Click here to load reader
View
215
Download
0
Embed Size (px)
Korrelationsfunktionen in Flssigkeiten oder GasenKorrelationsfunktionen in Flssigkeiten oder Gasen
L. Van Hove, Phys. Rev. 95, 249 (1954)
mittlere Dichte
Relaxationszeit T0
Inelastische und quasielastische StreuungInelastische und quasielastische Streuung
M. Be, Chem. Phys. 292, 121 (2003)
Energie- und Impulsbertrge von Neutronenspektrometern
Energie- und Impulsbertrge von Neutronenspektrometern
M. Be, Chem. Phys. 292, 121 (2003)
Flugzeitspektroskopie(time-of-flight)
Rckstreu-spektrometer(backscattering)
Neutronen-Spin-Echo-Spektrometer
Struktur von KaliumamidStruktur von Kaliumamid
monoklinkubisch
M. Mller, Dissertation (Kiel 1996)
M. Mller, Dissertation (Kiel 1996)
Quasielastische Streuung: KaliumamidQuasielastische Streuung: Kaliumamid
monoklin
M. Mller, Dissertation (Kiel 1996)
Quasielastische Streuung: KaliumamidQuasielastische Streuung: Kaliumamid
monoklin
kubisch
Neutronen-FlugzeitspektrometerNeutronen-Flugzeitspektrometer
IN6 (ILL)
X-ray absorption spectroscopyin materials science
X-ray absorption spectroscopyin materials science
Martin MllerInstitut fr Experimentelle und Angewandte Physik
der Christian-Albrechts-Universitt zu Kiel
Photoelectric absorption
XANES
EXAFS
Instrumentation
Examples
Uses of X-ray spectroscopyUses of X-ray spectroscopy
element-specific diluted or concentrated systems can be studied study of disordered systems possible wide temperature and pressure range
XAFS: X-ray absorption fine structure
local technique:
Photoelectricabsorption
Photoelectricabsorption
(a) ionisation energy of inner shell smaller than
X-ray energy
photoemissionof core electron
(b,c) two possiblesecondary processes
to fill the hole
zeIIT ==0
aAm
AN
=
Transmission and absorption cross sectionTransmission and absorption cross section
transmitted intensity decays exponentially with thickness:
absorptioncoefficient
absorptioncross-section
Avogadros numberatomic mass number
mass density
3 Ea
4Za
Absorption edgesAbsorption edgesgeneral behaviourof cross-section:
sudden increase in absorbance at ionisation energyof core electron= absorption edge
Absorption edgesAbsorption edges
electronstates
nomenclatureof edges
Fine structure of absorption edgesFine structure of absorption edges
example: krypton
K edge
2D crystalgas
X-ray Absorption Near-Edge Structure
Extended X-ray Absorption Fine Structure
40 eV
XAFS
**
*
RgDsMtHsBhSgDbRfLrRaFr
RnAtPoBiPbTlHgAuPtIrOsReWTaHfLuBaCs
XeITeSbSnInCdAgPdRhRuTcMoNbZrYSrRb
KrBrSeAsGeGaZnCuNiCoFeMnCrVTiScCaK
ArClSPSiAlMgNa
NeFONCBBeLi
HeH
**
*
NoMdFmEsCfBkCmAmPuNpUPaThAc
YbTmErHoDyTbGdEuSmPmNdPrCeLa
XANES only
EXAFS difficult
K-edge EXAFS
L3/K-edge EXAFS
L3-edge EXAFS
XAFS accessible elementsXAFS accessible elements
X-ray absorption spectroscopyin materials science
X-ray absorption spectroscopyin materials science
Photoelectric absorption
XANES
EXAFS
Instrumentation
Examples
Mn compound: shift of edge position
Energy shift of edge positionEnergy shift of edge position
energy to eject core electron depends on charge it experiences:edge energy depends on oxidation state
electron might also beexcited into
bound states
Pre-edge peaksPre-edge peaks
Pre-edge peaksPre-edge peaks
9.03 8.95
Energy (keV)
K Edge ~1.381s4p
Abso
rptio
n
1s4s
1s3d
CuCl2 . 2H2O
CuCl
E (eV)
depend on geometry: oxidation state site symmetry surrounding ligands nature of bonding
XANES white linesXANES white lines
E (eV)
in transition metals:area of white lineindicates number of empty d-states
XANES fingerprintingXANES fingerprinting
XANES characteristic of chemical environment and valence state: fingerprinting phase analysis by linear combination of known species
unknownS spectrum
known references(oxidation numbers
0, 2, 4, 6)
high sensitivityto electronic states!
X-ray absorption spectroscopyin materials science
X-ray absorption spectroscopyin materials science
Photoelectric absorption
XANES
EXAFS
Instrumentation
Examples
Principle of EXAFS oscillations
Principle of EXAFS oscillations
AnimationAnimation
Interference of wavefunctionsof photoelectron and of backscattered electrons(from neighbouring atoms)
Parameters accessible with EXAFSParameters accessible with EXAFS
type of atoms surrounding central absorber (Z 3) number of atoms surrounding absorber ( 20%) distances absorber scatterer (accuracy 0.1 )
EXAFS data analysisEXAFS data analysis
)()()(
))((0
0
EEE
Eq
=
KEmq hh =
2
22
EXAFS signal: isolated atom
in material of interest
electron wave vector
Fourier transform:radial distribution function
one shell
CdTe nanocrystals
The EXAFS formula The EXAFS formula
many shells
CdTe bulk
sum over j neighbouring shells goal: extract radii Rj and
occupation numbers Nj damping due to loss (mean free
path ) and disorder (Debye-Wallerfactor)
phase shifts backscattering amplitude
difficult
X-ray absorption spectroscopyin materials science
X-ray absorption spectroscopyin materials science
Photoelectric absorption
XANES
EXAFS
Instrumentation
Examples
Absorption spectrometerAbsorption spectrometer
IC: ionisation chamber
fixed-exit double crystal monochromator
(fast scanning withpiezos: QEXAFS)
scanning
EXAFS / XANES in one shot: DEXAFSEXAFS / XANES in one shot: DEXAFS
polychromator:bent Si(111) crystal
energy dispersiontranslated into positiondependence on detector
whitesynchrotronradiation
energy-dispersive
Bent crystal polychromator @ ID24 (ESRF)Bent crystal polychromator @ ID24 (ESRF)
Alternatives to transmission
measurements
Alternatives to transmission
measurements
fluorescence(high sensitivity)
Auger yield(if fluorescence
yield low)
X-ray absorption spectroscopyin materials science
X-ray absorption spectroscopyin materials science
Photoelectric absorption
XANES
EXAFS
Instrumentation
Examples
Homogeneous catalytic reaction mechanismsHomogeneous catalytic reaction mechanisms
ESRF Highlights 2004
Cu(II) catalyst (arylation)
XANES time resolution: 10-200 ms combination with UV-vis spectroscopy
XANES
UV-vis
Adsorbate-induced phase change in Rh catalystsAdsorbate-induced phase change in Rh catalysts
ESRF Highlights 2002
car exhaust catalytic converters:NO converted to N2
Rh nanoparticles rapidlychange upon exposure to NO
Rh metal
Rh2O3 oxide
time-resolved EXAFS study
Synchronizing IR spectroscopy and XAFS Synchronizing IR spectroscopy and XAFS
ESRF Highlights 2006
sub-second EXAFS and IR time resolution
again de-NOx Rh catalyst: many different components
IR EXAFS
Rh(NO)2
NO- (bent)
NO on metal
NO+ (linear)
Rh metal
Rh2O3oxide