35
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland email: [email protected] Janusz Tobola G = G 0 + G 0 VG Electronic structure of magnetocaloric systems lecture II ΔS mag +ΔS lat = 0 Chaud Froid Hot Cold

Electronic structure of magnetocaloric systems

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electronic structure of magnetocaloric systems

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology,

Krakow, Polandemail: [email protected]

Janusz TobolaG = G0 + G0VG

Electronic structure of magnetocaloric systems

lecture II

ΔSmag+ΔS lat= 0

Chaud FroidHot Cold

Page 2: Electronic structure of magnetocaloric systems

Outline1. Magneto-caloric effect MCE (brief history

and introduction), giant MCE.

2. Entropy contributions and concept of MCEcooling – analogy to thermodynamic cycle;how to measure MCE ?

3. Illustrative examples of MC materials & experimental results- Gd5Si2Ge2 - RE alloys,- MnAs, MnFe(As-P), Fe2P, Mn3Sn2 – TM alloys.

4. Electronic structure of intermetallic MC compounds (MnAs, MnFeAs-P, …)

5. Concept of DLM (disordered local moments)- simulation of paramagnetic state within KKR-CPA method.

5. Estimation of entropy jump: mean field approach for magnetic entropy.

6. Estimation of lattice entropy from phonon calculations.

7. Summary

Page 3: Electronic structure of magnetocaloric systems

Brief history of MCE discovery

Chaud FroidHotCold

Adiabaticmagnetization / demagnetisation

1881 E. Warburg, iron heats up in magnetic field ~0.5-2 K/1T, Ann. Phys. (1881)

1926 P. Debye (Nobel 1936, chemistry)

1927 W. Giauque (Nobel 1949, chemistry)

cooling via adiabatic demagnetization (order-disorder transition of magnetic moments in presence (or not) of magnetic field; for cryogenic purposes, down to 0.25 K (MacDougall, 1933).

1997 K. A. Gschneider & V. Pecharsky (Ames Lab., USA), PRL (1997) - discovery of

giant magnetocaloric effect :

MCE: an intrinsic property of magnetic materials;

MCE : the largest at the transition temperature, e.g. ferro-para

Page 4: Electronic structure of magnetocaloric systems

IntroductionChaud FroidHot Cold

T(K)

M(T

)

TNTC

PMAFM

PMFM

AdiabaticMagnetisation / Demagnetisation

MCE

Intrinsic property of a material

Maximal at the transition temperature

Ferromagnet, Ferrimagnet, Antiferromagnet,Inhomogeneous Ferromagnet, Amorphous,Superparamagnet….

Type of magnetic transitions:FM-PM, AFM-PM, AFM-FM (but not so large)

ΔSmag+ΔS lat= 0

Page 5: Electronic structure of magnetocaloric systems

Analysis of Ericsson cycle

Page 6: Electronic structure of magnetocaloric systems

A

B

C

D

V=Vmax

V=Vmin

T

S

TF TC

A

B

C

D

H=Hma

x

H=0

T

S

TF TC

Analogy to thermodynamic cycle

Adiabatic magnetization/demagnetization

Ideal Carnot cycle :

. TH

TH TC

TC

Ericsson cycle

pressure P field B

volume V magnetization M

Page 7: Electronic structure of magnetocaloric systems

Important conditions for giant MCE

What model to apply for ?

It depends first on the nature of the transition, on the typeof magnetic ordering, on the nature of the material….

Page 8: Electronic structure of magnetocaloric systems

EntropySlat(T)Smag(T,B)

Se(T)

T~ Troom

S tot=S el+Smag+S lat ΔSmag+ΔS lat= 0Adiabatic Process

ΔSlat=C p(B,T )ΔTT

ΔT max=−TΔSmagC p (B,T )

Calorific Capacity

C p(B,T )

Magnetic Entropy

ΔSmag

ΔSmag (T,ΔB)=∫0

B

(∂M∂T )

BdB

ΔTmax

Page 9: Electronic structure of magnetocaloric systems

Okamura (2007)

Kawanami (2007)

ASTRONAUTICS

rotary device (2001)Gschneider (2007)

Page 10: Electronic structure of magnetocaloric systems

B = 5 T

[8]~280267 !!MnAs (under pressure)

[1-3][4] [5][6][7][7]

283305274272294313

301823

36.42.522

MnAs0.9Sb0.1

FeMn(As,P)La(Fe0.88Si0.12)13H1

Gd5Si2Ge2

GdFe49Rh51 (B = 2T)

SCTE200631635.7Mn0.98Ti0.02As

SCTE200627424Mn0.90Ti0.05V0.05As

SCTE200628630.5Mn0.98V0.02As

SCTE2006310 34.6Mn0.99Cr0.01As

[1]31840MnAs

ReferencesT [K]-S [J*kg-1*K-1]Compound

[1] H.Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).[2] H.Wada, K. Taniguchi, and Y. Tanabe, Mater. Trans., JIM 43, 73 (2002).[3] H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige, Physica B (Amsterdam) 328, 114 (2003).[4] O. Tegus, E. Bru¨ck, K. H. J. Buschow, and F. R. de Boer, Nature (London) 415, 150 (2002).[5] A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Phys. Rev. B 67, 104416 (2003).[6] A.O. Pecharsky , K. A. Gschneidner, Jr.,V. K. Pecharsky, J. Appl. Phys. 93, 4722 (2003).[7] A.M. Tishin and Y. I. Spichkin, (Institute of Physics,Bristol and Philadelphia, 2003), 1st ed., Vol. 1, Chap. 11, p.351.[8] S.Gama et all, Phys. Rev. Let. 93, 237202 (2004)

Page 11: Electronic structure of magnetocaloric systems

Pecharsky & Gschneider, 1997-2007

Giant MCE system

Page 12: Electronic structure of magnetocaloric systems

K.Gschneider, 2007

New MCE materials

Entropy jump

Temperature jump

Page 13: Electronic structure of magnetocaloric systems

Giant MCE – magnets demanded

Gschneider, 2007

0.1-100 kg / AMR

Active magnetic refrigerator(AMR), e.g. Gd, La-Fe-Si

Efficient magnetsNd-Fe-B

0.1-100 kg / AMR

Magnetic Bussiness & Technology (2007)

Page 14: Electronic structure of magnetocaloric systems

Entropy contributions and relations to ab initio calculations

Phonon DOS is needed to estimate lattice contribution

BUT this can be approximativelydone e.g. from Debye model

Estimations of entropy can be made for electrons and phonons if DOS is known. Using Debye temperature, S

lat may be roughly estimated - allowing to interpret

S jump in experiment.

Stot

= Sel + S

mag+ S

lat

for hext = 0, the intergral gives Sel

Sel often sufficient

in MCE systems smaller than Smag

, Slat

de Oliveira, Eur. Phys. J. B (2004)

ΔSmag+ΔS lat= 0

adiabatic process

Page 15: Electronic structure of magnetocaloric systems

Reminder: magnetic susceptibility

Free energy (Helmholtz)

Partition function

Magnetisation

Page 16: Electronic structure of magnetocaloric systems

Reminder: Brillouin functions & Curie law

Page 17: Electronic structure of magnetocaloric systems

Remider: magnetic ordering & molecular field theory (Weiss)

Page 18: Electronic structure of magnetocaloric systems

Reminder: Heisenberg and Ising hamiltonians

Direct exchange

Super-exchange via non-magnetic ions

Indirect exchange via

conduction electrons

exchange integral (in eV)

ferro antiferro

1D in magnetic field

Magnetisation inIsing model

Page 19: Electronic structure of magnetocaloric systems

Hexagonal (P-62m, #189) a = 5.872 Å, c = 3.460 Å, Z=32 Fe sites: 3f (small magnetic moment) & 3g (large magnetic moment)

Fe2P (magneto-elastic transition) at 217 K

TC increases from 217 K for Fe

2P to 235 K for Fe

1.85Ru

0.15P

Fruchart et al., Physica A (2005)Influence of electrons polarisation at E

F in

increase of TC, presence of small moment

0.4 /Ru, similar effect in Fe2-x

NixP

Page 20: Electronic structure of magnetocaloric systems

Fe2P and MnFe(P-As)

Tobola et al., JMMM (1996)

Fe2P

MnFe(P-As)

Bacmann et al., JMMM (1994)

2.402.332.23Fe(3g)

0.600.800.59Fe(3f)

KKR-FPKKR-MTNeutrons

2.952.55Mn(3g)

1.251.24Fe(3f)

KKR-CPANeutrons

Page 21: Electronic structure of magnetocaloric systems

Calculation of entropy contributions in Fe2-xTxP

B Wiendlocha, J Tobola, S Kaprzyk, R Zach, E K Hlil and D Fruchart, J. Phys. D: Appl. Phys. 41 (2008) 205007

Page 22: Electronic structure of magnetocaloric systems

Entropy from electronic structure KKR-CPA & MFT

B Wiendlocha, J Tobola, S Kaprzyk, R Zach, E K Hlil and D Fruchart, J. Phys. D: Appl. Phys. 41 (2008) 205007

Page 23: Electronic structure of magnetocaloric systems

Simulations of electronic structure above Curie temperature DLM (disordered local moments)

1. Analogy with chemical alloy within the coherent potential approximation) CPA with 2 atoms on 1 site.

2. atom A – Feup (iron with magnetic moment 'up') atom B - Fedown (iron with magnetic moment 'down')

3. A and B atoms occupy the same crystallographic site.

4. For concentration 50% the total magnetic moment per site and unit cell is zero, but the 'local' magnetic moments may be non-zero.

5. CPA medium is used to randomly distribute the magnetic moments among the sites (like in paramagnetic state)

KKR+CPA

TC =1250 K

Experiment

TC =1044 K Gyorffy et al., J. Phys. F (1985)

Fe

Page 24: Electronic structure of magnetocaloric systems

Ground state properies KKR-CPA code

Total density of states DOS

Component, partial DOS

Total magnetic moment

Spin and charge densities

Local magnetic moments

Fermi contact hyperfine field

Bands E(k), total energy, electron-phonon coupling, magnetic structures, transport properties, photoemission spectra, Compton profiles, …

Page 25: Electronic structure of magnetocaloric systems

Fe2P (ferromagnetic vs. 'paramagnetic' DLM state)

0.60

2.40

0.0 0.0

-2.12 +2.12

B Wiendlocha, J Tobola, S Kaprzyk, R Zach, E K Hlil and D Fruchart, J. Phys. D: Appl. Phys. 41 (2008) 205007

Page 26: Electronic structure of magnetocaloric systems

Hexagonal NiAs-type structure (P63/mmc, #194) a = 3.730 Å, c = 5.668 Å, Z=2

MnAs (magneto-structural transition) at 318 K

Orthorhombic MnP-structure (Pnma, #62) a = 5.72 Å, b = 3.676 Å, c = 6.379 Å, Z=4

Page 27: Electronic structure of magnetocaloric systems

MnAs in ferromagnetic state

NiAs-type MnP-type

3.10 2.96

In excellent agreement with neutron diffraction data : 3.14

Page 28: Electronic structure of magnetocaloric systems

MnAs in 'paramagnetic' state

DLM (disordered local moments)

NiAs-type MnP-type

+3.02 -3.02 +2.89 -2.89

Page 29: Electronic structure of magnetocaloric systems

soft mode near M point (phonon calculations)

Orthorhombic MnP-structure Hexagonal NiAs-type structure

MnAs phonon mechanism of magneto-structural phase transition

J. Lazewski, P. Piekarz, J. Tobola, B. Wiendlocha, P. T. Jochym, M. Sternik and K. Parlinski, PRL 104, 147205 (2010)

volume contration (V/V ~ 2%) near Curie temperature

Page 30: Electronic structure of magnetocaloric systems

J. Lazewski, P. Piekarz, J. Tobola, B. Wiendlocha, P. T. Jochym, M. Sternik and K. Parlinski, PRL 104, 147205 (2010)

MnAs phonon mechanism of magneto-structural phase transition

Stot= -30 J/(K kg) for B = 5 Texperiment

giant coupling between the softmode and magnetic moments

theory Slat= +9.3 J/(K kg) ~ 4 THzEntropy jump mainly related to magnetic entropy

Page 31: Electronic structure of magnetocaloric systems

Magnetocaloric effect in Mn3Sn2 (i) Mazet, Ihou-Mouko, and Malaman, Appl. Phys. Lett. 89, 022503 (2006)

Magnetic entropy

Magnetisation curves M(B, T)

MRC - maximum refrigerant capacity

5th Euroschool in Materials Science, Ljubljana, 24-29 May, 2010

Page 32: Electronic structure of magnetocaloric systems

Magnetocaloric effect in Mn3Sn2 (ii)

Mazet, Ihou-Mouko, and Malaman, Appl. Phys. Lett. 89, 022503 (2006)

Hystheresis loops

MCE „figure of merit”

MRC = max of RC

RCP ~ 4/3 q

5th Euroschool in Materials Science, Ljubljana, 24-29 May, 2010

Page 33: Electronic structure of magnetocaloric systems

Magnetocaloric effect in Mn3Sn2 (iii)

Heat capacity C(T, H)

Recour, Mazet, and Malaman J. Appl. Phys. 105, 033905 (2009)

5th Euroschool in Materials Science, Ljubljana, 24-29 May, 2010

Page 34: Electronic structure of magnetocaloric systems

Adiabatic temperature change

Magnetocaloric effect in Mn3Sn2 (iv) Entropy change from magnetisation & heat capacity measurements

Recour, Mazet, and Malaman, J. Appl. Phys. 105, 033905 (2009)

5th Euroschool in Materials Science, Ljubljana, 24-29 May, 2010

Page 35: Electronic structure of magnetocaloric systems

Summary

• The concept of DLM were sucessfully applied to study complex MCE systems: MnAs, MnFe(As-P), Fe2P by simulating paramagnetic state from KKR-CPA .

• MnAs - the calculated magnetic moment on Mn in DLM state (ortho) is comparable to FM state (hex), likely promoting large entropy jump near transition; phonon mechanism responsible for hex-ortho magneto-structural phase transition; giant spin-phonon coupling; Mn1-xTxAs - remarkable variation of local magnetic moments with T impurity.

• Fe2P - the magnetic moment appearing on Fe(3f) in FM state, completely vanishes in DLM state, while that one on Fe(3g) remains only slightly smaller.with respect to the FM state; MFT + KKR-CPA nicely reproduce entropy jump in disordered alloys.

• Mn3Sn2 - with two second-order magnetic transitions very interesting compound for MCE cooling ; more difficult for calculations – noncollinear magnetism.

• First principle calculations – helpful in interpretation and description of magnetocaloric materials. Best way is to combine electronic structure and phononcalculations to enabling to estimate entropy jump near transition temperature- crucial for large MC effect.

Illustrative examples