36
Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric effects & Magnetic refrigeration - Magnetic-refrigerant materials - 2 nd order phase transition & MCE - 1 st order phase transition & MCE

Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

  • View
    237

  • Download
    7

Embed Size (px)

Citation preview

Page 1: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Magnetocaloric effects in intermetallic compounds

• Introduction

• Experimental results & discussion

• Conclusions

- Magnetic phase transitions- Magnetocaloric effects & Magnetic refrigeration

- Magnetic-refrigerant materials

- 2nd order phase transition & MCE - 1st order phase transition & MCE

Page 2: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

180

200

M (

Am

2 /kg

)

T (K)

Tc

Introduction Magnetic phase transitions

FM PM

Page 3: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0 50 100 150 200 2500

5

10

15

20

25

PMAFM

M (

Am2 /k

g)

T (K)

TNTN

Page 4: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0 1 2 3 4 50

5

10

15

20

25

FM

PM

M (

Am

2 /kg

)

0H (T)

Magnetic field-induced transition

Page 5: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

pT

GS

TP

GV

M

P T B

GM

,

Entropy

Magnetization

Volume

First-order phase transition

Page 6: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

PT

GTCp

2

2

Second-order phase transition

TC

Page 7: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

T T+ΔT

TT-ΔT

ΔQΔQ

Magneto-caloric effect & Magnetic refrigeration

Absorb heat

Adiabatic

ΔTad

Isothermal ΔSm

N

S N

S

Cooling effect

Page 8: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

dpp

SdB

B

SdT

T

SdS

BTpTpB ,,,

B

B

mdB

T

MS

0

dBT

M

C

TT

B

pBpB

ad

0,,

Thermodynamics

T

M

Large

Small CB,p

Large ΔB

Page 9: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Superconducting magnet

Gd

Metal Gd sphere 3 kg

Energy efficiency 20%-60%

Cooling power 200 W-600 W

C.O.P 2-9

ΔT = 4.5 K for 1.5 T ΔT = 11K for 5 T

Magnetic field

Page 10: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Permanent magnetic field

Space: 114 x 128 x 12.7 mm3

Field strength: 2 T

Lee et al. JAP (2002)

Nd2Fe14B magnet

Page 11: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Magnetic refrigerant materials

270 280 290 300 310 320 3300

5

10

15

20

25

30

B: 0--2 T

MnAs

Fe49Rh51

MnFeP0.45As0.55

Gd

La(Fe0.89Si0.11)13H1.3

Gd5Si2Ge2

T (K)

- S

m (

J/k

gK

)

Page 12: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Adiabatic temperature change

270 280 290 300 310 320 3300

2

4

6

8

B: 0--2 T

MnAs

Fe49Rh51

Gd

La(Fe0.89Si0.11)13H1.3

Gd5Si2Ge2

T (K)

Tad (K

)

Page 13: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

240 260 280 300 320 340 3601

2

3

4

5

6

7

8

9Gd-S

M (max)

TC

TFWHM-

Sm

(J/k

gK)

T (K)

Ordering T: TC = 295 K

Field change: ΔB = 5 T

FWHM : δTFWHM = 65 K

MAX entropy change: -ΔSm(max) = 8.5 J/kgK

Relative cooling power

RCP(S) = -ΔSm(max)*δTFWHM

=552 J/kg

Cooling power

What are important for MR?

2

1

)(T

Tm dTTSQ

Page 14: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Experimental results & discussion

240 260 280 300 320 340 3600

1

2

3

4

5

6

7

8

9

0-1T 0-2T 0-3T 0-4T 0-5T

Gd

-S

m(J

/kg

K)

T(K)

0 50 100 150 200 250 300 3500

20

40

60

80

100

120

140

160

180

200

FMPM

Tc

M (A

m2 /k

g)

T (K)

Gd

Second order magnetic phase transition & MCE

Sth(max) = RLn(2J+1)=17.3 J/molK; Sth(max) = 110 J/kgK <10%

Page 15: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

TC = 298 K

ΔB = 2 T

ΔTad = 1.7 K

Hashimoto et al (1982)

255 270 285 300 315 3300

2

4

6

8

10Mn5Ge3

0-2 T 0-5 T

-S

m(J

/kg

K)

T(K)

Page 16: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0 1 2 3 40

50

100

150

200

250

300

350

400

PM

PM

Phase diagram of Gd5Ge4-xSix

Gd5Ge4 Gd5Si4

PM

AFM

FMFMFM

Monoclinic Orthorhombic

T

(K

)

X

First-order magnetic phase transition & MCE

Pecharsky et al (1997)

Orthorhombic

Orthorhombic

Page 17: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

What makes Gd5Ge4-xSix have giant MCE?

0 50 100 150 200 250 300 350 4000

5

10

15

20

25

// a-axis // b-axis // c-axis

Gd5Si1.7Ge2.3

M (

Am

2 /kg)

T (K)

0.05 T

TC=240.4±1 KSingle crystal

Gd5Si1.7Ge2.3

Monoclinic (P1121/a)

a = 7.585 Åb = 14.800 Åc = 7.777 Å β = 93.290

Page 18: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

B-T phase diagram

Page 19: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0 1 2 3 4 5 60

10

20

30

40

5 K

240 K

230 K

252.5

K

257.5

K

260 K

B//a-axis

Gd5Si

1.7Ge

2.3M

( B

/f.u

.)

0H(T)

Magnetization

Field-induced magnetic phase transition

PM FM

Field hysteresis1 T

Page 20: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

200 220 240 260 280 300 320

0

10

20

30

40

50

// c-axis 1T 2T 3T 4T 5T

T (K)

0

10

20

30

40

50

// a-axis

1T 2T 3T 4T 5T

-S

m (

J/k

gK)

0

10

20

30

40

50

// b-axis

1T 2T 3T 4T 5T

Magnetic entropy changes

TC = 240 K

ΔB = 5 T

ΔS(max) = 30.5J/kgK

δTFWHM = 18K

RCP(S) = 549 J/kgK

Effect of magnetic anisotropy is small

Page 21: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0 50 100 150 200 250 3000

1

2

3

4

5

6

7

8

D = 237 K

= 32.3 mJ/mol.K2

Tc = 239 K

c p/T (J

/mol

K2 )

T (K)

Specific heat capacity

230 235 240 245 250 255330

335

340

345

350

355

360

365

370

S (

J/kg

K)

T (K)

at TC ΔS = 11.0 ± 0.5 J/molK

Latent heat L = 2.63 ± 0.12 kJ/mol

Gd5Si1.7Ge2.3

Page 22: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

195 210 225 240 255 2700

250

500

750

1000

1250

1500

1750

T'c = 245.6 K

Tc = 239 K

0 T 2 T

TC/B = 3.3 K/T

Gd5Si

1.7Ge

2.3

c p (J

/mol

.K)

T (K)

ΔTad

= Tc•ΔSm/Cp

> 15 K

Page 23: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Transition at TC = 240.0 ±1.0 KT’C = 236.0 ±1.0 K

Thermal hysteresisΔT = 4 K

ΔLa/La = 6.8x10-3 >0ΔLb/Lb = -2.0x10-3 <0ΔLc/Lc = -2.1x10-3 <0

Relative volume changeΔV/V = 2.7x10-3

Clausius-Clapeyron relation

dTC/dp = 3.2 ± 0.2 K/kbarM. Nazih et al. 2002

Thermal expansion ΔL/L = (L(T)-L(T = 5 K))/L(T = 5 K)

Page 24: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Transition-metal based compound: MnFeP1-xAsx

Crystal structure (0.15 x 0.65)

Fe2P-type; Hexagonal

Space group P-62m

Fe-layer

Mn-layer

Fe-layer

3g 1b/2c 3f

At transition

Δc/c > 0 Δa/a < 0 ΔV/V < 0

There is no crystallographicsymmetry change.

Magnetic moment 4 µB/f.u.

Page 25: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

0.2 0.3 0.4 0.5 0.6 0.7

160

180

200

220

240

260

280

300

320

340

PM

FM

T (K

)

X

Composition dependence of TC

Bacmann et al. JMMM(1994)

X-T phase diagram

FM

PM

T

H

O

AF

X

Page 26: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

160-330 K

270 285 300 315 330 345 3600

20

40

60

80

100

120

B = 1 T

MnFeP0.45

As0.55

M (A

m2 /kg

)

T (K)

Magnetization

Field hysteresis 0.5 TThermal hysteresis 3.4 K

0 1 2 3 4 50

20

40

60

80

100

120MnFeP

0.45As

0.55

300 K304 K308 K312 K312 K

M(A

m2 /kg

)

0H(T)

Page 27: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

300 304 308 312 316 320 324 3280

1

2

3

4

5

6

MnFeP0.45

As0.55

PM

FM = 3.8 K

B (T

)

T (K)

B – T phase diagram of MnFeP0.45As0.55

Ordering T:

TC = 306 KT’C = 302.2 K

Thermal hysteresis:

3.8 K

ΔTC/ΔB = 4.2 K/T

First order phase transition

Page 28: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

240 260 280 300 320 340 360 380 4000

200

400

600

800

1000

1200

1400

cooling

Tp = 296 K

MnFeP0.45As0.55

Zero field

c p (

J/kg

K)

T (K)

Tp= 296 K

Latent heat :

L = 526 J/mol

Cp = 550 J/kgK (T > 300 K)

Specific heat capacity

Page 29: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

280 290 300 310 320 330 340

0

2

4

6

8

10

12

14

16

18

20

5 T

2 T

Decreasing field

MnFeP0.45

As0.55

lS

Ml (

J/kg

K)

T (K)

Magnetic entropy changes

TC = 306 K

ΔB = 5 T

-ΔS(max) = 18.3 J/kgK

δT = 21.3 K

RCP(S) = 390 J/kg

ΔTad =Tc•ΔSM/Cp

ΔTad = 10 K (ΔB=5 T)

Page 30: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Isothermal magnetic entropy changes:

150 175 200 225 250 275 300 325 350 375

0

5

10

15

20

25

30

35

2 T 5 T

x=0.35

x=0.5

x=0.25

x=0.65x=0.55

x=0.45

MnFeP1-x

Asx

-

Sm(J

/kg

K)

T (K)

Magnetic entropy change in different compositions

MnFeP1-xAsx

Page 31: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Conclusions

1. MCE is closely related to the critical behavior of magnetic phase transition.

Second order transition gives broad MCE peak. MCE is small.First order transition gives sharp MCE peak. MCE can be large.

2. Gd5Si1.7Ge2.3 has a simultaneous structural and magnetic phasetransition at 239 K. This transition is a first order transition with thermal hysteresis 7.4 K and with field hysteresis 1 T.The MCE related with first order phase transition is quite large.Effect of magnetic anisotropy on MCE in this material is negligible.

3. MnFeP1-xAsx (0.25<x<0.65) has a first order phase transitionwith thermal hysteresis 3.4 K and field hysteresis 0.5 T.The MCE related with this transition is also quite large.

Page 32: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

4. Advantages of MnFeP1-xAsx as a magnetic refrigerant

1. Large MCE2. Tunable ordering temperature( between 168 and 332 K)3. Small hysteresis 4. Lower cost : MnFe(P,As):

Mn,Fe,P,As(99%, 150$/kg) Gd-Si-Ge Gd: Gd(4N): 4000 $/kg. Fe-Rh: Rh: 12000$/kg

Page 33: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Acknowledgment

This work is supervised by E. Brück, J.H.K. Buschow, F.R. de Boer.

Collaborators: L. Zhang, W. Dagula, X.W. Li

Financially supported by the STW.

Page 34: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Bean-Rodbell model

Gibbs free energy

G = Gex + GH + Gdist + Gentr + Gpress

Volume change is due to the effect of magnetization.

]1[0

00 V

VVTTC

0V

G.2/2

00

0 pKTNKkV

VVB

N: number of atoms/V0

K: compressibilityσ: relative magnetization(J =1/2)

Tc: Curie temperatureT0: Curie temperature (not compressible)V : volumeV0 : volume(absent of exchange interaction)

Page 35: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

.2/3

)3/1)(tanh/(/

0

20

210

KTNk

pKTT

G

B

Set P = 0η = 0; σ = 0 TC = T0 η < 1 corresponds to 2nd order phase transitionη > 1 corresponds to 1st order phase transition

For MnFeP0.5As0.5 η = 1.62, J = 2, T0 =250 K

R. Zach et al. JAP (1998)

J=1/2σ

η = 01 2

Bean et al. PR(1962)

Page 36: Magnetocaloric effects in intermetallic compounds Introduction Experimental results & discussion Conclusions - Magnetic phase transitions - Magnetocaloric

Heat capacity in field Adiabatic T change