24
Novel magnetocaloric materials for magnetic cooling applications M. Katter Vacuumschmelze GmbH & Co. KG

Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

Embed Size (px)

Citation preview

Page 1: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

Novel magnetocaloric materials formagnetic cooling applications

M. Katter Vacuumschmelze GmbH & Co. KG

Page 2: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 2

outline

• introduction

• thermodynamic basics of magnetic cooling

• LaFeSi-based alloys produced by powder metallurgy

• prototypes and applications

• conclusions

Page 3: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 3

magnetocaloric effect: discovered by Wartburg 1881magnetic cooling: Debye and Giauque 1926

Page 4: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 4

magnetic refrigeration at room temperature

Features

no compressorno green house gaseshigh efficiencynew magnetocaloric materialspermanent magnets

Applications

industrial coolingair conditioningfood refrigeration

O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature, vol. 415 (2002) 150.

„compression“

„expansion“

Page 5: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 5

motivation for magnetic cooling

- > 180 Mio. new cooling devices every year, needing ten-thousand tonsof environmentally harmful coolants (HFCs), 28-45% of CO2 equivalent in 2050 (Velders 2009)R134a banned in newly developed cars since 2011 in Europe

magnetic cooling uses solid, environmentally friendly coolants

- alternative CO2-compressors need pressures > 100 barmagnetic cooling devices need only 1-2 bar

- gas compression cycles reach ca. 40 % of Carnot-efficencymagnetic coolers reached ca. 60% in laboratory

- compressors are noisymagnetic cooling devices are silent

Page 6: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

magnetic cooling cycle for a single magnetocaloric material

page 6

COP = 90

ΔS = 15 J/kgK

Page 7: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

magnetic cooling cycle for a set of 10 magnetocaloric materials

page 7

COP = 10

Page 8: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 8

„Giant“ magnetocaloric effect

K. Gscneidner (2007)

Page 9: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 9

new magnetocaloric materials

K. Gscneidner (2007)

accessable withNd-Fe-B magnets

Page 10: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 10

Designs for active magnetic regenerators

J.A. Barclay and S. Sarangi 1984 in A.M. Tishin and Y.I. Spichkin 2003

large pressure drops in powder beds?

Page 11: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 11

- casting- anneal, e.g. 1080°C/140 h- optionally load with hydrogen

⇒ long annealing times, ⇒ with hydrogen only powder

- melt spinning- short anneal, e.g. 1000°C/2 h

⇒ only flakes or powder, no shaped parts for heat exchangers

conventional preparation of La(Fe,Si)13

S. Fujieda et al. 2005F.X. Hu et al. 2005 (with Co)

O. Gutfleisch et al. 2005S. Hirosawa et al. 2006

K. Niitsu 2012

Page 12: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 12

Powder Metallurgical (PM) Processing of La-Fe-Si

P

Vacuum Induction Alloying and Casting

Crushing

Milling

Blending

Pressing:CIP - die

isostatic pressing

die-pressing

elemental powders

Page 13: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 13

Powder Metallurgical (PM) Processing of La-Fe-SiP

Pressing:CIP - die

die-pressing

Isostaticpressing

Reactive Sintering

Machining and Surface Finishing

Page 14: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 14

set of La-Fe-Co-Si parts for a magnetic regenerator

0

1

2

3

4

5

6

7

8

9

10

-20 -10 0 10 20 30 40 50 60 70 80temperatur (°C)

entr

opy

chan

ge -Δ

Sm

(J/k

gK)

ΔH = 16 kOe

Page 15: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 15

MFP-1056, TC = -14°C

-0,50

-0,40

-0,30

-0,20

-0,10

0,00

0,10

0,20

-100 -50 0 50 100 150 200

temperature [°C]

stra

in [%

]

magnetocaloric passive statea-Fe = 71 %

magnetocaloric active statea-Fe = < 2%

reversible conversion

good machinability

good magnetocaloric properties

0,0

2,0

4,0

6,0

8,0

10,0

230 240 250 260 270 280

temperature T (K)

- ∆S

m (J

/kgK

)

4,0

8,0

12,0

16,0

Hmax (kOe)

Thermally induced Decomposition and Recombination (TDR) process

difficult to machine

tensile stress=> cracks

Katter et al. 2009

Page 16: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 16

La-Fe-Co-Si blocks and platelets with thicknesses of 0.25 – 1.0 mm

Page 17: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 17

monolithic La-Fe-Co-Si regenerators with 0.2 mm slots

Page 18: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

Linearly graded LaFeCoSi parts

page 18

P

1. Compaction of powderswith different Co content

2. Sintering and diffusion treatmentto generate linearly varying TC

Page 19: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 19

sintered La-Fe-Mn-Si-Hx powders

particle sizeca. 400 µm

Page 20: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 20

prototype for wine cooler, HEIG, Yverdons le Bains, CH, M. Balli (2010)

regenerator with Gd

regenerator with LaFeCoSi

Page 21: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 21

prototype of Astronautics, USA

with La-Fe-Si-Hx powder from VAC400 W cooling power at 14°C temperature span

best performance up to now!

S. Russek(2010)

Page 22: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 22

magnetocaloric cooling systemmaterials

magnet assemblies

thermo-hydraulicsmechanics

Cooltech Applications (2008)

ca. 0,3 kg La-Fe-Si +ca. 1,5 kg Nd-Fe-Bper kW cooling power

Astronautics (2001)

Page 23: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 23

room temperautre magnetic refrigeration prototypes

K. Gscneidner (2007)

Page 24: Katter magnetocaloric · PDF filepage4 magnetic refrigeration at room temperature Features no compressor no green house gases high efficiency new magnetocaloric materials permanent

page 24

conclusion

- magnetocaloric effect is the temperature change of a material in dependence on a magnetic field change

- La(Fe,Co,Si)13 and La(Fe,Si)13Hx with tunable Curie temperaturecan be produced by powder metallurgy

- prototypes for application at room temperature under construction

- there is a huge market for magnetic cooling, also due to upcomingenvironmental legislation for HFCs