18
1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 19, 2019 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2019 – Khanna Lecture Outline ! Inverter Power ! Dynamic Characteristics " Delay 2 Penn ESE 570 Spring 2019 – Khanna Inverter Power Penn ESE 570 Spring 2019 – Khanna Power ! P = I×V ! Tricky part: " Understanding I " (pairing with correct V) 4 Penn ESE 570 Spring 2019 – Khanna Static Current ! P = I static ×V DD ! Static current determined by subthreshold current 5 Penn ESE 570 Spring 2019 – Khanna Switching Currents ! Dynamic current flow: ! If both transistor on: " Current path from V dd to Gnd " Short circuit current 6 Penn ESE 570 Spring 2019 – Khanna

Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lec 10: February 19, 2019 MOS Inverter: Dynamic Characteristics

Penn ESE 570 Spring 2019 – Khanna

Lecture Outline

!  Inverter Power !  Dynamic Characteristics

"  Delay

2 Penn ESE 570 Spring 2019 – Khanna

Inverter Power

Penn ESE 570 Spring 2019 – Khanna

Power

!  P = I×V

!  Tricky part: "  Understanding I "  (pairing with correct V)

4 Penn ESE 570 Spring 2019 – Khanna

Static Current

!  P = Istatic×VDD

!  Static current determined by subthreshold current

5 Penn ESE 570 Spring 2019 – Khanna

Switching Currents

!  Dynamic current flow:

!  If both transistor on: "  Current path from Vdd

to Gnd "  Short circuit current

6 Penn ESE 570 Spring 2019 – Khanna

Page 2: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

2

Switching

Dynamic Power

7 Penn ESE 570 Spring 2019 - Khanna

Switching Currents

!  Itotal(t) = Istatic(t)+Iswitch(t)

!  Iswitch(t) = Isc(t) + Idyn(t)

8

Isc

Istatic

Idyn

Penn ESE 570 Spring 2019 - Khanna

Charging

!  Idyn(t) – why is it changing? "  Ids = f(Vds,Vgs) "  and Vgs, Vds changing

9

IDS = µnCOXWL

"

# $

%

& ' VGS −VT( )VDS −

VDS2

2)

* +

,

- .

IDS ≈νsatCOXW VGS −VT −VDSAT

2%

& '

(

) *

Penn ESE 570 Spring 2019 - Khanna

Switching Energy – focus on Idyn(t)

10 Penn ESE 570 Spring 2019 - Khanna

Isc

Istatic

Idyn

Switching Energy – focus on Idyn(t)

E = P(t)dt∫= I(t)Vdd dt∫=Vdd I(t)dt∫

11

Idyn

Penn ESE 570 Spring 2019 - Khanna

Switching Energy

12

!  Do we know what this is?

Idyn

Idyn (t)dt∫

E = P(t)dt∫= I(t)Vdd dt∫=Vdd I(t)dt∫

Penn ESE 570 Spring 2019 - Khanna

Page 3: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

3

Switching Energy

13

!  Do we know what this is?

Idyn

Q = Idyn (t)dt∫

E = P(t)dt∫= I(t)Vdd dt∫=Vdd I(t)dt∫

Penn ESE 570 Spring 2019 - Khanna

Switching Energy

14

!  Do we know what this is?

!  What is Q? Idyn

Q = Idyn (t)dt∫

E = P(t)dt∫= I(t)Vdd dt∫=Vdd I(t)dt∫

Penn ESE 570 Spring 2019 - Khanna

Switching Energy

15

!  Do we know what this is?

!  What is Q? Idyn

Q = Idyn (t)dt∫

E = P(t)dt∫= I(t)Vdd dt∫=Vdd I(t)dt∫

Q = CV = I(t)dt∫

Penn ESE 570 Spring 2019 - Khanna

Switching Energy

16

!  Do we know what this is?

!  What is Q? Idyn

Q = Idyn (t)dt∫

E = P(t)dt∫= I(t)Vdd dt∫=Vdd I(t)dt∫

Q = CV = I(t)dt∫

E = CVdd2

Capacitor charging energy

Penn ESE 570 Spring 2019 - Khanna

Switching Power

!  Every time output switches 0#1 pay: "  E = CV2

!  Pdyn = (# 0#1 trans) × CV2 / time

17 Penn ESE 570 Spring 2019 - Khanna

Switching Power

!  Every time output switches 0#1 pay: "  E = CV2

!  Pdyn = (# 0#1 trans) × CV2 / time

!  # 0#1 trans = ½ # of transitions

!  Pdyn = (# trans) × ½CV2 / time

18 Penn ESE 570 Spring 2019 - Khanna

Page 4: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

4

Switching

19 Penn ESE 570 Spring 2019 - Khanna

Short Circuit Power

Short Circuit Power

!  Between VTN and Vdd - VTP

"  Both N and P devices conducting

20 Penn ESE 570 Spring 2019 - Khanna

Short Circuit Power

!  Between VTN and Vdd - VTP

"  Both N and P devices conducting

!  Roughly:

21

Isc

Penn ESE 570 Spring 2019 - Khanna

Vin

time

Vout

Isdp

time

time

time

Vthn

Vdd

Vdd

Vdd-Vthp

Isc

tsc tsc

Peak Current

!  Ipeak around Vdd/2 "  If |VTN|=|VTP| and sized equal rise/fall

22

IDS ≈νsatCOXW VGS −VT −VDSAT

2%

& '

(

) *

Penn ESE 570 Spring 2019 - Khanna

Vin

time

Vout

Isdp

time

time

time

Vthn

Vdd

Vdd

Vdd-Vthp

Isc

tsc tsc

Peak Current

!  Ipeak around Vdd/2 "  If |VTN|=|VTP| and sized equal rise/fall

23

IDS ≈νsatCOXW VGS −VT −VDSAT

2%

& '

(

) *

I(t)dt∫ ≈ Ipeak × tsc ×12%

& ' (

) *

Penn ESE 570 Spring 2019 - Khanna

Vin

time

Vout

Isdp

time

time

time

Vthn

Vdd

Vdd

Vdd-Vthp

Isc

tsc tsc

Vin

time

Vout

Isdp

time

time

time

Vthn

Vdd

Vdd

Vdd-Vthp

Isc

tsc tsc

Peak Current

!  Ipeak around Vdd/2 "  If |VTN|=|VTP| and sized equal rise/fall

24

IDS ≈νsatCOXW VGS −VT −VDSAT

2%

& '

(

) *

I(t)dt∫ ≈ Ipeak × tsc ×12%

& ' (

) *

E =Vdd × Ipeak × tsc ×12#

$ % &

' (

Penn ESE 570 Spring 2019 - Khanna

Page 5: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

5

Dynamic Characteristics

25 Penn ESE 570 Spring 2019 – Khanna

Inverter Delay

!  Caused by charging and discharging the capacitive load "  What is the load?

26 Penn ESE 570 Spring 2019 – Khanna

Inverter Delay

27 Penn ESE 570 Spring 2019 – Khanna

Inverter Delay

28 Penn ESE 570 Spring 2019 – Khanna

Inverter Delay

29

Cgb = Cgbn+ Cgbp

Penn ESE 570 Spring 2019 – Khanna

Inverter Delay

30

Cload = C#dbn + C#

dbp + C#gdn + C#

gdp + Cint + Cgb

Cgb = Cgbn+ Cgbp

Penn ESE 570 Spring 2019 – Khanna

Page 6: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

6

Inverter Delay

31

Cload ≈ C#dbn + C#

dbp + Cint + Cgb

Usually Cdb >> Cgd Csb >> Cgs

Penn ESE 570 Spring 2019 – Khanna

32

Cload ≈ Cdbn + Cdbp + Cint + nCgb

n = fan-out ≥ 1

Inverter Delay

Penn ESE 570 Spring 2019 – Khanna

Propagation Delay Definitions

33

VDD

0 t

VDD

0

V50% = VDD/2 Penn ESE 570 Spring 2019 – Khanna

Propagation Delay Definitions

34

t

Penn ESE 570 Spring 2019 – Khanna

Propagation Delay Definitions

35 Penn ESE 570 Spring 2019 – Khanna

Rise/Fall Times

36 Penn ESE 570 Spring 2019 – Khanna

Page 7: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

7

MOS Inverter Dynamic Performance 

!  ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and Cload, estimate (or measure) the propagation delays 

!  DESIGN: For given specs for the propagation delays and Cload*,

determine the MOS inverter schematic

37

Assume Vin ideal

Penn ESE 570 Spring 2019 – Khanna

MOS Inverter Dynamic Performance 

!  ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and Cload, estimate (or measure) the propagation delays 

!  DESIGN: For given specs for the propagation delays and Cload*,

determine the MOS inverter schematic

38

3 METHODS: 1. Average Current Model

Assume Vin ideal

τPHL ≈CloadΔVHLIavg ,HL

τPLH ≈CloadΔVLHIavg ,LH

Penn ESE 570 Spring 2019 – Khanna

MOS Inverter Dynamic Performance 

!  ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and Cload, estimate (or measure) the propagation delays 

!  DESIGN: For given specs for the propagation delays and Cload*,

determine the MOS inverter schematic

39

3 METHODS: 2. Differential Equation Model

Assume Vin ideal

iC =CloaddVoutdt

⇒ dt∫ =CloaddVoutiC

∫dt ≈ τ PHL or τ PLH

Penn ESE 570 Spring 2019 – Khanna

MOS Inverter Dynamic Performance 

!  ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and Cload, estimate (or measure) the propagation delays 

!  DESIGN: For given specs for the propagation delays and Cload*,

determine the MOS inverter schematic

40

3 METHODS: 3. 1st Order RC delay Model

Assume Vin ideal

τ PHL ≈ 0.69 ⋅Cload ⋅Rnτ PLH ≈ 0.69 ⋅Cload ⋅Rp

Penn ESE 570 Spring 2019 – Khanna

Method 1

Average Current Model

Penn ESE 570 Spring 2019 – Khanna

Calculation of Propagation Delays

42

τ PHL ≈ CloadΔVHLIavg,HL

=CloadVOH −V50%Iavg,HL

τ PLH ≈ CloadΔVLHIavg,LH

=CloadV50% −VOLIavg,LH

Penn ESE 570 Spring 2019 – Khanna

Page 8: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

8

Calculation of Propagation Delays

43

τ PHL ≈ CloadΔVHLIavg,HL

=CloadVOH −V50%Iavg,HL

τ PLH ≈ CloadΔVLHIavg,LH

=CloadV50% −VOLIavg,LH

Penn ESE 570 Spring 2019 – Khanna

Calculation of Propagation Delays

44

τ PHL ≈ CloadΔVHLIavg,HL

=CloadVOH −V50%Iavg,HL

τ PLH ≈ CloadΔVLHIavg,LH

=CloadV50% −VOLIavg,LH

Penn ESE 570 Spring 2019 – Khanna

Calculation of Rise/Fall Times

45

τ fall ≈ CloadΔV90%−10%Iavg,90%−10%

=CloadV90% −V10%Iavg,90%−10%

τ rise ≈ CloadΔV10%−90%Iavg,10%−90%

=CloadV90% −V10%Iavg,10%−90%

Penn ESE 570 Spring 2019 – Khanna

Calculation of Rise/Fall Times

46 Penn ESE 570 Spring 2019 – Khanna

τ fall ≈ CloadΔV90%−10%Iavg,90%−10%

=CloadV90% −V10%Iavg,90%−10%

τ rise ≈ CloadΔV10%−90%Iavg,10%−90%

=CloadV90% −V10%Iavg,10%−90%

Calculation of Rise/Fall Times

47 Penn ESE 570 Spring 2019 – Khanna

τ fall ≈ CloadΔV90%−10%Iavg,90%−10%

=CloadV90% −V10%Iavg,90%−10%

τ rise ≈ CloadΔV10%−90%Iavg,10%−90%

=CloadV90% −V10%Iavg,10%−90%

Method 2

Differential Equation Model

Penn ESE 570 Spring 2019 – Khanna

Page 9: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

9

Calculating Propagation Delays

49

Two Cases 1. Vin abruptly rises => Vout falls => 2. Vin abruptly falls => Vout rises =>

Assume Vin is an ideal pulse-input

iDP - iDn

τ PHLτ PLH

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

50 Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

51 Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

52

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

53

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

54

V out= V DD− V T0n

Penn ESE 570 Spring 2019 – Khanna

Page 10: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

10

Case 1: Vin Abruptly Rises - τPHL

55

V out= V DD− V T0n

CloaddVoutdt

≈ −iDn

dt =Cload−dVoutiDn

τ PHL = dtt=t0

t=t50%∫ =Cload−1iDn

$

%&

'

()

Vout=VDD

Vout=VDD /2∫ dVout

τ PHL =Cload−1iDn

$

%&

'

()

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

$

%&

'

()

VDD−VT 0n

VDD /2∫ dVout

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

56

V out= V DD− V T0n

CloaddVoutdt

≈ −iDn

dt =Cload−dVoutiDn

τ PHL = dtt=t0

t=t50%∫ =Cload−1iDn

$

%&

'

()

Vout=VDD

Vout=VDD /2∫ dVout

τ PHL =Cload−1iDn

$

%&

'

()

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

$

%&

'

()

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50% Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

57

V out= V DD− V T0n

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

58

V out= V DD− V T0n

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

saturation: iDn =kn2(Vin −VT 0n )

2

τ PHL,sat =Cload−1

kn2(VDD −VT 0n )

2

"

#

$$$

%

&

'''

VDD

VDD−VT 0n∫ dVout

τ PHL,sat =−Cload

kn2(VDD −VT 0n )

2dVoutVDD

VDD−VT 0n∫

τ PHL,sat =2CloadVT 0n

kn (VDD −VT 0n )2

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

59

V out= V DD− V T0n

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

linear: iDn =kn2(Vin −VT 0n )Vout −V

2out( )

τ PHL,lin =Cload−1

kn22(VDD −VT 0n )Vout −V

2out( )

"

#

$$$

%

&

'''

VDD−VT 0n

VDD /2∫ dVout

τ PHL,lin =2Cload

kn

−12(VDD −VT 0n )Vout −V

2out( )

"

#$$

%

&''VDD−VT 0n

VDD /2∫ dVout

τ PHL,lin =2Cload

kn⋅

−12(VDD −VT 0n )

ln Vout2(VDD −VT 0n )−Vout( )

"

#$$

%

&''Vout=VDD−VT 0n

Vout=VDD /2

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

60

τ PHL,lin =2Cload

kn⋅

−12(VDD −VT 0n )

ln Vout2(VDD −VT 0n )−Vout( )

#

$%%

&

'((Vout=VDD−VT 0n

Vout=VDD /2

τ PHL,lin =Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2#

$%

&

'(

Penn ESE 570 Spring 2019 – Khanna

Page 11: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

11

Case 1: Vin Abruptly Rises - τPHL

61

V out= V DD− V T0n

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

τ PHL,sat =2CloadVT 0n

kn (VDD −VT 0n )2 τ PHL,lin =

Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2"

#$

%

&'

τ PHL = 2CloadVT 0n

kn (VDD −VT 0n )2 +Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2"

#$

%

&'

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

62

V out= V DD− V T0n

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

τ PHL,sat =2CloadVT 0n

kn (VDD −VT 0n )2

τ PHL = 2CloadVT 0n

kn (VDD −VT 0n )2 +Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2"

#$

%

&'

τ PHL,lin =Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2"

#$

%

&'

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Penn ESE 570 Spring 2019 – Khanna

Case 1: Vin Abruptly Rises - τPHL

63

V out= V DD− V T0n

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

τ PHL,sat =2CloadVT 0n

kn (VDD −VT 0n )2

τ PHL = 2CloadVT 0n

kn (VDD −VT 0n )2 +Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2"

#$

%

&'

τ PHL,lin =Cload

kn (VDD −VT 0n )ln 2(VDD −VT 0n )−VDD 2

VDD 2"

#$

%

&'

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Rn

Penn ESE 570 Spring 2019 – Khanna

64

Recall from static CMOS Inverter:

(1) Vth → kR; (2) τPHL → kn; (3) kR & kn → kp DESIGN:

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Vth =VT 0n +

1kR

VDD +VT 0 p( )

1+ 1kR

kR =VDD +VT 0 p −VthVth −VT 0n

"

#$

%

&'

2

Case 1: Vin Abruptly Rises - τPHL

Penn ESE 570 Spring 2019 – Khanna

65

Recall from static CMOS Inverter:

(1) Vth → kR; (2) τPHL → kn; (3) kR & kn → kp DESIGN:

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Vth =VT 0n +

1kR

VDD +VT 0 p( )

1+ 1kR

kR =VDD +VT 0 p −VthVth −VT 0n

"

#$

%

&'

2

Case 1: Vin Abruptly Rises - τPHL

Penn ESE 570 Spring 2019 – Khanna

(1) Vth → kR; (2) τPLH → kp; (3) kR & kp → kn

66

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Differential Model Approximation

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

Approximate by assuming in saturation:

Penn ESE 570 Spring 2019 – Khanna

Page 12: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

12

67 Δ is less than 10%

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Differential Model Approximation

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

τ PHL ≈ Cload−1iDn,sat

#

$%%

&

'((VDD

VDD /2∫ dVout =−Cload

kn2(VDD −VT 0n )

2

#

$

%%%

&

'

(((

VDD

VDD /2∫ dVout

τ PHL ≈CloadVDD

kn (VDD −VT 0n )2 ∝RnCload

Approximate by assuming in saturation:

Penn ESE 570 Spring 2019 – Khanna

68

Δ is less than 10%

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Differential Model Approximation

τ PHL =Cload−1iDn

"

#$

%

&'

VDD

VDD−VT 0n∫ dVout +Cload−1iDn

"

#$

%

&'

VDD−VT 0n

VDD /2∫ dVout

t0#t1 t1#t50%

saturation linear

τ PHL ≈ Cload−1iDn,vsat

#

$%%

&

'((VDD

VDD /2∫ dVout

=−Cload

vsatCOXW VDD −VT 0n −Vdsat2

*

+,-

./

#

$

%%%%

&

'

((((

VDD

VDD /2∫ dVout

τ PHL ≈CloadVDD

2vsatCOXW VDD −VT 0n −Vdsat2

#

$%

&

'(∝RnCload

Approximate by assuming in velocity saturation:

Vdsat ≈Lvsatµn

Penn ESE 570 Spring 2019 – Khanna

Example 1:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V and kn=625uA/V2.

!  Assume Vin is an ideal step pulse with instant rise/fall times. Calculate the delay time necessary for the inverter output to fall from its initial value of 5V to 2.5V.

69 Penn ESE 570 Spring 2019 – Khanna

Example 1:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V and kn=625uA/V2.

!  Assume Vin is an ideal step pulse with instant rise/fall times. Calculate the delay time necessary for the inverter output to fall from its initial value of 5V to 2.5V.

70

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Penn ESE 570 Spring 2019 – Khanna

Example 1:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V and kn=625uA/V2.

!  Assume Vin is an ideal step pulse with instant rise/fall times. Calculate the delay time necessary for the inverter output to fall from its initial value of 5V to 2.5V.

71

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

τ PHL =1×10−12 ⋅

1(625×10−6 )(5−1)

2(5−1)

+ ln 2(5−1)2.5

−1#

$%

&

'(

)

*+

,

-.

τ PHL = 0.52ns

Penn ESE 570 Spring 2019 – Khanna

Example 1:

72

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

τ PHL =1×10−12 ⋅

1(625×10−6 )(5−1)

2(5−1)

+ ln 2(5−1)2.5

−1#

$%

&

'(

)

*+

,

-.

τ PHL = 0.52ns

τ PHL ≈CloadVDD

kn (VDD −VT 0n )2 ∝RnCload

Approximate by assuming in saturation:

Penn ESE 570 Spring 2019 – Khanna

Page 13: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

13

Example 1:

73

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

τ PHL =1×10−12 ⋅

1(625×10−6 )(5−1)

2(5−1)

+ ln 2(5−1)2.5

−1#

$%

&

'(

)

*+

,

-.

τ PHL = 0.52ns

τ PHL ≈CloadVDD

kn (VDD −VT 0n )2 ∝RnCload

τ PHL ≈1×10−12 (5)

625×10−6 (5−1)2= 0.5ns

Approximate by assuming in saturation:

Δ < 3%

Penn ESE 570 Spring 2019 – Khanna

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, k’n=20uA/V2, and W/L=10.

!  Use the average current method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

74

Usefull equations:

τ fall ≈ CloadΔV90%−10%Iavg,90%−10%

=CloadV90% −V10%Iavg,90%−10%

ID,sat =k 'n2WLVGS −VT 0n( )2

ID,lin =k 'n2WL2 VGS −VT 0n( )VDS −V 2

DS( )

Penn ESE 570 Spring 2019 – Khanna

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, k’n=20uA/V2, and W/L=10.

!  Use the average current method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

75

Iavg, fall =12ic (Vin =VOH ,Vout =V90%)+ ic (Vin =VOH ,Vout =V10%)[ ]

Iavg, fall =12ic (Vin = 5V,Vout = 4.5V )+ ic (Vin = 5V,Vout = 0.5V )[ ]

Iavg, fall =12k 'n2WLVin −VT 0n( )2 + k 'n

2WL2 Vin −VT 0n( )Vout −V 2

out( )"

#$%

&'

Iavg, fall =1220×10−6

2(10) 5−1( )2 + 20×10

−6

2(10) 2 5−1( )(0.5)− (0.5)2( )

"

#$

%

&'

Iavg, fall = 0.988mAPenn ESE 570 Spring 2019 – Khanna

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, k’n=20uA/V2, and W/L=10.

!  Use the average current method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

76

Iavg, fall =12ic (Vin =VOH ,Vout =V90%)+ ic (Vin =VOH ,Vout =V10%)[ ]

Iavg, fall =12ic (Vin = 5V,Vout = 4.5V )+ ic (Vin = 5V,Vout = 0.5V )[ ]

Iavg, fall =12k 'n2WLVin −VT 0n( )2 + k 'n

2WL2 Vin −VT 0n( )Vout −V 2

out( )"

#$%

&'

Iavg, fall =1220×10−6

2(10) 5−1( )2 + 20×10

−6

2(10) 2 5−1( )(0.5)− (0.5)2( )

"

#$

%

&'

Iavg, fall = 0.988mAPenn ESE 570 Spring 2019 – Khanna

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, k’n=20uA/V2, and W/L=10.

!  Use the average current method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

77

Iavg, fall = 0.988mA

τ fall ≈ CloadΔV90%−10%Iavg,90%−10%

=CloadV90% −V10%Iavg,90%−10%

τ fall ≈1×10−12 4.5− 0.50.988×10−3

= 4ns

Penn ESE 570 Spring 2019 – Khanna

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, k’n=20uA/V2, and W/L=10.

!  Use the differential equation method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

78

Usefull equations:

iC =CloaddVoutdt

⇒ dt∫ =CloaddVoutiC

Penn ESE 570 Spring 2019 – Khanna

id ,sat =12k 'nWLVGS −VT 0n( )

2

id ,lin =12k 'nWL2(VGS −VT 0n )VDS −V

2DS( )

Page 14: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

14

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, k’n=20uA/V2, and W/L=10.

!  Use the differential equation method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

79

iC =CloaddVoutdt

= −12k 'nWLVin −VT 0n( )

2

dt = −2Cload

k 'n W L( ) VDD −VT 0n( )2dVout

dt = − 2∗1×10−12

20×10−6 10( ) 5−1( )2dVout = −6.25×10

−10dVout

dtt=t90%

t=tsat

∫ = −6.25×10−10 dVoutVout=4.5

Vout=4.0

∫ = 0.313ns

Penn ESE 570 Spring 2019 – Khanna

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, kn=20uA/V2, and W/L=10.

!  Use the differential equation method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

80

t90% → tsat = 0.313nsiC =Cload

dVoutdt

= −12k 'n

WL2(Vin −VT 0n )Vout −V

2out( )

dt = − 2Cload

k 'n W L( ) 2(VDD −VT 0n )Vout −V 2out( )

dVout

dtt=tsat

t=t10%

∫ = −2Cload

k 'n W L( )1

2(VDD −VT 0n )Vout −V2out( )

dVoutVout=4

Vout=0.5

dtt=tsat

t=t10%

∫ =Cload

k 'n W L( )⋅

1Vin −VT 0n

ln 2(Vin −VT 0n )−V10%V10%

$

%&

'

()

dtt=tsat

t=t10%

∫ =1×10−12

20×10−6 10( )⋅15−1

ln 2(5−1)− 0.50.5

$

%&

'

()= 3.39ns

Example 2:

!  Consider a CMOS inverter with Cload=1pF and VDD=5V. The nMOS transistor has VT0n=1V, kn=20uA/V2, and W/L=10.

!  Use the differential equation method to calculate the fall time. Assume VOH=VDD, and VOL=0V.

81

t90% → tsat = 0.313nsiC =Cload

dVoutdt

= −12k 'n

WL2(Vin −VT 0n )Vout −V

2out( )

dt = − 2Cload

k 'n W L( ) 2(VDD −VT 0n )Vout −V 2out( )

dVout

dtt=tsat

t=t10%

∫ = −2Cload

k 'n W L( )1

2(VDD −VT 0n )Vout −V2out( )

dVoutVout=4

Vout=0.5

dtt=tsat

t=t10%

∫ =Cload

k 'n W L( )⋅

1Vin −VT 0n

ln 2(Vin −VT 0n )−V10%V10%

$

%&

'

()

dtt=tsat

t=t10%

∫ =1×10−12

20×10−6 10( )⋅15−1

ln 2(5−1)− 0.50.5

$

%&

'

()= 3.39ns

t90% → t10% = 3.7ns

Avg method: 4ns

Case 2: Vin Abruptly Falls - τPLH

82

τ PLH =Cload1iDp

!

"##

$

%&&0

−VT 0 p∫ dVout +Cload1iDp

!

"##

$

%&&−VT 0 p

V50%∫ dVout

t0#t1 t1#t50%

saturation linear

Penn ESE 570 Spring 2019 – Khanna

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

Case 2: Vin Abruptly Falls - τPLH

83

τ PLH =Cload1iDp

!

"##

$

%&&0

−VT 0 p∫ dVout +Cload1iDp

!

"##

$

%&&−VT 0 p

V50%∫ dVout

t0#t1 t1#t50%

saturation linear

Penn ESE 570 Spring 2019 – Khanna

Rp

τ PLH ≈CloadVDD

kp(VDD− |VT 0 p |)2

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

RpCload

Differential Equation Model

84

CONDITIONS for Balanced CMOS Propagation Delays, i.e.

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

WL

!

"#

$

%&p

= µn

µp

WL

!

"#

$

%&n

#

Penn ESE 570 Spring 2019 – Khanna

Page 15: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

15

Delay Observations

85

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Penn ESE 570 Spring 2019 – Khanna

86

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

Delay Design Equations

Penn ESE 570 Spring 2019 – Khanna

87

Delay Design Equations w/ Saturation Approximation

τ PHL ≈CloadVDD

kn (VDD −VT 0n )2

τ PLH ≈CloadVDD

kp(VDD− |VT 0 p |)2

WL

!

"#

$

%&n

≈CloadVDD

τ PHLµnCox (VDD −VT 0n )2

WL

!

"#

$

%&p

≈CloadVDD

τ PLHµpCox (VDD− |VT 0 p |)2

Penn ESE 570 Spring 2019 – Khanna

Design for Delays with More Realistic Model for Cload

88

Cload Cdbn + Cdbp + Cint + Cgb i≈ i

i≈ iCload Cdbn(Wn) + Cdbp(Wp) + Cint + Cgb

Penn ESE 570 Spring 2019 – Khanna

89

Cdbn (Wn) = [Wn (Y + xj)] Cj0n Keqn + (Wn + 2Y) Cjswn Keqn(sw)

Cdbp (Wp) = [Wp (Y + xj)] Cj0p Keqp + (Wp + 2Y) Cjswp Keqp(sw)

Design for Delays with More Realistic Model for Cload

90

Cload = α0 + αnWn + αpWp

α0 = 2YCjswnKeqn + 2YCjswpKeqp + Cint + Cgb

αn = (Y + xj)Cj0nKeqn + CjswnKeqn

αp = (Y + xj)Cj0pKeqp + CjswpKeqp

Cdbn (Wn) = [Wn (Y + xj)] Cj0n Keqn + (Wn + 2Y) Cjswn Keqn(sw)

Cdbp (Wp) = [Wp (Y + xj)] Cj0p Keqp + (Wp + 2Y) Cjswp Keqp(sw)

Design for Delays with More Realistic Model for Cload

Page 16: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

16

91

and

Design for Delays with More Realistic Model for Cload

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Penn ESE 570 Spring 2019 – Khanna

92

and

Design for Delays with More Realistic Model for Cload

τ PLH =Cload ⋅1

kp(VDD− |VT 0 p |)2 |VT 0 p |

(VDD− |VT 0 p |)+ ln

2(VDD− |VT 0 p |)VDD 2

−1#

$%

&

'(

)

*++

,

-..

τ PHL =Cload ⋅1

kn (VDD −VT 0n )2VT 0n

(VDD −VT 0n )+ ln 2(VDD −VT 0n )

VDD 2−1

#

$%

&

'(

)

*+

,

-.

const.

Γn and ΓP are set largely by process parameters and VDD

Penn ESE 570 Spring 2019 – Khanna

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Design for Delays with More Realistic Model for Cload

93 Penn ESE 570 Spring 2019 – Khanna

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Design for Delays with More Realistic Model for Cload

94

Cload = α0 + αnWn + αpWp

Penn ESE 570 Spring 2019 – Khanna

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Design for Delays with More Realistic Model for Cload

95

Cload = α0 + αnWn + αpWp Cload = α0 + αnWn + (αpWp/Wn)Wn Cload = α0 + [αn + αpR]Wn

Penn ESE 570 Spring 2019 – Khanna

where R = Wp/Wn = constant

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Design for Delays with More Realistic Model for Cload

96

Cload = α0 + αnWn + αpWp Cload = α0 + αnWn + (αpWp/Wn)Wn Cload = α0 + [αn + αpR]Wn

where R = Wp/Wn = constant (Recall: when Lp=Ln) Vth = 1kR=µpWp

µnWn

Penn ESE 570 Spring 2019 – Khanna

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Page 17: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

17

Design for Delays with More Realistic Model for Cload

97

Cload = α0 + αnWn + αpWp Cload = α0 + αnWn + (αpWp/Wn)Wn Cload = α0 + [αn + αpR]Wn

Cload = α0 + αnWn + αpWp Cload = α0 + (αnWn/Wp)Wp + αpWp Cload = α0 + [αn/R + αp]Wp

where R = Wp/Wn = constant (Recall: when Lp=Ln) Vth = 1kR=µpWp

µnWn

Penn ESE 570 Spring 2019 – Khanna

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Design for Delays with More Realistic Model for Cload

98

Cload = α0 + αnWn + αpWp Cload = α0 + αnWn + (αpWp/Wn)Wn Cload = α0 + [αn + αpR]Wn

Cload = α0 + αnWn + αpWp Cload = α0 + (αnWn/Wp)Wp + αpWp Cload = α0 + [αn/R + αp]Wp

where R = Wp/Wn = constant

α0 + [αn + αpR]Wn

Wn

τPHL = Γn τPLH = Γp

α0 + [αn/R + αp]Wp

Wp

(Recall: when Lp=Ln) Vth = 1kR=µpWp

µnWn

Penn ESE 570 Spring 2019 – Khanna

τPHL = ΓnCload (Wn )Wn

τPLH = ΓpCload (Wp )Wp

Design for Delays with More Realistic Model for Cload

99

where R (constant) = aspect ratio = Wp/Wn

α0 + [αn + αpR]Wn

Wn

τPHL = Γn τPLH = Γp

α0 + [αn/R + αp]Wp

Wp

Penn ESE 570 Spring 2019 – Khanna

Design for Delays with More Realistic Model for Cload

100

where R (constant) = aspect ratio = Wp/Wn

= limit τPHL = Γn [αn + αp R] Wn → large absolute

minimum delays = limit τPLH = Γp [αn/R + αp]

Wp → large

Hence increasing Wn and Wp will have diminishing influence on τPHL and τPLH as they become large, i.e.

α0 + [αn + αpR]Wn

Wn

τPHL = Γn τPLH = Γp

α0 + [αn/R + αp]Wp

Wp

τPHL

τPLH

Penn ESE 570 Spring 2019 – Khanna

101

Design for Delays with More Realistic Model for Cload

Penn ESE 570 Spring 2019 – Khanna 102

Design for Delays with More Realistic Model for Cload

Penn ESE 570 Spring 2019 – Khanna

Page 18: Lecture Outline ESE 570: Digital Integrated Circuits and VLSI ...ese570/spring2019/handouts/...Q=CV= ∫I(t)dt € E=CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 - Khanna

18

Taking Into Account Non-Ideal Input Waveform

103

ideal Vin non-ideal Vin Vout to ideal Vin Vout to non-ideal Vin

Penn ESE 570 Spring 2019 – Khanna

MOS Inverter Dynamic Performance 

!  ANALYSIS (OR SIMULATION): For a given MOS inverter schematic and Cload, estimate (or measure) the propagation delays 

!  DESIGN: For given specs for the propagation delays and Cload*,

determine the MOS inverter schematic

104

METHODS: 1.  Average Current Model

2.  Differential Equation Model

3.  1st Order RC delay Model

Assume Vin ideal

τ PHL ≈ CloadΔVHLIavg,HL

=CloadVOH −V50%Iavg,HL

Penn ESE 570 Spring 2019 – Khanna

iC =CloaddVoutdt

⇒ dt∫ =CloaddVoutiC

∫dt ≈ τ PHL or τ PLH

τ PHL ≈ 0.69 ⋅Cload ⋅Rn

Idea

!  Ptot = Pstatic + Pdyn+ Psc

"  Can’t ignore Static Power (aka. Leakage power)

!  Propogation Delay "  Average Current Model "  Differential Equation Model "  1st Order Model

"  More next time…

105 Penn ESE 570 Spring 2019 – Khanna

Admin

!  HW 5 out "  Due 3/1

!  Quiz next lecture Thursday 2/21 "  First 15 minutes of class "  Starts at 1:30pm exactly "  Closed book "  Covers lecture 1-9

106 Penn ESE 570 Spring 2019 – Khanna