lec4 power system

  • Upload
    parth

  • View
    237

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 lec4 power system

    1/31

    POWER SYSTEMS ILecture 4

    06-88-590-68

    Electrical and Computer Engineering

    University of Windsor 

    Dr. Ali Tahmasebi

  • 8/18/2019 lec4 power system

    2/31

    1

    Transmission Line Models

    l Transmission lines have distributed inductance,

    capacitance and resistance, which can be calculated 

     based on the conductor material and line structure.

    l In this section we will use these distributed  parameters to develop the transmission line models

    used in power system analysis.

  • 8/18/2019 lec4 power system

    3/31

    2

    Transmission Line Equivalent Circuit

    Our current model of a transmission line is shown

     below for a section of line with the length = dx.

    For operation at frequency , let z = r + j L

    and y = g +j C (with g usually equal 0)

    w w 

  • 8/18/2019 lec4 power system

    4/31

    3

    Derivation of V, I Relationships

    We can then derive the following relationships:

    ( )( ) ( )

    dV I z dx

    dI V dV y dx V y dxdV x dI x

     z I yV dx dx

    =

    = + »

    = =

     z and  y are the

    values for the entire

    line.

  • 8/18/2019 lec4 power system

    5/31

    4

    Setting up a Second Order Equation

    2

    2

    2

    2

    ( ) ( )

    We can rewrite these two, first order differential

    equations as a single second order equation

    ( ) ( )

    ( )0

    dV x dI x z I yV 

    dx dx

    d V x dI x z zyV 

    dxdx

    d V x zyV 

    dx

    = =

    = =

    - =

  • 8/18/2019 lec4 power system

    6/31

    5

    2 2

    Define the propagation constant as

    where

    the attenuation constant

    the phase constant

    Use the Laplace Transform to solve. System

    has a characteristic equation

    ( ) ( )( ) 0

     yz j

    s s s

    g a b 

    g g g 

    = = +

    =

    =

    - = - + =

    V, I Relationships, cont’d

    [m-1]

  • 8/18/2019 lec4 power system

    7/31

    6

    Equation for Voltage

    1 2

    1 2 1 2

    1 1 2 2 1 2

    1 2

    1 2

    The general equation for V is

    ( )

    Which can be rewritten as

    ( ) ( )( ) ( )( )2 2

    Let K and K . Then

    ( ) ( ) ( )2 2

    cosh( ) sinh( )

     x x

     x x x x

     x x x x

    V x k e k e

    e e e eV x k k k k  

    k k k k  

    e e e eV x K K  

    K x K x

    g g 

    g g g g  

    g g g g  

    g g 

    -

    - -

    - -

    = +

    + -= + + -

    = + = -

    + -= +

    = +

    (voltage at position x):

    ( x is measured from

    receiving end of line)

  • 8/18/2019 lec4 power system

    8/31

    7

    Real Hyperbolic Functions

    For real x the cosh and sinh functions have the

    following form:

    cosh( ) sinh( )sinh( ) cosh( )

    d x d x x x

    dx dx

    g g g g g g  = =

  • 8/18/2019 lec4 power system

    9/31

    8

    Complex Hyperbolic Functions

    For x = a + jb the cosh and sinh functions have thefollowing form

    cosh cosh cos sinh sin

    sinh sinh cos cosh sin

     x j

     x j

    a b a b  

    a b a b  

    = +

    = +

  • 8/18/2019 lec4 power system

    10/31

    9

    Determining Line Voltage

    The voltage along the line is determined based on the

    current/voltage relationships at the terminals. Assuming

    we know V and I at one end (usually at the “receiving

    end” with VR and IR where x = 0) we can determine theconstants K 1 and K 2, and hence the voltage at any point of 

    the line.

  • 8/18/2019 lec4 power system

    11/31

    10

    Determining Line Voltage, cont’d

    1 2

    1 2

    1

    1 2

    2

    c

    ( ) cosh( ) sinh( )

    (0) cosh(0) sinh(0)

    Since cosh(0) 1 & sinh(0) 0

    ( )sinh( ) cosh( )

    ( ) cosh( ) sinh( )

    where Z characteristic

     R

     R

     R R R

     R R c

    V x K x K x

    V V K K  

    K V 

    dV x zI K x K x

    dx

     zI I z zK I 

     y yzV x V x I Z x

     z

     y

    g g 

    g g g g  

    g g g 

    = +

    = = +

    = = Þ =

    = = +

    Þ = = =

    = +

    = = impedance

     x = 0

    [W]

  • 8/18/2019 lec4 power system

    12/31

    11

    Determining Line Current

    By similar reasoning we can determine I(x)

    ( ) cosh( ) sinh( )

    where x is the distance along the line from the

    receiving end.

    Define transmission efficiency as

     R R

    c

    out 

    in

    V  I x I x x

     Z 

    P

    P

    g g 

    = +

    =

  • 8/18/2019 lec4 power system

    13/31

    12

    Transmission Line Example

    6 6

    Assume we have a 765 kV transmission line with

    a receiving end voltage of 765 kV(line to line),

    a receiving end power S 2000 1000 MVA and 

    z = 0.0201 + j0.535 = 0.535 87.8mile

    y = 7.75 10 = 7.75 10 90

     j

     j  - -

    = +

    WÐ °

    ´ ´ Ð .0

    Then

    zy 2.036 88.9 / mile

    262.7 -1.1c

    mile

     z

     y

    °

    = = Ð °

    Z = = Ð °W

    W

  • 8/18/2019 lec4 power system

    14/31

    13

    Transmission Line Example, cont’d

    *6

    3

    Do per phase analysis, using single phase power 

    and line to neutral voltages. Then

    765 441.7 0 kV

    3

    (2000 1000) 101688 26.6 A

    3 441.7 0 10

    ( ) cosh( ) sinh( )441,700 0 cosh(

     R

     R

     R R c

     j I 

    V x V x I Z xg g 

    = = Ð °

    é ù+ ´= = Ð - °ê ú

    ´ Ð °́ë û

    = += Ð ° 2.036 88.9 )

    443,440 27.7 sinh( 2.036 88.9 )

     x

     x

    ´ Ð °+

    Ð - °́ ´ Ð °

  • 8/18/2019 lec4 power system

    15/31

    14

    Transmission Line Example, cont’d

  • 8/18/2019 lec4 power system

    16/31

    15

    Transmission Matrix Model

    Oftentimes we’re only interested in the terminal

    characteristics of the transmission line. Therefore we

    can model it as a “black box”.

    VS VR 

    + +

    - -

    IS IR Transmission

    Line

    S

    S

    VWith

    I

     R

     R

    V  A B

     I C D

    é ù   é ùé ù=ê ú   ê úê ú

    û   ûû

  • 8/18/2019 lec4 power system

    17/31

    16

    Transmission Matrix Model, cont’d

    S

    S

    VWith

    I

    Use voltage/current relationships to solve for A,B,C,D

    cosh sinh

    cosh sinh

    cosh sinh

    1sinh cosh

     R

     R

    S R c R

     RS R

    c

    c

    c

    V  A B

     I C D

    V V l Z I l

    V  I I l l

     Z 

    l Z l A B

    l lC D Z 

    g g 

    g g 

    g g 

    g g 

    é ù é ùé ù=ê ú   ê úê ú

    ë ûë ûë û

    = +

    = +

    é ùé ù   ê ú= =ê ú   ê úë ûê úë û

    T

  • 8/18/2019 lec4 power system

    18/31

    17

    Equivalent Circuit Model

    The common representation is the equivalent circuitp 

     Next we’ll use the T matrix values to derive the

     parameters Z' and Y'.

  • 8/18/2019 lec4 power system

    19/31

    18

    Equivalent Circuit Parameters

    '

    ' 2

    ' '1 '

    2

    ' '

    2 2

    ' ' ' '' 1 1

    4 2

    ' '1 '

    2

    ' ' ' '' 1 1

    4 2

    S R R R

    S R R

    S S R R

    S R R

    S    R

    S R

    V V Y V I 

     Z 

     Z Y V V Z I  

    Y Y  I V V I 

     Z Y Z Y  I Y V I 

     Z Y  Z 

    V    V 

     Z Y Z Y  I I Y 

    -- =

    æ ö= + +ç ÷

    è ø

    = + +

    æ ö æ ö= + + +ç ÷ ç ÷

    è ø è ø

    é ù+

    ê úé ù   é ù= ê úê ú   ê úæ ö æ ö ë ûë û   ê ú+ +ç ÷ ç ÷

    ê úè ø è øë û

  • 8/18/2019 lec4 power system

    20/31

    19

    Equivalent circuit parameters

    We now need to solve for Z' and Y'. Using the B

    element solving for Z' is straightforward 

    sinh '

    Then using A we can solve for Y'

    ' 'A = cosh 1

    2

    ' cosh 1 1 tanh2 sinh 2

    c c

     B Z l Z 

     Z Y l

    Y l l

     Z l Z 

    g g g 

    = =

    = +

    -= =

  • 8/18/2019 lec4 power system

    21/31

    20

    Simplified Parameters

    These values can be simplified as follows:

    ' sinh sinh

    sinh with Z zl (recalling )

    ' 1tanh tanh

    2 2 2

    tanh2 with Y

    22

    c

     z l z Z Z l l

     y l z

    l Z zyl

    Y l y l y l

     Z z l y

    lY 

     yll

    g g 

    g  g g 

    g g 

    = =

    = =

    = =

    =

    =

    =

  • 8/18/2019 lec4 power system

    22/31

    21

    Medium Length Line Approximations

    For shorter lines we make the following approximations:

    sinh' (assumes 1)

    ' tanh( / 2)(assumes 1)2 2 / 2

    50 miles 0.998 0.02 1.001 0.01

    100 miles 0.993 0.09 1.004 0.0

    l Z Z 

    l

    Y Y ll

    g g 

    = »

    = »

    Ð ° Ð - °

    Ð ° Ð -

    sinhγl tanh(γl/2)Length

    γl γl/2

    4

    200 miles 0.972 0.35 1.014 0.18

    °

    Ð ° Ð - °

    (this approximation is applied to lines between 80 to 250 km)

  • 8/18/2019 lec4 power system

    23/31

    22

    Three Line Models

     (longer than 200 miles)

    tanhsinh ' 2use ' ,2 2

    2 (between 50 and 200 miles)

    use and 2

      (less than 50 miles)

    use (i.e., assume Y is zero)

    ll Y Y 

     Z Z ll

    Y  Z 

     Z 

    g g 

    g g = =

    Long Line Model

    Medium Line Model

    Short Line Model

  • 8/18/2019 lec4 power system

    24/31

    23

    Power Transfer in Short Lines

    Often we'd like to know the maximum power that

    could be transferred through a short transmission line

    V1 V2

    + +

    - -

    I1 I1Transmission

    Line withImpedance Z

    S12 S21

    1

    ** 1 2

    12 1 1 1

    1 1 2 2 2

    21 1 2

    12 12

    with ,  Z 

     Z Z 

    V V S V I V  

     Z 

    V V V V Z Z  

    V V V S 

     Z Z 

    q q q 

    q q q 

    -æ ö= =   ç ÷

    è ø

    = Ð = Ð = Ð

    = Ð - Ð +(where q12 =

    q1-q2)

  • 8/18/2019 lec4 power system

    25/31

    24

    Lossless Transmission Lines

    c

    c

    c

    For a lossless line the characteristic impedance, Z ,

    is known as the surge impedance.

    Z (a real value)

    If a lossless line is terminated in impedance

    Z

    Then so we get...

     R

     R

     R c R

     jwl l

     jwc c

     I 

     I Z V 

    = = W

    =

    =

    For quick, hand calculations, we can assume R=0 (so

     z=jw l ), which is called a lossless line.

    Which is known as surge impedance.

     =    = ( )( ) =   =  [m-1]

    (gwould be a purely imaginary number)

  • 8/18/2019 lec4 power system

    26/31

    25

    Lossless Transmission Lines

    2

    ( ) cosh sinh

    ( ) cosh sinh

    ( )

    ( )

    V(x)Define as the surge impedance load (SIL).

    Since the line is lossless this implies( )

    ( )

     R R

     R R

    c

    c

     R

     R

    V x V x V x

     I x I x I x

    V x Z 

     I x

     Z 

    V x V 

     I x I 

    g g 

    g g 

    = +

    = +

    =

    =

    =If P > SIL then line consumes

    vars; otherwise line generates vars.

  • 8/18/2019 lec4 power system

    27/31

    26

    Surge Impedance Loading

    If a lossless line is terminated by (or connected to) a load 

    equal to the surge impedance Z C  , the power delivered is

    called surge impedance loading (SIL).

     = →  =   →

    ()  = cosh    + sinh    =   cosh    + sinh ()

    = =

      → ()   =  

    ® Voltage profile at SIL condition is flat.

  • 8/18/2019 lec4 power system

    28/31

    27

    Surge Impedance Loading, cont’d

    ()  = cosh    +

    sinh    =   cosh    + sinh ()

    =

    =

      → ()   =  

    Current at position x, at surge impedance loading:

    Complex power flowing at any point x:

    ()  = () + ()  = ()()∗ =  

     

    =  

    =

     

    =   SIL   ® constant and real

    number 

  • 8/18/2019 lec4 power system

    29/31

    28

     ABCD Parameters of Lossless Line

      =  = cosh    = cosh    = +

    2  = cos 

    sinh    = sinh    = − 2

      =  sin 

    →  = sinh    =  sin    =  

    sin  [W]

     =sinh ()

    =

      sin ()

    [W-1]

  • 8/18/2019 lec4 power system

    30/31

    29

    Wavelength of a Transmission Line

    Wavelength is defined as the distance on the transmission

    line required to change the phase of the voltage or current by

    360°(2p radians). If we assume a lossless line:

    ()  =  +  = cos   + sin ()

    ()  =  +  =  sin ()

     + cos ()

    These two equations change phase by 360°when   =

    → wavelength = l   =

      =

     

     =

     

    [m]

  • 8/18/2019 lec4 power system

    31/31

    30

    Wavelength of a Transmission Line, cont’d

    Velocity of propagation of voltage and current waves on

    the line:

     l   =

    1

    [m/s]

    For overhead lines, typically 

     ≅ 3 ×10 m/s

    → l   ≅ 3 ×10

    60  = 5000  = 3100 

    Typical line are usually much shorter than this.