77
EE141 1 © Digital Integrated Circuits 2nd Inverter Digital Integrated Digital Integrated Circuits Circuits A Design Perspective A Design Perspective The Inverter The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic July 30, 2002

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

  • Upload
    lythu

  • View
    265

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1411

© Digital Integrated Circuits2nd Inverter

Digital Integrated Digital Integrated CircuitsCircuitsA Design PerspectiveA Design Perspective

The InverterThe Inverter

Jan M. RabaeyAnantha ChandrakasanBorivoje Nikolic

July 30, 2002

Page 2: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1412

© Digital Integrated Circuits2nd Inverter

The CMOS Inverter: A First GlanceThe CMOS Inverter: A First GlanceVDD

Vin Vout

CL

Page 3: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1413

© Digital Integrated Circuits2nd Inverter

CMOS InvertersCMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

Page 4: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1414

© Digital Integrated Circuits2nd Inverter

CMOS InverterCMOS InverterFirstFirst--Order DC AnalysisOrder DC Analysis

VDD VDD

Vin = 1

Vout Vin = 0Vout

VOL = 0VOH = VDD

VM = f(Rn, Rp)

Rn

Rp

Page 5: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1415

© Digital Integrated Circuits2nd Inverter

CMOS Inverter: CMOS Inverter: First Order Transient ResponseFirst Order Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 6: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1416

© Digital Integrated Circuits2nd Inverter

Voltage TransferVoltage TransferCharacteristicCharacteristic

Page 7: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1417

© Digital Integrated Circuits2nd Inverter

PMOS Load LinesPMOS Load Lines

VDSp

IDp

VGSp=-2.5

VGSp=-1VDSp

IDnVin=0

Vin=1.5

Vout

IDnVin=0

Vin=1.5

Vin = VDD+VGSpIDn = - IDp

Vout = VDD+VDSp

Vout

IDnVin = VDD+VGSpIDn = - IDp

Vout = VDD+VDSp

Page 8: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1418

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Load CharacteristicsCMOS Inverter Load Characteristics

IDn

Vout

Vin = 2.5

Vin = 2

Vin = 1.5

Vin = 0

Vin = 0.5

Vin = 1

NMOS

Vin = 0

Vin = 0.5

Vin = 1Vin = 1.5

Vin = 2

Vin = 2.5

Vin = 1Vin = 1.5

PMOS

Page 9: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE1419

© Digital Integrated Circuits2nd Inverter

CMOS Inverter VTCCMOS Inverter VTC

Vout

Vin0.5 1 1.5 2 2.5

0.5

11.

52

2.5

NMOS resPMOS off

NMOS satPMOS sat

NMOS offPMOS res

NMOS satPMOS res

NMOS resPMOS sat

Page 10: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14110

© Digital Integrated Circuits2nd Inverter

Switching Threshold as a function Switching Threshold as a function of Transistor Ratioof Transistor Ratio

100

101

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

MV

(V)

Wp

/Wn

Page 11: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14111

© Digital Integrated Circuits2nd Inverter

Determining VDetermining VIHIH and Vand VILIL

VOH

VOL

Vin

Vout

VM

VIL VIH

A simplified approach

Page 12: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14112

© Digital Integrated Circuits2nd Inverter

Inverter GainInverter Gain

0 0.5 1 1.5 2 2.5-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Vin

(V)

ga

in

Page 13: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14113

© Digital Integrated Circuits2nd Inverter

Gain as a function of VDDGain as a function of VDD

0 0.05 0.1 0.15 0.20

0.05

0.1

0.15

0.2

Vin (V)

Vo

ut (

V)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin (V)

Vo

ut(V

)

Gain=-1

Page 14: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14114

© Digital Integrated Circuits2nd Inverter

Simulated VTCSimulated VTC

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin

(V)

Vo

ut(V

)

Page 15: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14115

© Digital Integrated Circuits2nd Inverter

Impact of Process VariationsImpact of Process Variations

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin

(V)

Vou

t(V)

Good PMOSBad NMOS

Good NMOSBad PMOS

Nominal

Page 16: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14116

© Digital Integrated Circuits2nd Inverter

Propagation DelayPropagation Delay

Page 17: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14117

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation DelayCMOS Inverter Propagation DelayApproach 1Approach 1

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD~

Page 18: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14118

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation DelayCMOS Inverter Propagation DelayApproach 2Approach 2

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 19: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14119

© Digital Integrated Circuits2nd Inverter

CMOS InvertersCMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 µm=2λ

Page 20: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14120

© Digital Integrated Circuits2nd Inverter

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vo

ut(V

)

Transient ResponseTransient Response

tp = 0.69 CL (Reqn+Reqp)/2

?

tpLHtpHL

Page 21: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14121

© Digital Integrated Circuits2nd Inverter

Design for PerformanceDesign for Performance

Keep capacitances smallIncrease transistor sizes

watch out for self-loading!Increase VDD (????)

Page 22: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14122

© Digital Integrated Circuits2nd Inverter

Delay as a function of VDelay as a function of VDDDD

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(n

orm

aliz

ed

)

Page 23: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14123

© Digital Integrated Circuits2nd Inverter

2 4 6 8 10 12 142

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10

-11

S

t p(s

ec)

Device SizingDevice Sizing

(for fixed load)

Self-loading effect:Intrinsic capacitancesdominate

Page 24: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14124

© Digital Integrated Circuits2nd Inverter

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

β

t p(s

ec)

NMOS/PMOS ratioNMOS/PMOS ratio

tpLH tpHL

tp β = Wp/Wn

Page 25: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14125

© Digital Integrated Circuits2nd Inverter

Impact of Rise Time on DelayImpact of Rise Time on Delayt p

HL(

nsec

)0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Page 26: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14126

© Digital Integrated Circuits2nd Inverter

Inverter SizingInverter Sizing

Page 27: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14127

© Digital Integrated Circuits2nd Inverter

Inverter ChainInverter Chain

CL

If CL is given:- How many stages are needed to minimize the delay?- How to size the inverters?

May need some additional constraints.

In Out

Page 28: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14128

© Digital Integrated Circuits2nd Inverter

Inverter DelayInverter Delay

• Minimum length devices, L=0.25µm• Assume that for WP = 2WN =2W

• same pull-up and pull-down currents• approx. equal resistances RN = RP• approx. equal rise tpLH and fall tpHL delays

• Analyze as an RC network

WNunit

Nunit

unit

PunitP RR

WWR

WWRR ==

=

−− 11

tpHL = (ln 2) RNCL tpLH = (ln 2) RPCLDelay (D):

2W

W

unitunit

gin CWWC 3=Load for the next stage:

Page 29: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14129

© Digital Integrated Circuits2nd Inverter

Inverter with LoadInverter with Load

Load (CL)

Delay

Assumptions: no load -> zero delay

CL

tp = k RWCL

RW

RW

Wunit = 1

k is a constant, equal to 0.69

Page 30: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14130

© Digital Integrated Circuits2nd Inverter

Inverter with LoadInverter with Load

Load

Delay

Cint CL

Delay = kRW(Cint + CL) = kRWCint + kRWCL = kRW Cint(1+ CL /Cint)= Delay (Internal) + Delay (Load)

CN = Cunit

CP = 2Cunit

2W

W

Page 31: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14131

© Digital Integrated Circuits2nd Inverter

Delay FormulaDelay Formula

( )

( ) ( )γ/1/1

~

0int ftCCCkRt

CCRDelay

pintLWp

LintW

+=+=

+

Cint = γCgin with γ ≈ 1f = CL/Cgin - effective fanoutR = Runit/W ; Cint =WCunittp0 = 0.69RunitCunit

Page 32: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14132

© Digital Integrated Circuits2nd Inverter

Apply to Inverter ChainApply to Inverter Chain

CL

In Out

1 2 N

tp = tp1 + tp2 + …+ tpN

+ +

jgin

jginunitunitpj C

CCRt

,

1,1~γ

LNgin

N

i jgin

jginp

N

jjpp CC

CC

ttt =

+== +

=

+

=∑∑ 1,

1 ,

1,0

1, ,1

γ

Page 33: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14133

© Digital Integrated Circuits2nd Inverter

Optimal Tapering for Given Optimal Tapering for Given NN

Delay equation has N - 1 unknowns, Cgin,2 – Cgin,N

Minimize the delay, find N - 1 partial derivatives

Result: Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-1

Size of each stage is the geometric mean of two neighbors

- each stage has the same effective fanout (Cout/Cin)- each stage has the same delay

1,1,, +−= jginjginjgin CCC

Page 34: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14134

© Digital Integrated Circuits2nd Inverter

Optimum Delay and Number of Optimum Delay and Number of StagesStages

1,/ ginLN CCFf ==

When each stage is sized by f and has same eff. fanout f:

N Ff =

( )γ/10N

pp FNtt +=

Minimum path delay

Effective fanout of each stage:

Page 35: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14135

© Digital Integrated Circuits2nd Inverter

ExampleExample

CL= 8 C1

In Out

C11 f f2

283 ==f

CL/C1 has to be evenly distributed across N = 3 stages:

Page 36: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14136

© Digital Integrated Circuits2nd Inverter

Optimum Number of StagesOptimum Number of Stages

For a given load, CL and given input capacitance CinFind optimal sizing f

( )

+=+=

fffFt

FNtt pNpp lnln

ln1/ 0/1

γγ

0ln

1lnln2

0 =−−

⋅=∂

fffFt

ft pp γ

γ

For γ = 0, f = e, N = lnF

fFNCfCFC in

NinL ln

ln with ==⋅=

( )ff γ+= 1exp

Page 37: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14137

© Digital Integrated Circuits2nd Inverter

Optimum Effective Optimum Effective FanoutFanout ffOptimum f for given process defined by γ

( )ff γ+= 1exp

fopt = 3.6for γ=1

Page 38: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14138

© Digital Integrated Circuits2nd Inverter

Impact of SelfImpact of Self--Loading on Loading on tptp

1.0 3.0 5.0 7.0u

0.0

20.0

40.0

60.0

u/ln

(u)

x=10

x=100

x=1000

x=10,000

No Self-Loading, γ=0 With Self-Loading γ=1

Page 39: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14139

© Digital Integrated Circuits2nd Inverter

Normalized delay function of Normalized delay function of FF

( )γ/10N

pp FNtt +=

Page 40: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14140

© Digital Integrated Circuits2nd Inverter

Buffer DesignBuffer Design

1

1

1

1

8

64

64

64

64

4

2.8 8

16

22.6

N f tp

1 64 65

2 8 18

3 4 15

4 2.8 15.3

Page 41: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14141

© Digital Integrated Circuits2nd Inverter

Power DissipationPower Dissipation

Page 42: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14142

© Digital Integrated Circuits2nd Inverter

Where Does Power Go in CMOS?Where Does Power Go in CMOS?• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Page 43: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14143

© Digital Integrated Circuits2nd Inverter

Dynamic Power DissipationDynamic Power Dissipation

Energy/transition = CL * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce CL, Vdd, and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!

Page 44: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14144

© Digital Integrated Circuits2nd Inverter

Modification for Circuits with Reduced Swing

CL

Vdd

Vdd

Vdd -Vt

E0 1→ CL Vdd Vdd Vt–( )••=

Can exploit reduced swing to lower power(e.g., reduced bit-line swing in memory)

Page 45: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14145

© Digital Integrated Circuits2nd Inverter

Adiabatic Charging

22

2

Page 46: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14146

© Digital Integrated Circuits2nd Inverter

Adiabatic Charging

Page 47: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14147

© Digital Integrated Circuits2nd Inverter

Node Transition Activity and PowerNode Transition Activity and PowerConsider switching a CMOS gate for N clock cycles

EN CL Vdd• 2 n N( )•=

n(N): the number of 0->1 transition in N clock cycles

EN : the energy consumed for N clock cycles

Pavg N ∞→lim

ENN

-------- fclk•= n N( )N

------------N ∞→

lim C•

LVdd•

2fclk•=

α0 1→n N( )

N------------

N ∞→lim=

Pavg = α0 1→ C•L

Vdd• 2 fclk•

Page 48: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14148

© Digital Integrated Circuits2nd Inverter

Transistor Sizing for Minimum Transistor Sizing for Minimum EnergyEnergy

Goal: Minimize Energy of whole circuitDesign parameters: f and VDD

tp ≤ tpref of circuit with f=1 and VDD =Vref

1Cg1

In

fCext

Out

TEDD

DDp

pp

VVVt

fFftt

−∝

++

+=

0

0 11γγ

Page 49: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14149

© Digital Integrated Circuits2nd Inverter

Transistor Sizing (2)Transistor Sizing (2)Performance Constraint (γ=1)

Energy for single Transition( ) ( ) 1

3

2

3

2

0

0 =+

++

−=

+

++

=F

fFf

VVVV

VV

FfFf

tt

tt

TEDD

TEref

ref

DD

refp

p

pref

p

( )( )[ ]

+++

=

+++=

FFf

VV

EE

FfCVE

ref

DD

ref

gDD

422

112

12 γ

Page 50: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14150

© Digital Integrated Circuits2nd Inverter

1 2 3 4 5 6 70

0.5

1

1.5

2

2.5

3

3.5

4

f

vdd

(V)

1 2 3 4 5 6 70

0.5

1

1.5

f

norm

aliz

ed e

nerg

y

Transistor Sizing (3)Transistor Sizing (3)

F=1

2

5

10

20

VDD=f(f) E/Eref=f(f)

Page 51: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14151

© Digital Integrated Circuits2nd Inverter

Short Circuit CurrentsShort Circuit Currents

Vin Vout

CL

Vdd

I VD

D (m

A)

0.15

0.10

0.05

Vin (V)5.04.03.02.01.00.0

Page 52: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14152

© Digital Integrated Circuits2nd Inverter

How to keep ShortHow to keep Short--Circuit Currents Low?Circuit Currents Low?

Short circuit current goes to zero if tfall >> trise,but can’t do this for cascade logic, so ...

Page 53: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14153

© Digital Integrated Circuits2nd Inverter

Minimizing ShortMinimizing Short--Circuit PowerCircuit Power

0 1 2 3 4 50

1

2

3

4

5

6

7

8

tsin

/tsout

Pno

rm

Vdd =1.5

Vdd =2.5

Vdd =3.3

Page 54: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14154

© Digital Integrated Circuits2nd Inverter

LeakageLeakage

Vout

Vdd

Sub-ThresholdCurrent

Drain JunctionLeakage

Sub-threshold current one of most compelling issuesin low-energy circuit design!

Page 55: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14155

© Digital Integrated Circuits2nd Inverter

ReverseReverse--Biased Diode LeakageBiased Diode Leakage

Np+ p+

Reverse Leakage Current

+

-Vdd

GATE

IDL = JS × A

JS = 10-100 pA/µm2 at 25 deg C for 0.25µm CMOSJS doubles for every 9 deg C!

Page 56: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14156

© Digital Integrated Circuits2nd Inverter

SubthresholdSubthreshold Leakage ComponentLeakage Component

Page 57: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14157

© Digital Integrated Circuits2nd Inverter

Static Power ConsumptionStatic Power Consumption

Vin=5V

Vout

CL

Vdd

Istat

Pstat = P(In=1).Vdd . Istat

Wasted energy …Should be avoided in almost all cases,but could help reducing energy in others (e.g. sense amps)

Page 58: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14158

© Digital Integrated Circuits2nd Inverter

Principles for Power ReductionPrinciples for Power ReductionPrime choice: Reduce voltage!

Recent years have seen an acceleration in supply voltage reductionDesign at very low voltages still open question (0.6 … 0.9 V by 2010!)

Reduce switching activityReduce physical capacitance

Device Sizing: for F=20– fopt(energy)=3.53, fopt(performance)=4.47

Page 59: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14159

© Digital Integrated Circuits2nd Inverter

Impact ofImpact ofTechnology Technology ScalingScaling

Page 60: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14160

© Digital Integrated Circuits2nd Inverter

Goals of Technology ScalingGoals of Technology Scaling

Make things cheaper:Want to sell more functions (transistors) per chip for the same moneyBuild same products cheaper, sell the same part for less moneyPrice of a transistor has to be reduced

But also want to be faster, smaller, lower power

Page 61: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14161

© Digital Integrated Circuits2nd Inverter

Technology ScalingTechnology Scaling

Goals of scaling the dimensions by 30%:Reduce gate delay by 30% (increase operating frequency by 43%)Double transistor densityReduce energy per transition by 65% (50% power savings @ 43% increase in frequency

Die size used to increase by 14% per generationTechnology generation spans 2-3 years

Page 62: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14162

© Digital Integrated Circuits2nd Inverter

Technology GenerationsTechnology Generations

Page 63: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14163

© Digital Integrated Circuits2nd Inverter

Technology Evolution (2000 data)Technology Evolution (2000 data)

International Technology Roadmap for Semiconductors

18617717116013010690Max µP power [W]1.4

1.2

6-7

1.5-1.8

180

1999

1.7

1.6-1.4

6-7

1.5-1.8

2000

14.9-3.611-37.1-2.53.5-22.1-1.6Max frequency

[GHz],Local-Global

2.52.32.12.42.0Bat. power [W]

109-10987Wiring levels

0.3-0.60.5-0.60.6-0.90.9-1.21.2-1.5Supply [V]

30406090130Technology node [nm]

20142011200820042001Year of Introduction

Node years: 2007/65nm, 2010/45nm, 2013/33nm, 2016/23nm

Page 64: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14164

© Digital Integrated Circuits2nd Inverter

Technology Evolution (1999)Technology Evolution (1999)

Page 65: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14165

© Digital Integrated Circuits2nd Inverter

ITRS Technology Roadmap ITRS Technology Roadmap Acceleration ContinuesAcceleration Continues

Page 66: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14166

© Digital Integrated Circuits2nd Inverter

Technology Scaling (1)Technology Scaling (1)

Minimum Feature SizeMinimum Feature Size

1960 1970 1980 1990 2000 201010

-2

10-1

100

101

102

Year

Min

imu

m F

ea

ture

Siz

e (

mic

ron

)

Page 67: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14167

© Digital Integrated Circuits2nd Inverter

Technology Scaling (2) Technology Scaling (2)

Number of components per chipNumber of components per chip

Page 68: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14168

© Digital Integrated Circuits2nd Inverter

Technology Scaling (3)Technology Scaling (3)

Propagation DelayPropagation Delay

tp decreases by 13%/year50% every 5 years!

Page 69: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14169

© Digital Integrated Circuits2nd Inverter

Technology Scaling (4)Technology Scaling (4)

(a) Power dissipation vs. year.

959085800.01

0.1

1

10

100

Year

Pow

er D

issi

patio

n (W

)

x4 / 3 year

s

MPU DSP

x1.4 / 3 years

Scaling Factor κ (normalized by 4µm design rule)

1011

10

100

1000

∝ κ 3

Pow

er D

ensi

ty (m

W/m

m2 )

∝ κ 0.7

(b) Power density vs. scaling factor.

From Kuroda

Page 70: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14170

© Digital Integrated Circuits2nd Inverter

Technology Scaling Models Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scaletogether by the same factor S

most common model until recently —only dimensions scale, voltages remain constant

most realistic for todays situation —voltages and dimensions scale with different factors

Page 71: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14171

© Digital Integrated Circuits2nd Inverter

Scaling Relationships for Long Channel DevicesScaling Relationships for Long Channel Devices

Page 72: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14172

© Digital Integrated Circuits2nd Inverter

Transistor ScalingTransistor Scaling(velocity(velocity--saturated devices)saturated devices)

Page 73: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14173

© Digital Integrated Circuits2nd Inverter

µµProcessorProcessor ScalingScaling

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

Page 74: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14174

© Digital Integrated Circuits2nd Inverter

µµProcessorProcessor PowerPower

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

Page 75: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14175

© Digital Integrated Circuits2nd Inverter

µµProcessorProcessor PerformancePerformance

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

Page 76: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14176

© Digital Integrated Circuits2nd Inverter

2010 Outlook2010 Outlook

Performance 2X/16 months1 TIP (terra instructions/s)30 GHz clock

SizeNo of transistors: 2 BillionDie: 40*40 mm

Power10kW!!Leakage: 1/3 active Power

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

Page 77: Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolicbaccaran/Rabaey/chapter05.pdf ·  · 2004-02-01Digital Integrated Circuits 30

EE14177

© Digital Integrated Circuits2nd Inverter

Some interesting questionsSome interesting questions

What will cause this model to break?When will it break?Will the model gradually slow down?

Power and power densityLeakageProcess Variation