14
8/31/2016 1 Lesson 3: Operational Amplifier Circuits in Analog Control ET 438a Automatic Control Systems Technology lesson3et438a.pptx 1 LEARNING OBJECTIVES lesson3et438a.pptx 2 After this presentation you will be able to: List the characteristics of an ideal Operational Amplifier (OP AMP) circuit. Identify and utilize fundamental OP AMP circuits to amplify and signals. Use OP AMP circuits to reduce inter-stage loading effects in sensor circuits. Average sensor signals using OP AMP circuits.

Lesson 3: Operational Amplifier Circuits in Analog Control · 2016. 8. 31. · 8/31/2016 1 Lesson 3: Operational Amplifier Circuits in Analog Control ET 438a Automatic Control Systems

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 8/31/2016

    1

    Lesson 3: Operational Amplifier Circuits in

    Analog Control ET 438a

    Automatic Control Systems Technology

    lesson3et438a.pptx 1

    LEARNING OBJECTIVES

    lesson3et438a.pptx 2

    After this presentation you will be able to: List the characteristics of an ideal Operational Amplifier (OP

    AMP) circuit. Identify and utilize fundamental OP AMP circuits to amplify

    and signals. Use OP AMP circuits to reduce inter-stage loading effects in

    sensor circuits. Average sensor signals using OP AMP circuits.

  • 8/31/2016

    2

    Ideal OP AMP Characteristics

    lesson3et438a.pptx 3

    Zout =0 Zero output resistance

    Infinite Zin

    Infinite voltage gain, Av

    Bandwidth Infinite Gain constant for all f

    No offset voltage, Vo=0 with Vd=0

    Iin

    Instant recovery from saturation

    Iin=0 due to infinite Zin

    Non-Ideal OP AMPs

    lesson3et438a.pptx 4

    OP AMPs are voltage amplifiers designed originally for use in analog computers

    Schematic symbol for non-ideal OP AMP

    Two inputs: V1 = inverting input V2 = non inverting input

    OP AMPs are direct coupled (dc) amplifiers that amplify both ac and dc signals simultaneously. Requires bipolar supplies.

    +

    - V1

    V2

    Vo

    +V

    -V

    V2>0, Vo>0

    +Vin -V0

    +V0 +Vin

    V1>0, Vo

  • 8/31/2016

    3

    Fundamental OP AMP Circuits

    lesson3et438a.pptx 5

    Inverting Voltage Amplifier Non-Inverting Voltage Amplifier

    AV R

    R

    f

    in

    Vo

    V

    R

    Ri

    f

    in

    Vo Limited by saturation Large Av causes Vo = ±V

    V 1 + o

    V

    R

    Ri

    f

    in

    A 1 + V

    R

    R

    f

    in

    Rin = Rin of OP AMP Av has minimum value of 1

    Voltage Follower Circuit

    lesson3et438a.pptx 6

    Voltage follower (Impedance buffer) circuit used to reduce circuit loading. (Has a high Zin and low Zout)

    Zo Zin

    +V

    -V

    Characteristics Practical Circuit (LM741) Ideal Av = 1 Av = 1 Zin = 1 MW Zin = infinite Zo = 10 W Zo = 0

    Circuit causes minimum loading on previous stage

  • 8/31/2016

    4

    Example 3-1 Buffered Voltage Divider Circuit

    lesson3et438a.pptx 7

    Voltage divider formula only valid for infinite load resistance

    5k = RL

    Find Vo under load

    10k

    5k

    +12 Vdc

    Vo

    V 2.4V 12k 10k 5.2

    k 5.2V

    k 5.2k 5 ||k 5 k 5 ||R

    resistor loadWith

    V 0.4V

    V 12k 10k 5

    k 5V

    V load No

    oL

    L

    0

    o

    o

    WW

    W

    WWWW

    WW

    W

    ANS

    Example 3-1 Buffered Voltage Divider Circuit (1)

    lesson3et438a.pptx 8

    Add impedance buffer

    +12 Vdc

    5k 5k = RL

    10k

    Vo

    Find Vo with load and OP AMP buffer Assume LM741 with Ri=1 MW and Ro =10 W AV= 1 so Vin = Vo

    V 987.3VV

    V 3.987V 12k 10 4975

    4975V

    4975k 5M 1

    k 5M 1R

    RM 1 ||k 5 M 1 ||R

    resistor loadWith

    oin

    in

    eq

    eqL

    WW

    W

    WWW

    WW

    WWW

    Rin

    Ro

    ANS

  • 8/31/2016

    5

    Electronic Addition and Subtraction

    lesson3et438a.pptx 9

    Inverting Summing Amplifier

    Ideal circuit

    Find total output using superposition

    Gain v1 R

    Rf

    1

    Gain v2 R

    Rf

    2

    Gain v3 R

    Rf

    3

    Total output v Rv

    R

    v

    R

    v

    Rf0

    1

    1

    2

    2

    3

    3

    Output is inverted sum of v1, v2, and v3

    Electronic Addition and Subtraction

    lesson3et438a.pptx 10

    Improved circuit (non-ideal OP AMP)

    Rc = R1 || R2 || R3 || Rf

    Practical OP AMP chips require bias currents to operate. Unequal R values at each input cause voltage differences that produce output errors.

    Bias compensation R

  • 8/31/2016

    6

    Electronic Addition and Subtraction

    lesson3et438a.pptx 11

    Non-inverting Summing Amp

    Assuming R1 = R2 = R3

    3

    vvv

    R

    R1v 321f0

    For any number, n, inputs.

    Assuming R1=R2=R3=...Rn

    n

    v.....vv

    R

    R1v n21f0

    n input average

    Example 3-2 Non-inverting Averager

    lesson3et438a.pptx 12

    For circuit shown n=3 R1 = R2 = R3=56k Rf = 9k R = 1k V1 = 0.5 Vdc V2 = 0.37 Vdc V3 = 0.8 Vdc Find Vo

    3

    vvv

    R

    R1v 321f0

    5667.53

    8.037.05.0

    k1

    k91v0

    ANS

  • 8/31/2016

    7

    Example 3-3:Inverting Amplifier

    lesson3et438a.pptx 13

    For the circuit shown find Vo with Vin = 2 Vdc

    5k

    10k

    Example 3-3: Solution (2)

    lesson3et438a.pptx 14

    5k

    2.5k

    Let Rf= 2.5 kW and find Av and Vo for Vi= 2.0 Vdc

    Reduces input voltage

    Output is smaller than input. Circuit divides input by 2 (0.5 = ½)

  • 8/31/2016

    8

    Example 3-4 Non-Inverting Amp (1)

    lesson3et438a.pptx 15

    50k 100k +15

    -15

    Find Vo and Av given values of R and Vi = -1 Vdc. Assume non-ideal OP AMP with power supply values of ±15 Vdc

    No sign change

    Note: Rin of non-inverting OP AMP is infinite (Ideally). Circuit will not load previous stage significantly

    Rin

    Example 3-4 Solution (2)

    lesson3et438a.pptx 16

    50k 100k +15

    -15

    Vin rises to 6 Vdc. What is Vo? Assume a non-ideal OP AMP with given power supply values of ±15 Vdc

    This value can’t be achieved since the OP AMP saturates between 13-15 Vdc. Power supplies limit output. Ac signals distorted (clipping)

  • 8/31/2016

    9

    Example 3-5 Inverting Summing Amplifier

    lesson3et438a.pptx 17

    Find Vo given v1 = 0.2 Vdc v2 = 0.1 Vdc v3 = -0.1 Vdc 25k

    15k

    10k

    100k

    -15

    +15

    Gains

    Summing Amplifier Applications

    lesson3et438a.pptx 18

    Letting R1, R2 and R3 be potentiometers produces an audio

    mixer

    When R1=R2=R3 Output voltage is the average of the input

    values

    Vo

    V3

    V2

    R2

    R3

    R4

    V1

    -15V

    15V

    +

    R1

  • 8/31/2016

    10

    Example 3-6: Averaging Sensor Signals

    lesson3et438a.pptx 19

    LM34 - temperature sensors. Gain = 10 mV/F T1 = 50 F T2 = 45 F T3= 40 F

    Average the temperature using a gain of -1 and -5. Find the value of Rf and Vo for each gain value.

    50k

    50k

    50k

    Example 3-6 Solution (1)

    lesson3et438a.pptx 20

    To average let R1=R2=R3=50 kW

    3

    3

    2

    2

    1

    1f0

    R

    v

    R

    v

    R

    vRVSumming equation

    Since R1=R2=R3

    Find relationship for average with 3 inputs and gain of -1

    3

    vvv1V 321ave

    3213211

    faveo vvv

    3

    1vvv

    R

    RVV

    3211

    f

    1

    3

    1

    2

    1

    1f0 vvv

    R

    R

    R

    v

    R

    v

    R

    vRV

  • 8/31/2016

    11

    Example 3-6 Solution (2)

    lesson3et438a.pptx 21

    3

    RR

    3

    1

    R

    R

    1f

    1

    f

    Complete Algebra to find value of Rf

    Make equation more general by letting n be the number of inputs and Av be the desired gain factor.

    n211

    f

    1

    n

    1

    2

    1

    1f0 v ...vv

    R

    R

    R

    v ...

    R

    v

    R

    vRV

    n

    v ...vvAV n21vave

    lesson3et438a.pptx 22

    Example 3-6 Solution (3)

    n21v

    n21

    1

    faveo v ...vv

    n

    Av ...vv

    R

    RVV

    Equate the OP AMP output and the average formula

    n

    RAR

    n

    A

    R

    R

    1vf

    v

    1

    f

    Use this formula

    Find sensor output voltages using temperature and gain value

    V 5.0F 50mV/F 10V F 50T 11

    V 45.0F 45mV/F 10V F 45T 22

    V 40.0F 40mV/F 10V F 40T 33

  • 8/31/2016

    12

    Example 3-6 Solution (4)

    lesson3et438a.pptx 23

    Find Rf and Vo for a gain of -1 and R1=50 kW, n3

    WW

    670,163

    000,501

    n

    RAR 1vf

    V 45.040.045.050.0k50

    k67.16vvv

    R

    R321

    1

    f

    45.0

    3

    40.045.050.01Vave

    Use average formula to check output

    ANS

    ANS

    Checks

    Example 3-6 Solution (5)

    lesson3et438a.pptx 24

    Find Rf and Vo for a gain of -5 and R1=50 kW, n=3

    25.2

    3

    40.045.050.05V

    V 25.240.045.050.0k50

    k33.83vvv

    R

    RV

    330,833

    000,505

    n

    RAR

    ave

    321

    1

    fo

    1vf

    WW

    ANS

    ANS

    Note: both values of Rf are not standard values. Use potentiometer and closest standard value then calibrate circuit to get desired output

    82 k 5 kPractical Rf

  • 8/31/2016

    13

    Differential Voltage Amplifier

    lesson3et438a.pptx 25

    Input/output Formula

    To simplify let R1 = R3 R2 = R4

    V (V Vo 2 1

    R

    R2

    1)

    Amplifiers the difference between + - terminals

    Differential Voltage Amplifier Circuit

    1

    1

    22

    1

    4

    34

    12o V

    R

    RV

    R

    R

    RR

    RRV

    Differential Amplifier Applications

    lesson3et438a.pptx 26

    Can use voltage differential amp to generate an error signal

    r

    m

    -

    + e

    Block diagram

    r

    e m

    setpoint

    Measured value

    error

    e=r-m

  • 8/31/2016

    14

    End Lesson 3: Operational Amplifier Circuits in Analog Control

    ET 438a Automatic Control Systems Technology

    lesson3et438a.pptx 27