9
1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 26, 2016 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2016 – Khanna Lecture Outline ! Semiconductor Physics " Band gaps " Field Effects ! MOS Physics " Cut-off " Depletion " Inversion " Threshold Voltage Penn ESE 570 Spring 2016 - Khanna 2 Review: MOSFET – N-Type, P-Type ! N – negative carriers " electrons ! Switch turned on positive V GS ! P – positive carriers " holes ! Switch turned on negative V GS V th,p < 0 V GS < V th,p to conduct 3 V th,n > 0 V GS > V th,n to conduct Penn ESE 570 Spring 2016 - Khanna Semiconductor Physics 4 Penn ESE 570 Spring 2016 - Khanna Silicon Lattice ! Cartoon two-dimensional view 5 Penn ESE 570 Spring 2016 - Khanna Energy State View Valance Band – all states filled Energy 6 Penn ESE 570 Spring 2016 - Khanna

Lecture Outline ESE 570: Digital Integrated Circuits and

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture Outline ESE 570: Digital Integrated Circuits and

1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lec 4: January 26, 2016 MOS Transistor Theory, MOS Model

Penn ESE 570 Spring 2016 – Khanna

Lecture Outline

!  Semiconductor Physics "  Band gaps "  Field Effects

!  MOS Physics "  Cut-off "  Depletion "  Inversion "  Threshold Voltage

Penn ESE 570 Spring 2016 - Khanna 2

Review: MOSFET – N-Type, P-Type

!  N – negative carriers "  electrons

!  Switch turned on positive VGS

!  P – positive carriers "  holes

!  Switch turned on negative VGS

Vth,p < 0VGS < Vth,p to conduct

3

Vth,n > 0VGS > Vth,n to conduct

Penn ESE 570 Spring 2016 - Khanna

Semiconductor Physics

4 Penn ESE 570 Spring 2016 - Khanna

Silicon Lattice

!  Cartoon two-dimensional view

5 Penn ESE 570 Spring 2016 - Khanna

Energy State View

Valance Band – all states filled

Ene

rgy

6 Penn ESE 570 Spring 2016 - Khanna

Page 2: Lecture Outline ESE 570: Digital Integrated Circuits and

2

Energy State View

Valance Band – all states filled

Ene

rgy

Conduction Band– all states empty

7 Penn ESE 570 Spring 2016 - Khanna

Energy State View

Valance Band – all states filled

Ene

rgy

Conduction Band– all states empty

Band Gap

8 Penn ESE 570 Spring 2016 - Khanna

Band Gap and Conduction

Ec

Ev

Ev

Ec

Ev

Ec

OR

Insulator Metal

8ev

Ev

Ec

Semiconductor

1.1ev

9 Penn ESE 570 Spring 2016 - Khanna

Doping

!  Add impurities to Silicon Lattice "  Replace a Si atom at a lattice site with another

!  E.g. add a Group 15 element "  E.g. P (Phosphorus)

10 Penn ESE 570 Spring 2016 - Khanna

Doping with P

!  End up with extra electrons "  Donor electrons

!  Not tightly bound to atom "  Low energy to displace "  Easy for these electrons

to move

11 Penn ESE 570 Spring 2016 - Khanna

Doped Band Gaps

!  Addition of donor electrons makes more metallic "  Easier to conduct

Ev

Ec

Semiconductor

1.1ev ED 0.045ev

12 Penn ESE 570 Spring 2016 - Khanna

Page 3: Lecture Outline ESE 570: Digital Integrated Circuits and

3

Capacitor Charge

!  Remember capacitor charge

+ + + + + + + +

- - - - - - - - - semiconductor

gate

source drain

13 Penn ESE 570 Spring 2016 - Khanna

MOS Field?

!  What does “capacitor” field do to the Donor-doped semiconductor channel?

- -

Vgs=0 No field

- - - -

14 Penn ESE 570 Spring 2016 - Khanna

MOS Field?

!  What does “capacitor” field do to the Donor-doped semiconductor channel?

+ + + +

- - - Vcap>0

- -

Vgs=0 No field

- - - -

15 Penn ESE 570 Spring 2016 - Khanna

MOS Field?

!  What does “capacitor” field do to the Donor-doped semiconductor channel?

- -

Vgs=0 No field

+ + + + +

- - - - - - = Vgs>0

Conducts

+ + + +

- - - Vcap>0

- - - -

16 Penn ESE 570 Spring 2016 - Khanna

+ + + + +

- - - - - -

- - - - - -

MOS Field Effect

!  Charge on capacitor "  Attract or repel charges to form channel "  Modulates conduction "  Positive

"  Attracts carriers "  Enables conduction

"  Negative? "  Repel carriers

"  Disable conduction

17 Penn ESE 570 Spring 2016 - Khanna

Doping with B

!  End up with electron vacancies -- Holes "  Acceptor electron sites

!  Easy for electrons to shift into these sites "  Low energy to displace "  Easy for the electrons to move

"  Movement of an electron best viewed as movement of hole

18 Penn ESE 570 Spring 2016 - Khanna

Page 4: Lecture Outline ESE 570: Digital Integrated Circuits and

4

Doped Band Gaps

!  Addition of acceptor sites makes more metallic "  Easier to conduct

Ev

Ec

Semiconductor

1.1ev EA 0.045ev

19 Penn ESE 570 Spring 2016 - Khanna

Field Effect?

!  Effect of positive field on Acceptor-doped Silicon?

Vgs=0 No field

+ + + +

20 Penn ESE 570 Spring 2016 - Khanna

Field Effect?

!  Effect of positive field on Acceptor-doped Silicon?

Vgs=0 No field + + + +

- - - Vcap>0

+ + + +

21 Penn ESE 570 Spring 2016 - Khanna

Field Effect?

!  Effect of positive field on Acceptor-doped Silicon?

Vgs=0 No field

+ + + + +

= Vgs>0

No conduction

+ + + +

- - - Vcap>0

+ + + +

22 Penn ESE 570 Spring 2016 - Khanna

Field Effect?

!  Effect of negative field on Acceptor-doped Silicon?

+ +

Vgs=0 No field +

+ + +

- - -

Vcap<0 + +

23 Penn ESE 570 Spring 2016 - Khanna

Field Effect?

!  Effect of negative field on Acceptor-doped Silicon?

+ +

Vgs=0 No field

+ + + + + =

Vgs>0 Conduction

+ + + +

- - -

Vcap<0

- - -

+ +

24 Penn ESE 570 Spring 2016 - Khanna

Page 5: Lecture Outline ESE 570: Digital Integrated Circuits and

5

MOSFETs

!  Donor doping "  Excess electrons "  Negative or N-type material "  NFET

!  Acceptor doping "  Excess holes "  Positive or P-type material "  PFET

25 Penn ESE 570 Spring 2016 - Khanna

MOSFET

!  Semiconductor can act like metal or insulator !  Use field to modulate conduction state of

semiconductor

- - - - - -

+ + + + +

26 Penn ESE 570 Spring 2016 - Khanna

MOS Physics - nMOS

Penn ESE 570 Spring 2016 - Khanna

Two-Terminal MOS Structure

28

2

GATE

(Mass Action Law)

n+ n+

Si – Oxide interface

Penn ESE 570 Spring 2016 - Khanna

P-type Doped Semiconductor Band Gap

29

Free space

Conduction band

Intrinsic Fermi level

Fermi level

Valence band

Electron affinity of silicon

qΦS

!  qΦ and E are in units of energy = electron-volts (eV); where 1 eV = 1.6 x 10-19 J.

!  1 eV corresponds to energy acquired by a free electron that is accelerated by an electric potential of one volt.

!  Φ and V corresponds to potential difference in volts. Penn ESE 570 Spring 2016 - Khanna 30

Free space

Conduction band

Intrinsic Fermi level

Fermi level

Valence band

ΦF =EF −Ei

q→ΦFp =

kTqln niNA

Fermi potential:

qΦS = qχ + (EC −EF )

Electron affinity of silicon

qΦS

Work function (Fermi-to-space):

P-type Doped Semiconductor Band Gap

Ei =EC −EV2

Penn ESE 570 Spring 2016 - Khanna

Page 6: Lecture Outline ESE 570: Digital Integrated Circuits and

6

MOS Capacitor Energy Bands

31 Penn ESE 570 Spring 2016 - Khanna

MOS Capacitor with External Bias

!  Three Regions of Operation: "  Accumulation Region – VG < 0 "  Depletion Region – VG > 0, small "  Inversion Region – VG ≥ VT, large

32 Penn ESE 570 Spring 2016 - Khanna

Accumulation Region

33 Penn ESE 570 Spring 2016 - Khanna

Accumulation Region – Energy Bands

34

VG < 0 Band bending due to VG < 0

Accumulation

qΦFp qΦ(x) qΦS

x

EFm

EFp

0

qVG= EFp− EFm

Si surface

Penn ESE 570 Spring 2016 - Khanna

Depletion Region

35

tox

mobile holes - - - - -

Penn ESE 570 Spring 2016 - Khanna

Depletion Region – Energy Bands

36

Depletion VG > 0 (small)

xd

Band bending due to VG > 0

qΦFp

qΦS

qΦ(x)

x

EFm

EFp

0

qVG= EFp− EFm

Si surface

Penn ESE 570 Spring 2016 - Khanna

Page 7: Lecture Outline ESE 570: Digital Integrated Circuits and

7

Depletion Region

37

Bulk potential

tox

- - - - Surface potential

ΦFp =ΦF =kTqln niNA

< 0

ΦS

ΦFpΦ

26 mV at room T

Penn ESE 570 Spring 2016 - Khanna

Depletion Region

38

Bulk potential

tox

- - - - Surface potential

ΦFp =ΦF =kTqln niNA

< 0

ΦS

ΦFpΦ

26 mV at room T

dQ = −qNAdx Mobile hole charge density (per unit area) in thin layer below surface

dφ = −x dQεSi

Potential required to displace dQ by distance x

dφ = q ⋅NA ⋅ xεSi

dx

Penn ESE 570 Spring 2016 - Khanna

Depletion Region

39

Bulk potential

tox

- - - - Surface potential

ΦFp =ΦF =kTqln niNA

< 0

ΦS

ΦFpΦ

26 mV at room T

dφ = q ⋅NA ⋅ xεSi

dx

dφΦS

ΦFp

∫ =q ⋅NA ⋅ xεSi

dx0

xd

∫ =q ⋅NA ⋅ xd

2

2εSi=ΦFp −ΦS

⇒ xd =2εSi ΦFp −ΦS

q ⋅NA

Penn ESE 570 Spring 2016 - Khanna

Depletion Region

40

Bulk potential

tox

- - - - Surface potential

ΦFp =ΦF =kTqln niNA

< 0

ΦS

ΦFpΦ

26 mV at room T

xd =2εSi ΦFp −ΦS

q ⋅NA

Q = −qNAxd

Q = −qNA

2εSi ΦFp −ΦS

q ⋅NA

= − 2qNAεSi ΦFp −ΦS

Penn ESE 570 Spring 2016 - Khanna

Inversion Region

41

tox

- - - - - - - - -

VG ≥ VT (threshold voltage)

(Density of mobile electrons = density of holes in bulk)

Penn ESE 570 Spring 2016 - Khanna

Inversion Region – Energy Bands

42

Inversion VG ≥ VT0 > 0

xdm

qΦS

qΦFp

x 0

EFm

EFp qVG= EFp− EFm

Si surface

Penn ESE 570 Spring 2016 - Khanna

Page 8: Lecture Outline ESE 570: Digital Integrated Circuits and

8

Depletion Region – Energy Bands

43

Depletion VG > 0 (small)

xd

Band bending due to VG > 0

qΦFp

qΦS

qΦ(x)

x

EFm

EFp

0

qVG= EFp− EFm

Si surface

Penn ESE 570 Spring 2016 - Khanna

Inversion Region

44

tox

- - - - - - - - -

VG ≥ VT (threshold voltage)

(Density of mobile electrons = density of holes in bulk) Q = − 2qNAεSi ΦFp −ΦS = − 2qNAεSi 2ΦFp

Penn ESE 570 Spring 2016 - Khanna

45

depletion region

-

VG VS VD

2-terminal MOS Cap # 3-terminal nMOS

- - - - -- -

-

-- --

Penn ESE 570 Spring 2016 - Khanna

nMOS = MOS cap + source/drain

46

VSB = 0

-

- - - - - -

- - -

-

VG VD VS

xd =2εSi 2ΦFp −VSB

q ⋅NA

Penn ESE 570 Spring 2016 - Khanna

Threshold Voltage

47

+

)

l

[VT0 -> VT0 in SPICE] VT0n,p

work function between gate and channel

with VSB = 0. VFB VFB

- + - for nMOS and pMOS

V FB= GC−Qox

Cox≈ GC

VFB = flat band voltage

VT 0 =ΦGC −Qox

Cox

− 2ΦF −QB0

Cox

QB0 = − 2qNAεSi 2ΦF

Penn ESE 570 Spring 2016 - Khanna

Threshold Voltage

48

for VSB = 0 VT =VT 0 =VFB − 2ΦF −QB0

Cox

for VSB != 0 VT =VFB − 2ΦF −

QB

Cox

VT =VFB − 2ΦF −QB0

Cox

−QB −QB0

Cox

VT =VT 0 −QB −QB0

Cox

−QB −QB0

Cox

=2qNAεSiCox

2ΦF −VSB − 2ΦF( )

VT =VT 0 +γ 2ΦF −VSB − 2ΦF( )

γ

Penn ESE 570 Spring 2016 - Khanna

Page 9: Lecture Outline ESE 570: Digital Integrated Circuits and

9

Threshold Voltage

49

VSB is ≥ 0 in nMOS, ≤ 0 in pMOS $  VT0 is positive in nMOS (VT0n) , negative in pMOS (VT0p)

Penn ESE 570 Spring 2016 - Khanna

50

|VSB|

Threshold Voltage

Penn ESE 570 Spring 2016 - Khanna

Big Idea

!  3 operation regions "  Cut-off "  Depletion "  Inversion

!  Doping and VSB change VT

Penn ESE 570 Spring 2016 - Khanna 51

Admin

!  HW 2 due Thursday, 1/28 !  Office hours updated on Course website

!  No Journal Thursday this week

52 Penn ESE 570 Spring 2016 - Khanna