08 MHz

    Cell number: 0, 1, 2

    Goal: Easy recognition of cells by UEs

    Different physical cell identities in nearby cells

    Secondary Synch. Channel Zadoff-ChusequencesCell group: 0 .. 167

    Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    138/173

    144COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    With the Automatic Neighbor Relation function the eNode Bs use thereports from the UEs to setup the list of cell neighbors.

    Is this statement true or false? True

    To allow easy recognition of cells by UEs it is important to intelligentlyallocate physical cell identities to the cells.

    Is this statement true or false? True

    In nearby cells the same physical cell identities should be used.

    Is this statement true or false? false

    Inter-cell interference coordination techniques

    Frequency reuse of 1:Load Information Message

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    139/173

    145COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    improve cell coverage

    increase throughput at cell edge

    Inter Cell Interference Coordination (ICIC)=assign users to portions of bandwidth

    assignment depending on user's location in celllimit transmit power

    X2 interface

    complete bandwidth

    Virtual Frequency ReuseFractional Frequency ReuseSoft Fractional Frequency Reuse

    Virtual & Fractional Frequency ReuseExample - Virtual 1/3 Frequency Reuse Example - Fractional 1/3 Frequency Reuse

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    140/173

    146COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    complete bandwidth

    1/3 bandwidth 1/3 bandwidth1/3 bandwidth

    F1 F2 F3

    1/3 bandwidth

    F1 F2 F3

    Interior UEs

    Edge UEs in

    Edge UEs in

    Edge UEs in

    complete bandwidth

    1/3 bandwidth 1/3 bandwidth

    Soft Fractional Frequency ReuseExample - Soft Fractional 1/3 Frequency Reuse:

    is strongestneighbor,t h h f i

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    141/173

    147COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    F1 F2 F3

    Interior UEs

    Trash heap of

    Trash heap of

    Trash heap of

    complete bandwidth

    Edge UE:

    If outside trash heap ofstrongest neighborreduced transmit PSD

    Not possible to assign resources insidetrash heap and outside trash heap tosame UE in parallel

    is strongest

    neighbor,trash heap of isused for edge UEs

    is strongest

    neighbor,trash heap of isused for edge UEs

    trash heap of isused for edge UEs

    l

    Interference coordination simulation

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    142/173

    148COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Simulation ICIC parameters:

    Soft Fractional 1/9 Frequency Reuse

    50% of UEs classified as cell edge UEs

    Transmit power spectral density is reduced by 3 dB if UE atcell edge is outside of trash heap of strongest neighbor cell

    Frequency Selective Scheduling (FSS)

    Frequency-selective fading: UEs experience different channel conditions indifferent portions of the spectrum

    Channel conditions derived by eNode B from Sounding Reference Signals

    and Channel Quality Indicator (CQI) transmitted by UE UE allocated to its individual best part of the spectrum

    Higher system throughputs

    160

    Interference coordination simulation results

    Negligible gains;ICIC can actually

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    143/173

    149COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    1500 2000 2500 3000 3500 4000 4500

    14

    0

    120

    100

    80

    60

    40

    20Cell throughput (kbps)

    5%

    CDF

    userthroughput(kb

    ps)

    without ICIC / without FSSwith ICIC / without FSS

    Large gain when trying toachieve high cell edge rate(40% improvement in highestachievable cell edge rate)

    Negligible gains whentrying to achieve highaverage cell throughput

    C C ca actua yhurt performance

    without ICIC / with FSSwith ICIC / with FSS

    Frequency allocation examplesManual allocation with 1/3 reuse

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    144/173

    150COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Automatic allocation with 1/3 reuse

    >= 30>= 25>= 20>= 10

    DL Reference Signal SINR (dB)

    >= 0>= -5>= -10>= -20

    Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    145/173

    151COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    What is the meaning of ICIC?

    1. Inter-CarrierInterference Cancellation

    2. Inter-Cell Interference Coordination

    3. In-Cell Interference Coordination

    4. Identity Control Indicator Channel

    Coordination of the interferencebetween cells concentrates interferenceintoknownportions ofthesystem bandwidth in each cell.

    Is this statement true or false? true

    Answer the questions

  • 7/18/2019 TMO54093 - eUTRAN LA5.0 Radio Network Planning Fundamentals

    146/173

    152COPYRIGHT ALCATEL-LUCENT 2013. ALL RIGHTS RESERVED.

    9400 eUTRAN LA5.0 Radio Network Planning Fundamentals

    Select for each description the corresponding frequency reusetechnique.

    1. The complete bandwidth is divided into 3 portions. In each cell only1/3 ofthesubcarrierscanbe used.

    2. UEs in the interior of the cell can use the entire bandwidth. UEs attheedgeofthecellcan use only 1/3 of the bandwidth.

    3. UEs in the interior of the cell can use the entire bandwidth.UEs at the

    edgeofthecellpreferably use resources in the trash heap of the UE'sstrongest neighbor cell. If this is not possible the UE's transmit powerspectral density is reduced.

    a. Soft Fractional 1/3 Frequency Reuse

    b. Virtual 1/3 Frequency Reusec. Fractio