lec6 power system

  • Upload
    parth

  • View
    233

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 lec6 power system

    1/34

    POWER SYSTEMS ILecture 6

    06-88-590-68

    Electrical and Computer Engineering

    University of Windsor 

    Dr. Ali Tahmasebi

  • 8/18/2019 lec6 power system

    2/34

    1

     Analysis of Unsymmetric Systems

    l Except for the balanced three-phase fault, faults

    result in an unbalanced system.

    l The most common types of faults are single line-

    ground (SLG) and line-line (LL). Other types aredouble line-ground (DLG), open conductor, and 

     balanced three phase.

    l System is only unbalanced at point of fault!

    l The easiest method to analyze unbalanced system

    operation due to faults is through the use of 

    symmetrical components

  • 8/18/2019 lec6 power system

    3/34

    2

    Symmetric Components

    l The key idea of symmetrical component analysis is

    to decompose the system into three sequence

    networks. The networks are then coupled only at

    the point of the unbalance (i.e., the fault)

    l The three sequence networks are known as the

     –   positive sequence (this is the one we’ve been using)

     –  negative sequence

     –  zero sequence

  • 8/18/2019 lec6 power system

    4/34

    3

    Positive Sequence Sets

    l The positive sequence sets have three phase

    currents/voltages with equal magnitude, with phase

    b lagging phase a by 120°, and phase c lagging

     phase b by 120°.l We’ve been studying positive sequence sets (also

    known as ‘abc’ sequence)

    Positive sequencesets have zero

    neutral current

  • 8/18/2019 lec6 power system

    5/34

    4

    Negative Sequence Sets

    l The negative sequence sets have three phase

    currents/voltages with equal magnitude, with phase

    b leading phase a by 120°, and phase c leading

     phase b by 120°.l  Negative sequence (also known as ‘acb’ sequence)

    sets are similar to positive sequence, except the

     phase order is reversed 

     Negative sequence

    sets have zero

    neutral current

  • 8/18/2019 lec6 power system

    6/34

  • 8/18/2019 lec6 power system

    7/34

    6

    Sequence Set Representation

    Any arbitrary set of three phasors (vectors), say Ia, I b, Iccan be represented as a sum of the three sequence sets

    0

    0

    0

    0 0 0

    where

    , , is the zero sequence set

    , , is the positive sequence set

    , , is the negative sequence set

    a a a a

    b b b b

    c c c c

    a b c

    a b c

    a b c

     I I I I 

     I I I I 

     I I I I 

     I I I 

     I I I 

     I I I 

    + -

    + -

    + -

    + + +

    - - -

    = + +

    = + +

    = + +

     I a

     I b

     I c

  • 8/18/2019 lec6 power system

    8/34

    7

    Conversion from Sequence to Phase

    0a

    2 3 3

    0 0 0a b c

    2

    Only three of the sequence values are unique,

    I , , ; the others are determined as follows:

    1 120 0 1

    I I I (since by definition they are all equal)

    a a

    b a c a b a c

     I I 

     I I I I I I I 

    a a a a a  

    a a a 

    + -

    + + + + - - +

    Ð ° + + = =

    = =

    = = = =

    2

    0

    0 + 2 2a a

    2 2

    1 1 1 11 1I 1 I 1

    1 1

    a

    aa

    b a a

    c a

     I 

     I  I  I I I 

     I   I 

    a a a a  

    a  a a a 

    -

    - +

    -

    é ùé ù é ùé ùé ù é ù ê úê ú ê úê úê ú ê ú= + + =   ê úê ú ê úê úê ú ê ú

    ê úê ú ê úê úê ú ê úë û ë û   ë ûë û ë ûê úû

    =

    -

  • 8/18/2019 lec6 power system

    9/34

    8

    Conversion Sequence to Phase

    2

    2

    0 0

    Define the symmetrical components transformation

    matrix

    1 1 1

    1

    1

    Then

    aa

    b a s

    c a

     I I  I 

     I I I 

     I   I I 

    a a 

    a a 

    + +

    - -

    é ù

    ê ú= ê úê úë û

    é ù é ùé ù

    ê ú ê úê ú= = = =ê ú ê úê úê ú ê úê úë û   ê ú ê úû ë û

    A

    I A A A I

    Is :

    sequence

    currents

  • 8/18/2019 lec6 power system

    10/34

    9

    Conversion Phase to Sequence

    1

    1 2

    2

    By taking the inverse we can convert from the

     phase values to the sequence values

    1 1 11

    with 13

    1

    Sequence sets can be used with voltages as well

    as with currents

    s

    a a 

    a a 

    -

    -

    =

    é ùê ú

    = ê úê úë û

    I A I

    A

  • 8/18/2019 lec6 power system

    11/34

    10

    Conversion Phase to Sequence

    It can be easily derived that:   =1

    3   +  +

    In any Y-connected 3-phase system: I n = I a + I b + I c , so:

     I n = 3 I 0

    If this system is also balanced, then   I n = I 0 = 0

    (Also, any system with no neutral path will have I n = I 0 = 0)

     NOTE: Some books use the notation 0, 1 and 2 instead of  ±

    signs. So for example instead of  I 0, I 1 and  I 2, we will have I 0, I 1and  I 2, respectively.

  • 8/18/2019 lec6 power system

    12/34

    11

    Symmetrical Component Example 1

    1 2s

    2

    s

    10 0

    Let 10 Then

    10

    1 1 1 10 01

    1 10 10 03

    10 01

    10 0 0

    If 10 0

    10 10 0

    a

    b

    c

     I 

     I 

     I 

    a a 

    a a 

    -

    Ð °é ù é ùê ú ê ú= = Ð - 120°ê ú ê ú

    Ð 120°ê ú ê úë û ë û

    é ù   Ð ° 0é ù é ùê úê ú ê ú= = Ð - 120° = Ð °ê úê ú ê úê ú   Ð 120°ê ú ê úû ë ûë û

    Ð °é ù é ùê ú ê ú= Ð +120° ® =ê ú ê ú

    Ð - 120° Ð °ê ú ê úû ë û

    I

    I A I

    I I

    (‘abc’ or positive sequence), then:

    (‘acb’ or negative sequence)

  • 8/18/2019 lec6 power system

    13/34

    12

    Symmetrical Component Example 2

    1 2s

    2

    0

    Let

    Then

    1 1 1 0 01

    13 6.121

    a

    b

    c

    a a 

    a a 

    -

    5Ð 9 °é ù   é ùê ú   ê ú= = 8Ð 150°ê ú   ê ú

    8Ð - 30°ê úê ú   ë ûë û

    é ù   5Ð 9 ° 1.67Ð 9 °é ù é ùê úê ú ê ú= = 8Ð 150° = 3.29Ð - 135°ê ú

    ê ú ê úê ú   8Ð - 30° Ð 68°ê ú ê úû ë ûû

    V

    V A V

  • 8/18/2019 lec6 power system

    14/34

    13

    Symmetrical Component Example 3

    0

    2

    2

    10 0

    Let 10

    Then

    1 1 1 10 0

    1 10

    1

    s

    s

     I 

     I 

     I 

    a a 

    a a 

    +

    -

    é ù Ð °é ùê ú ê ú= = - Ð 0°ê ú ê úê ú 5Ð 0°ê ú

    ë ûê úë û

    é ù   Ð ° 5.0Ð 0°é ù é ùê úê ú ê ú

    = = - Ð 0° = 18.0Ð 46.1°ê úê ú ê úê ú   5Ð 0° 18.0Ð - 46.1°ê ú ê úû ë ûë û

    I

    I AI

  • 8/18/2019 lec6 power system

    15/34

    14

    Symmetrical Component Example 4

    Phase b open:

     =

    =

    10Р0°

    0

    10Р120°

    (this is obviously an

    unbalanced system)

     =

     =

    3.33Р60°

    6.66Р0°3.33Ð   − 60°

     I n = I a + I b + I c = 10Р0° + 0 + 10Р120° = 10Р60° = 3 I 0

    (as we expected!)

  • 8/18/2019 lec6 power system

    16/34

    15

    Use of Symmetrical Components

    Consider this balanced, wye-connected impedance load:

    ( )

    ( )

    ( )

    n a b c

    ag a y n n

    ag Y n a n b n c

    bg n a Y n b n c

    cg n a n b Y n c

     I I I I 

    V I Z I Z  

    V Z Z I Z I Z I  

    V Z I Z Z I Z I  

    V Z I Z I Z Z I  

    = + +

    = +

    = + + += + + +

    = + + +

    ag y n n n a

    bg n y n n b

    ccg n n y n

    V Z Z Z Z    I 

    V Z Z Z Z I  

     I V Z Z Z Z  

    é ù é ù+   é ùê ú ê úê ú= +ê ú ê úê úê ú ê úê ú+   ûû ë û

  • 8/18/2019 lec6 power system

    17/34

    16

    Use of Symmetrical Components

    1

    13 0 0

    0 0

    0 0

    ag y n n n a

    bg n y n n b

    ccg n n y n

    s s

    s s s s

     y n

     y

     y

    V Z Z Z Z    I 

    V Z Z Z Z I  

     I V Z Z Z Z  

     Z Z 

     Z 

     Z 

    -

    -

    é ù é ù+   é ùê ú ê úê ú= +ê ú ê úê úê ú ê úê ú+   ûë û ë û

    = = =

    = ® =

    é ù+ê ú=   ê ú

    ê úû

    V Z I V A V I A I

    A V Z A I V A Z A I

    A Z A

    ( Z is called the phase impedance matrix)

    = Zs = sequence

    impedance

    matrix

    ® Vs = Zs Is

  • 8/18/2019 lec6 power system

    18/34

    17

    Networks are Now Decoupled

    0 0

    0 0

    3 0 0

    0 00 0

    Systems are decoupled 

    ( 3 )

     y n

     y

     y

     y n y

     y

    V I  Z Z 

    V Z I  Z V I 

    V Z Z I V Z I  

    V Z I 

    + +

    - -

    + +

    - -

    é ù é ùé ù+ê ú ê úê ú

    =ê ú ê úê úê ú ê úê úê ú ê úë ûë û ë û

    = + ==

    (because Zs is a diagonal matrix):

  • 8/18/2019 lec6 power system

    19/34

    18

    Sequence Networks

    ® I0

    +

    -

    V0Zy

    3Zn

    Z0 = Zy + 3ZnZero-sequence network:

    ® I+

    +

    -V+ Zy Z

    + = ZyPositive-sequence network:

    ®I

    -

    +

    -V- Zy Negative-sequence network: Z- = Zy

    Z0 = zero-sequence

    impedance

  • 8/18/2019 lec6 power system

    20/34

    19

    Grounding

    l When studying unbalanced system operation how a

    system is grounded can have a major impact on the

    fault flows

    l Ground current only impacts zero sequence system

    l In previous example if load was ungrounded the

    zero sequence network is (with Zn equal infinity):

  • 8/18/2019 lec6 power system

    21/34

    20

    Grounding, cont’d

    l Voltages are always defined as a voltage

    difference. The ground is used to establish the

    zero voltage reference point

     –  ground need not be the actual ground (e.g., an airplane)

    l During balanced system operation we can ignore

    the ground since there is no neutral current

    l There are two primary reasons for grounding

    electrical systems1. safety

    2.  protect equipment

  • 8/18/2019 lec6 power system

    22/34

    21

    How good a conductor is dirt?

    l There is nothing magical about an earth ground. All

    the electrical laws, such as Ohm’s law, still apply.

    l Therefore to determine the resistance of the ground 

    we can treat it like any other resistive material:

    8

    8

    onductor lengthResistance

    cross sectional area

    2.65 10 -m for aluminum1.68 10 -m for copper 

    where is the resistivity

    c R

      r 

    -

    -

    ´=

    = ´ W

    = ´ W

  • 8/18/2019 lec6 power system

    23/34

    22

    How good a conductor is dirt?

    8

    16

    2.65 10 -m for aluminum

    5 10 -m for quartz (insulator!)

    160 -m for top soil

    900 -m for sand/gravel

    20 -m for salt marsh

    What is resistance of a mile long, one inch diameter,

    circular wir 

    -= ´ W

    = ´ W

    = W

    = W

    = W

    8

    2

    e made out of aluminum ?

    2.65 10 1609 R= 0.083

    mile0.0128

    -´ ´ W=´

  • 8/18/2019 lec6 power system

    24/34

    23

    How good a conductor is dirt?

    6

    2

    What is resistance of a mile long, one inch diameter,

    circular wire made out of topsoil?

    160 1609 R= 500 10

    mile0.0128

    In order to achieve 0.08 with our dirt wiremile

    we would need a cross sectio

    ´ W= ´

    ´W

    6 2

    nal area of 

    160 1609 3.2 10 (i.e., a radius of about 1000 m)0.08

    But what the ground lacks in , it makes up for in A!

    m

    ´ = ´

  • 8/18/2019 lec6 power system

    25/34

    24

    Calculation of grounding resistance

    • Because of its large cross sectional area the earth is

    actually a pretty good conductor.

    • Devices are physically grounded by having aconductor in physical contact with the ground;

    having a fairly large area of contact is important.

    • Most of the resistance associated with establishing

    an earth ground comes within a short distance of 

    the grounding point.

  • 8/18/2019 lec6 power system

    26/34

    25

    Sequence Networks of Balanced-  load

    AD-connected 

     balanced load and its

    equivalent Y-connected 

    load (  =∆

    ).

    ® I0 = 0

    +

    -

    V0∆

    3

    Z0 =  ¥

    ® I++

    -V+

    Z+ = ∆

    ® I-+

    -V-

    Z- = ∆

    Sequence networks:

    3∆

    3

  • 8/18/2019 lec6 power system

    27/34

    26

    Sequence Networks of Generators

    Key point: generators only

     produce positive sequence

    voltages; therefore only the

     positive sequence has avoltage source.

    Sequence networks:

    ¬ I0

    +

    -

    V0

    ¬I

    +

    +

    -

    V+

    ¬ I-

    +

    -V-

    Zg0

    3Zn Zg+

    Eg+

    Zg-

    Zero-sequence network  Positive-sequence network   Negative-sequence network 

  • 8/18/2019 lec6 power system

    28/34

    27

    • During a fault Zg+ » Zg

    -» Xd 

    ².

    • The zero sequence impedance is usually

    substantially smaller.

    • The value of Zn depends on whether the generator 

    is grounded.

    Sequence Networks of Generators, cont’d

  • 8/18/2019 lec6 power system

    29/34

    28

    Sequence Networks of Motors

    • The sequence networks of synchronous motors are the

    same as the synchronous generators (with a source Em+ in

    the positive-sequence network), except the currents go

    into the networks.

    • The sequence networks of the induction motors are the

    same as the synchronous motors, except there is no

    voltage source (Em+ = 0).

  • 8/18/2019 lec6 power system

    30/34

    29

    Sequence Networks of Transformers

    Ideal Y-Y transformer:

    Sequence networks:® I

    H

    + or IH

    -

    +

    -

    EH+ or EH

    -

    +

    -

    Positive and Negative-sequence network (p.u.)Zero-sequence network (p.u.)

    ® IX+ or IX

    -

    EX+ or EX

    -

  • 8/18/2019 lec6 power system

    31/34

    30

    • When IA0 = IB

    0 = IC0 = I0 is applied to an ideal

    transformer, I N = 3I0 flows through Z N and also

    through Zn.

    •  Note that if either one of the neutrals is ungrounded,

    then no zero sequence can flow in either the high- or 

    low-voltage windings. For example, if the high-

    voltage winding has an open neutral, then I N = 3I0 = 0,

    which in turns forces I0

    = 0 on the low-voltage side.

    Sequence Networks of Transformers, cont’d

  • 8/18/2019 lec6 power system

    32/34

    31

    Sequence

     Networks of 

    Practical

    Transformers

    (p.u.)

  • 8/18/2019 lec6 power system

    33/34

    32

    Sequence Networks of Transformers, cont’d

     Notes on sequence networks of practical transformers:

    • In (a) double-grounded Y-Y: positive- and negative

    sequence networks are the same as p.u. transformer model,

    and 3Z N and 3Zn are added only in zero-sequence network.

    • In (b) grounded-Y/D: positive- and negative sequence

    networks are the same as transformer model. Zero-

    sequence currents can enter Y side if it is grounded and 

    flow through the winding and also the Dwinding (since itwill be inducted) but cannot leave the Dside.

    • In (c)  D-  D: zero-sequence currents cannot enter or leave  D

    windings, but can circulate within them.

  • 8/18/2019 lec6 power system

    34/34

    33

    Power in Sequence Networks

    Total complex power delivered to a 3-phase load, in

    terms of phase voltages and currents is:

     = ∗ +

    ∗ + ∗

    = .∗ =     ∗ = (  ∗)∗

      

    ∗ =

    3 0 0

    0 3 0

    0 0 3

    →  = 3

    →  = 3  ∗ + ∗ + ∗ = 3

    Ss = total complex power delivered to sequence networks.