20
Lecture 20 Time Independent Perturbation Theory - I In this lecture you will learn: • Time independent perturbation theory • Controlled expansions for changes in eigenenergies and eigenstates

Lecture 20 Time Independent Perturbation Theory -I

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

ECE 3030 – Summer 2009 – Cornell University

Lecture 20

Time Independent Perturbation Theory - I

In this lecture you will learn:

• Time independent perturbation theory• Controlled expansions for changes in eigenenergies and eigenstates

ECE 3030 – Summer 2009 – Cornell University

Quantum SHO: A Recap

Consider a particle of charge q in a SHO potential:

The Hamiltonian is:x0

012 oE

1112 oE

2122 oE

3132 oE

1 1ˆ ˆ2 2o o o nH n n n n n E n

22 2 †ˆ 1 1 1ˆ ˆ ˆ ˆˆ

2 2 2 2o o o opH m x a a nm

The eigenstates are:

The wavefunctions are:

0

1 ˆ 0!

12 2!

nn

no

no

x x n x an

mx x xm xn

ECE 3030 – Summer 2009 – Cornell University

Perturbing the SHO with a DC Electric FieldNow suppose a small electric field is added to the potential:

22 2ˆ 1 ˆˆ ˆˆ ˆ

2 2 o x opH m x qE x H Om

+2 21

2 om x

xqE x

We know the final answer:

● All energies are shifted by a constant amount:

● All wavefunctions are also shifted in space by

2 22 2 2ˆ 1 1ˆ ˆ

2 2 2o o o opH m x x m xm

22 22

1 1 12 2 2

xnewn o o o n

o

qEE n m x E

m

newn n onewx x n x x

ˆ newnnew newH n E n

2x

oo

qExm

=ox

x x x

2212 o om x x

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: The Basic Idea

Question: If we write the new energies and new wavefunctions as the old energies and old wavefunctions plus corrections, then can the corrections be expended as a power series in the perturbation strength?

2 31 2 3 .....new

n n n n x x xE E E E a E a E a E

A power series in the perturbation strength

2 31 2 3 ....new

n n n n x x xx x x x f x E f x E f x E

A power series in the perturbation strength

Question:How do we systematically find the coefficients a1 , a2 , a3, …… and how do we systematically find the functions f1(x) , f2(x) , f3(x) , ……. ???

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: Statement of the Problem

Consider a problem for which the Hamiltonian is:

ˆo j j jH e E e

The eigenstates are:

ˆoH

1j jj

e e

The eigenstates form a complete orthonormal set:

j k jke e

Now suppose a small perturbation is added to the Hamiltonian:

ˆˆ ˆoH H O

O

Then new energy eigenstates and eigenvalues are given by:

ˆ new new newj j jH e E e

We write:newj j jE E E

newj j je e e

How do we find: jE

How do we find: je

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: Change in Eigenstatesnewj j je e e 1j j

je e

j k jke e The change is (without loosing generality) orthogonal to the original state:

0j je e

1

j j m m jm

m j m m mm m j

e e e e e

e e e c e

We write:

Finding amounts to finding the coefficients je mc

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: Smallness Parameter

We write the perturbation term as:

Here is a “smallness” parameter that will help us do a controlled perturbation expansion in powers of and we will set equal to unity when we are done with the calculations

ˆˆ ˆoH H O

O

1 2 32 3

...........

newj j j

j m mm j

j m m m mm j

e e e

e c e

e c c c e

A power series in the perturbation strength

A power series in the perturbation strength

Eigenenergies:

Eigenstates:

1 2 32 3 .....newj j j j j j jE E E E E E E

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: EigenequationWe start from:

ˆ

ˆˆ

new new newj j j

new new newo j j j

H e E e

H O e E e

And we substitute the expressions: 1 2 32 3 .....new

j j j j j j jE E E E E E E

1 2 32 3 ...........newj j m m m m

m je e c c c e

To get:

1 2 32 3

1 2 3 1 2 32 3 2 3

ˆˆ ...........

..... ...........

o j m m m mm j

j j m m m mj j jm j

H O e c c c e

E E E E e c c c e

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: First Order Eigenenergy Change

1 2 32 3

1 2 3 1 2 32 3 2 3

ˆˆ ...........

..... ...........

o j m m m mm j

j j m m m mj j jm j

H O e c c c e

E E E E e c c c e

STEP 1:Multiply by the bra from the left side and keep only the terms that are of zero-order in the parameter (i.e. that are independent of )

je

ˆj o j j j je H e E e e

STEP 2:Multiply by the bra from the left side and keep only the terms that are of first-order in the parameter

je

11 1

1

ˆ ˆ

ˆ

j j m j o m j j j m j mjm j m j

j jj

e O e c e H e E e e E c e e

E e O e

0 0

This means that the first order energy change of an eigenstate is just the mean value of the perturbation operator with respect to that eigenstate

Nothing new here

1 ˆ .....newj j j j jjE E E E e O e

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: First Order Eigenstate Change

1 2 32 3

1 2 3 1 2 32 3 2 3

ˆˆ ...........

..... ...........

o j m m m mm j

j j m m m mj j jm j

H O e c c c e

E E E E e c c c e

STEP 3:Multiply by the bra (where p ≠ j) from the left side and keep only the terms that are of first-order in the parameter

pe

11 1

1 1

1

ˆ ˆ

ˆ

ˆ

p j m p o m p j j m p mjm j m j

p j p p j p

p jp

j p

e O e c e H e E e e E c e e

e O e c E E c

e O ec

E E

0

This means the first order change in the eigenstate is:

..... ......m jnewj j m m j m

m j m j j m

e O ee e c e e e

E E

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory: Second Order Eigenenergy Change

1 2 32 3

1 2 3 1 2 32 3 2 3

ˆˆ ...........

..... ...........

o j m m m mm j

j j m m m mj j jm j

H O e c c c e

E E E E e c c c e

STEP 4:Multiply by the bra from the left side and keep only the terms that are of second-order in the parameter

je

1 22

2 1 1 22 2

22 1

ˆ

ˆˆ

m j m m j mm j m j

j j m j m j m j mj jm j m j

j mm j mj

m j m j j m

c e O e c e e

E e e E c e e E c e e

e O eE c e O e

E E

0

0 0

m jm

j m

e O ec

E E

This means that up to second order the energy change of an eigenstate is:

2

1 2ˆ

ˆ..... ......j mnew

j j j j jj jm j j m

e O eE E E E E e O e

E E

ECE 3030 – Summer 2009 – Cornell University

Perturbed SHO: Exact Solution

+2 21

2 om x

xqE x =ox

x x x

2212 o om x x

22

12

xnewj j

o

qEE E

m

2

22

1 ........2!

j jnewj j o j o o

x xx x x x x x

x x

22 2ˆ 1 ˆˆ ˆˆ ˆ

2 2 o x opH m x qE x H Om

ECE 3030 – Summer 2009 – Cornell University

Perturbed SHO: Exact Solution for the Ground State

+2 21

2 om x

xqE x =ox

x x x

2212 o om x x

20 0 2

12

xnew

o

qEE E

m

00 0 0

00

0 1 2

........

........

......2

0 0 1 ......2

newo o

o

o x

o

xnew

o o

xx x x x x

xx

x xx

m qEx xm

qEm

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory for the SHO: Ground State

1

0 0

ˆ 00 0 ..... 0 ......x

mnew m j m m

m qE xc m m

E E

only m=1 will give a non-zero contribution

11

0 1

ˆ1 00 0 1 ..... 0 1 ......

ˆ1 0 0 1 ......

ˆ1 0 0 1 ......

0 1 ......2

xmnew

x

o

xo

x

o o

qE xc

E EqE x

xqE

qEm

Matches with the exact solution to first order in the electric field

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory for the SHO: Ground State Energy

21 2

0 0 00 00 0

ˆ0ˆ..... 0 0 ......x mnew

xm m

qE x eE E E E E qE x

E E

2

0 00 1

2

0

2

0 2

ˆ0 1ˆ0 0 ......

2 ......

1 ........2

xnewx

xo

o

x

o

qE xE E qE x

E E

qEm

E

qEE

m

0

Matches with the exact solution to second order in the electric field

only m=1 will give a non-zero contribution

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory Example

Finite Potential Well

1

2

3

The Finite Potential Well with a Bump

V=UV=U

x

V=0

02L 2L

A potential bump

ECE 3030 – Summer 2009 – Cornell University

Perturbation Theory Example: Stark Effect

Finite Potential Well

1

2

3

Finite Potential Well in a DC Electric Field

Shifts in the eigenenergies are called Stark shifts

V=U – qExx

x

V=0

02L 2L

V=U – qExx

V= – qExx

21 2 ˆ

ˆ..... ......j x mnew

j j j j x jj jm j j m

e qE x eE E E E E e qE x e

E E

Stark shift

Johannes Stark(1874-1957)Nobel Prize

ECE 3030 – Summer 2009 – Cornell University

Stark Effect in Telecom: Electro-Absorption Modulators

Modulated Laser Light

ECE 3030 – Summer 2009 – Cornell University

Stark Effect in Telecom: Electro-Absorption Modulators

Light absorption can be switched on or off by applying a DC electric field to a semiconductor quantum well

ECE 3030 – Summer 2009 – Cornell University