12
1 Name ____________________ Date _____________ AP Calculus Supplemental Review Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x→−8 f ( x ) 2. lim x→−2 f ( x ) 3. lim x→−2 + f ( x ) 4. lim x→−2 f ( x ) 5. f(2) When does a limit exist? ____________________________________________________________________________________________________________________ Existence of a Limit: A limit exists if the left hand limit equals the right hand limit In graph A below, lim x→−1 f ( x ) = 1 since lim x→−1 f ( x ) = lim x→−1 + f ( x ) = 1 ; however, in graph B, lim x→−1 f ( x ) = DNE since lim x→−1 f ( x ) = 1 and lim x→−1 + f ( x ) = 5 Graph A Graph B Limit as x a . For any continuous function we can just plug in to find the limit. For example, lim x2 (3x 3 + 2 x ) = 3•8 + 4 = 28 . If the function is not continuous at the given point, sometimes we can simplify before plugging in. Ex: lim x→−2 x 2 4 x + 2 = lim x→−2 ( x + 2) ( x 2) x + 2 = lim x→−2 ( x 2) = 2 2 = 4 . Vertical Asymptotes If lim xa f ( x ) , then there will be a vertical asymptote at x = a, as in the graph pictured to the right, where there’s a vertical asymptote at x = 2. Limit as x ±. Rational function theorem: applies to rational functions. Reminder: limit as x ±and HA are the same thing (in both cases we consider what happens to y as x ±). For a rational function R( x ) = P( x ) Q( x ) where P(x) and Q(x) are both polynomials, 1. deg (Q) > deg (P) [the denominator ‘dominates’] HA: y = 0 lim x→∞ R( x ) = 0 2. deg (P) > deg (Q) [the numerator ‘dominates’] HA: none lim x→∞ R( x ) dne 3. deg (P) = deg (Q) [neither ‘dominates’] HA: y =ratio of leading coefficients lim x→∞ R( x ) = a / d

Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  1  Name  ____________________                 Date  _____________  AP  Calculus                                                      Supplemental  Review                    Aim:  How  do  we  prepare  for  AP  Problems  on  limits,  continuity  and  differentiability?    Do  Now:  Use  the  graph  of  f(x)  to  evaluate  each  of  the  following:    1.  

limx→−8

f (x)     2.  

limx→−2−

f (x)     3.  

limx→−2+

f (x)      

 4.  

limx→−2

f (x)     5.  f(-­‐2)  

 When  does  a  limit  exist?      ____________________________________________________________________________________________________________________  Existence  of  a  Limit:  A  limit  exists  if  the  left  hand  limit  equals  the  right  hand  limit  In  graph  A  below,   lim

x→−1f (x) =1  since   lim

x→−1−f (x) = lim

x→−1+f (x) =1 ;  however,  in  graph  B,   lim

x→−1f (x) = DNE since  

limx→−1−

f (x) =1  and   limx→−1+

f (x) = 5  

Graph  A                                                                            Graph  B

Limit  as   x→ a .    For  any  continuous  function  we  can  just  plug  in  to  find  the  limit.    For  example,  limx→2(3x3 + 2x ) = 3•8+ 4 = 28 .    If  the  function  is  not  continuous  at  the  given  point,  sometimes  we  can  

simplify  before  plugging in. Ex:

limx→−2

x2 − 4x + 2

= limx→−2

(x + 2) (x − 2)x + 2

= limx→−2

(x − 2) = −2 − 2 = −4 .

Vertical  Asymptotes  If   lim

x→af (x) = ±∞ ,  then  there  will  be  a  vertical  asymptote  at  x  =  a,  as  in  the  graph  

pictured  to  the  right,  where  there’s  a  vertical  asymptote  at  x  =  2.     Limit  as   x→ ±∞ .  Rational  function  theorem:    applies  to  rational  functions.    Reminder:    limit  as   x→ ±∞  and  HA  are  the  same  thing  (in  both  cases  we  consider  what  happens  to  y  as   x→ ±∞ ).  

For  a  rational  function  R(x) = P(x)Q(x)

 where  P(x)  and  Q(x)  are  both  polynomials,    

1.    deg  (Q)  >  deg  (P)  [the  denominator  ‘dominates’]    HA:    y  =  0                                                                                       limx→∞

R(x) = 0                                                        

2.    deg  (P)  >  deg  (Q)  [the  numerator  ‘dominates’]            HA:  none                                                                                 limx→∞

R(x)  dne                                                                

3.    deg  (P)  =  deg  (Q)  [neither  ‘dominates’]                HA:    y  =ratio  of  leading  coefficients           limx→∞

R(x) = a / d            

Page 2: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  2   Otherwise,  you  must  compare  the  rates  of  growth  in  each  function.  Know  that  exponential  functions  grow  

the  fastest,  then  polynomial  functions,  and  then  logarithmic  functions.  Therefore,  limx→∞

ln(x)x

= 0,  since  x  

grows  faster  than  ln(x)  and  limx→∞

x100

ex= 0

 since  ex  grows  faster  than  x100  and  similarly  limx→∞

ln(x)ex

= 0  .  

   L’hopital’s  Rule      

 If  

limx→a

f (x)g(x)

=00  or  

∞∞,  then  

limx→a

f (x)g(x)

= limx→a

f `(x)g`(x)  

 *Reminder:  You  can  only  use  L’hopital’s  Rule  if  it’s  in  the  above  form!!!!!!!!!!!!  

Example:  evaluating  

limx→0

sin xx,  is  equivalent  to  evaluating   lim

x→0

cos(x)1

= cos(0) =1  

 Continuity:  A  function  is  continuous  if  the  limit  exists  and  is  equal  to  the  function  value:  limx→c−

f (x) = limx→c+

f (x) = f (c)  

 The  only  way  to  formally  demonstrate  a  function  is  continuous  at  a  given  point  is  to  show  that  the  limit  at  that  point  equals  the  value  of  the  function  at  that  point.    ****It  is  NOT  sufficient  to  show  that     lim

x→c+f (x) = lim

x→c−f (x) .      All  this  demonstrates  is  

that  the  limit  exists.    You  still  need  to  show  that  it’s  the  same  as  the  actual  value  of  the  function  at  that  point.    Example:  In  the  graph  to  the  right,    at  x  =  -­‐1,  the  limit  exists,  but  it’s  not  continuous,  since   lim

x→−1f (x) = 5 ,  but  f(-­‐1)=3.  

 Differentiability.    To  show  that  a  function  is  differentiable  (ie  smooth,  ie  locally  linear)  at  a  given  point,  we  must  show  that  the  left-­‐hand  derivative  =  the  right-­‐hand  derivative.  You  must  also  show  that  they  are  continuous,  since  all  differentiable  functions  must  be  continuous.      Note:    ****DIFFERENTIABILITY  IMPLIES  CONTINUITY!!!    but  continuity  does  NOT  imply  differentiability!    The  derivative.    dy/dx,   ′f (x) ,  etc.    Remember,  this  has  many  different  interpretations.    The  derivative  of  a  function  can  be  thought  of  as:       1.    The  instantaneous  rate  of  change     2.    The  slope  of  the  curve     3.    The  slope  of  the  tangent  line  

  4.     ′f (x) = limh→0

f (x + h)− f (x)h

 

  5.    And  the  alternate  form:     ′f (a) = limx→a

f (x)− f (a)x − a

.  

Page 3: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  3  Classwork:    1.    a.  Given  f(x)  defined  below,  evaluate  

limx→2

f (x)  

     b.  Given  f(x)  defined  below,  evaluate  

limx→5

f (x)  

   

2.    a.  Evaluate  

limx→−2

x 2    

b.  Evaluate  

limx→−2

x 2 − 4x + 2

 

     c.  Why  can’t  you  just  plug  in  -­‐2  for  x  in  problem  #4  as  you  did  in  problem  #3?        

3.  Use  the  graph  to  evaluate  each  limit:  

 

a.  

limx→2+

f (x)  

 b.  

limx→2−

f (x)  

 d.  

limx→∞

f (x)      e.  When  a  function  has  a  vertical  asymptote,  what  will  the  limit  equal  when  x

→  the  VA?      f.  When  a  function  has  a  horizontal  asymptote,  what  will  x  approach  as  y  

→  the  HA?        

4.    

a.  

Copyright © 2008 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Limits, Continuity, and the Definition of the Derivative Page 6 of 13

Practice Problems Limit as x approaches infinity

1. 4

3 7lim

5 8 12x

xx xo f

�§ · ¨ ¸� �© ¹

2. 4

4

3 2lim

5 2 1x

xx xo f

§ ·� ¨ ¸� �© ¹

3. 6

4

2lim10 9 8x

xx xo f

§ ·� ¨ ¸� �© ¹

4. 4

3 4

7 2lim

5 2 14x

xx xo f

§ ·� ¨ ¸� �© ¹

5. sinlim xx

xeo f

§ · ¨ ¸© ¹

6. 2 9lim

2 3x

xxo �f

§ ·� ¨ ¸¨ ¸�© ¹

7. 2 9lim

2 3x

xxo f

§ ·� ¨ ¸¨ ¸�© ¹

8

                                         b.  

Copyright © 2008 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Limits, Continuity, and the Definition of the Derivative Page 6 of 13

Practice Problems Limit as x approaches infinity

1. 4

3 7lim

5 8 12x

xx xo f

�§ · ¨ ¸� �© ¹

2. 4

4

3 2lim

5 2 1x

xx xo f

§ ·� ¨ ¸� �© ¹

3. 6

4

2lim10 9 8x

xx xo f

§ ·� ¨ ¸� �© ¹

4. 4

3 4

7 2lim5 2 14x

xx xo f

§ ·� ¨ ¸� �© ¹

5. sinlim xx

xeo f

§ · ¨ ¸© ¹

6. 2 9lim

2 3x

xxo �f

§ ·� ¨ ¸¨ ¸�© ¹

7. 2 9lim

2 3x

xxo f

§ ·� ¨ ¸¨ ¸�© ¹

8

                                     c.  

Copyright © 2008 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Limits, Continuity, and the Definition of the Derivative Page 6 of 13

Practice Problems Limit as x approaches infinity

1. 4

3 7lim

5 8 12x

xx xo f

�§ · ¨ ¸� �© ¹

2. 4

4

3 2lim5 2 1x

xx xo f

§ ·� ¨ ¸� �© ¹

3. 6

4

2lim

10 9 8x

xx xo f

§ ·� ¨ ¸� �© ¹

4. 4

3 4

7 2lim5 2 14x

xx xo f

§ ·� ¨ ¸� �© ¹

5. sinlim xx

xeo f

§ · ¨ ¸© ¹

6. 2 9lim

2 3x

xxo �f

§ ·� ¨ ¸¨ ¸�© ¹

7. 2 9lim

2 3x

xxo f

§ ·� ¨ ¸¨ ¸�© ¹

8

   

d.   limx→∞

7x2 − 2( ) x2 + x( )5− 2x3 −14x4

⎝⎜

⎠⎟                                          e.   limx→∞

4x2 −816x2 + 3x − 2

=                                                                  f.   limx→−∞

x2 − 92x − 3

⎝⎜

⎠⎟  

 5.  How  quickly  does  each  type  of  function  grow  in  comparison  to  each  other?  Put  in  order  from  slowest  to  fastest  growing:  a.  Polynomial  function,  like   f (x) = x100  b.  Logarithmic  function,   f (x) = ln(x)  c.  Exponential  function,   f (x) = ex    Evaluate  each  limit:  

a.   limx→∞

ex

x100                                          b.   lim

x→∞

x100

ex                                                    c.   lim

x→∞

x50

ln(x)                                                  d.   lim

x→∞

ln(x)ex

 

Page 4: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  4  6.  The  following  are  the  limit  definitions  of  a  derivative:    

limh→0

f (x + h)− f (x)h

       or     limx→a

f (x)− f (a)x − a

 

 a.  What  value  is  the  denominator  approaching  in  both  definitions?        b.  How  is  the  instantaneous  rate  of  change  different  from  the  average  rate  of  change?        c.  What  are  the  other  definitions  of  the  derivative?            d.  Use  the  limit  definitions  of  the  derivative  to  answer  each  of  the  following  questions:  

Copyright © 2008 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Limits, Continuity, and the Definition of the Derivative Page 8 of 13

1. What is � � � �

0

sin sinlim ?h

x h xho

� �

(A) sin x (B) cos x (C) sin x� (D) cos x� (E) The limit does not exist

2. 0

cos cos3 3lim

x

x

x

S S

' o

§ · § ·� ' �¨ ¸ ¨ ¸© ¹ © ¹

'

(A) 32

� (B) 12

� (C) 0

(D) 12

(E) 32

3. � � � �3 3

0limh

x h x

ho

� �

(A) 3x� (B) 23x� (C) 23x (D) 3x (E) The limit does not exist

10

 

Copyright © 2008 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Limits, Continuity, and the Definition of the Derivative Page 8 of 13

1. What is � � � �

0

sin sinlim ?h

x h xho

� �

(A) sin x (B) cos x (C) sin x� (D) cos x� (E) The limit does not exist

2. 0

cos cos3 3lim

x

x

x

S S

' o

§ · § ·� ' �¨ ¸ ¨ ¸© ¹ © ¹

'

(A) 32

� (B) 12

� (C) 0

(D) 12

(E) 32

3. � � � �3 3

0limh

x h x

ho

� �

(A) 3x� (B) 23x� (C) 23x (D) 3x (E) The limit does not exist

10

 

Copyright © 2008 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Limits, Continuity, and the Definition of the Derivative Page 8 of 13

1. What is � � � �

0

sin sinlim ?h

x h xho

� �

(A) sin x (B) cos x (C) sin x� (D) cos x� (E) The limit does not exist

2. 0

cos cos3 3lim

x

x

x

S S

' o

§ · § ·� ' �¨ ¸ ¨ ¸© ¹ © ¹

'

(A) 32

� (B) 12

� (C) 0

(D) 12

(E) 32

3. � � � �3 3

0limh

x h x

ho

� �

(A) 3x� (B) 23x� (C) 23x (D) 3x (E) The limit does not exist

10

           

Page 5: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  5  6.  Use  the  following  example  to  explain  why  it  is  not  sufficient  to  justify  that  a  function  f(x)  is  continuous  at  a  point  c  if  

limx→c −

f (x) = limx→c +

f (x) .  

 

   7.  Give  two  reasons  why  the  above  function  is  not  differentiable  at  x=-­‐1.              L’hopital’s  Rule:  Try  to  evaluate  each  of  the  following  limits:    

1.  

limx→0

sin xx           2.  

limx→0

x1− ex

 

 What  is  problematic  about  plugging  0  into  each  of  the  above  functions  in  order  to  evaluate  the  limits?              

L’hopital’s  Rule  says  that  if  

limx→a

f (x)g(x)

=00  or  

∞∞,  then  

limx→a

f (x)g(x)

= limx→a

f `(x)g`(x)

 

________________________________________________________________________________________________________________________  Proof: Suppose that f and g are continuously differentiable at a real number c, that , and that . Then

This follows from the difference-quotient definition of the derivative. The last equality follows from the continuity of the derivatives

at c. The limit in the conclusion is not indeterminate because . _________________________________________________________________________________________________________________________  Examples:  

a.  

limx→0

sin xx           b.  

limx→0

x1− ex

 

Page 6: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  6  Classwork:  Evaluate  each  limit.  Careful….you  might  not  be  able  to  use  l’hopital’s  rule  in  all  of  these  cases!    

1.  

limx→2

3x 2 − 7x + 2x − 2

⎛ ⎝ ⎜

⎞ ⎠ ⎟           2.  

limx→2

2x + 3x

⎛ ⎝

⎞ ⎠  

         

3.   limx→0

tan xx

                                                             4.  

limx→0

1− ex

x − x 2  

         

5.  

limx→1

ln x − x +1ex − e

⎛ ⎝

⎞ ⎠           6.  

limx→0

x 2 sin x + cos x −1x

⎛ ⎝ ⎜

⎞ ⎠ ⎟  

     Additional  Practice  

Mr. Peled AP Calculus 8/26/11 Name:_________________________ Section: _____

The AP BIBLE Workbook I. Limit as x! a , limit as x! ±" . Evaluate the following limits: 1. lim

x!3x3 " 2x +1( )

2. lim

x!"1ex " 2( )

3. lim

x!"cos2 x( )

4. limx!4

x2 "16x " 4

5. limx!"1

x2 "1x2 " 2x " 3

6. limx!0

sin xx

7. limx!0

sin2 xx

8. limx!0

1" cos2 xx

9. limx!"

4x3 # 212x6 #1

10. limx!"#

4x3 " 212x6 "1

11. limx!"

4x3 # 212x3 #1

12. limx!"#

12x3 "14x3 " 2

13. limx!"#

12x6 "14x3 " 2

14. limx!"

12x6 #14x3 # 2

15. From AP practice test:

limx!"

xe# x + be# x( ) where b is a constant

16. limx!"

1+ e# x

4 # e#2xII. Continuity, differentiability.

17. Given f (x) =3x + 4,!x ! "1x2 " 2x " 2,!x > "1

#$%

. Prove that the function is continuous at x = -1.

18. Given f (x) =4x + 3,!x ! 4x2 + x "1,!x > 4

#$%

. Prove that the function is continuous at x = 4.

19. Given f (x) =x + 3,!x < 5!1,!x = 5x2 ! 4x + 3,!x > 5

"

#$

%$

. Prove that limx!5

f (x) exists because limx!5+

f (x) = limx!5"

f (x) .

Explain why the function is NOT continuous at x = 5.

Page 7: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  7  

Mr. Peled AP Calculus 8/26/11 Name:_________________________ Section: _____

The AP BIBLE Workbook I. Limit as x! a , limit as x! ±" . Evaluate the following limits: 1. lim

x!3x3 " 2x +1( )

2. lim

x!"1ex " 2( )

3. lim

x!"cos2 x( )

4. limx!4

x2 "16x " 4

5. limx!"1

x2 "1x2 " 2x " 3

6. limx!0

sin xx

7. limx!0

sin2 xx

8. limx!0

1" cos2 xx

9. limx!"

4x3 # 212x6 #1

10. limx!"#

4x3 " 212x6 "1

11. limx!"

4x3 # 212x3 #1

12. limx!"#

12x3 "14x3 " 2

13. limx!"#

12x6 "14x3 " 2

14. limx!"

12x6 #14x3 # 2

15. From AP practice test:

limx!"

xe# x + be# x( ) where b is a constant

16. limx!"

1+ e# x

4 # e#2xII. Continuity, differentiability.

17. Given f (x) =3x + 4,!x ! "1x2 " 2x " 2,!x > "1

#$%

. Prove that the function is continuous at x = -1.

18. Given f (x) =4x + 3,!x ! 4x2 + x "1,!x > 4

#$%

. Prove that the function is continuous at x = 4.

19. Given f (x) =x + 3,!x < 5!1,!x = 5x2 ! 4x + 3,!x > 5

"

#$

%$

. Prove that limx!5

f (x) exists because limx!5+

f (x) = limx!5"

f (x) .

Explain why the function is NOT continuous at x = 5.

         AP  Problems  on  Limits    1.    

     2.  

   

Page 8: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  8  3.  

       4.  

       5.  

       

Page 9: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  9  6.  

       7.  

 8.  

 

     

Page 10: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  10  10.  

 11.  

 12.  

         13.  

         

Page 11: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  11  15.  

 16.  

     17.  

   18.  

 

Page 12: Limits, Continuity, and Differentiability Review · ! 5! 6.!Use!the!following!example!to!explain!why!it!is!not!sufficient!to!justify!that!a!function!f(x)!is!continuous! atapointcif!

  12  19.  

 20.  

 21.  

 22.