125
SVEUČILIŠTE U SPLITU FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE B. Jajac – N. Grulović RIJEŠENI ZADACI IZ OSNOVA ELEKTROTEHNIKE - elektrostatika (RADNI MATERIJAL) Split, 2010

Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Embed Size (px)

DESCRIPTION

aadadaad

Citation preview

Page 1: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

SVEUČILIŠTE U SPLITU FAKULTET ELEKTROTEHNIKE,

STROJARSTVA I BRODOGRADNJE

B. Jajac – N. Grulović

RIJEŠENI ZADACI IZ OSNOVA ELEKTROTEHNIKE

- elektrostatika (RADNI MATERIJAL)

Split, 2010

Page 2: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

2 1. Coulombov zakon

SADRŽAJ

1. COULOMBOVA SILA ..................................................... 3 2. RASPODJELA NABOJA ................................................. 19 3. ELEKTROSTATIČKO POLJE ...................................... 25 4. GAUSSOV ZAKON ......................................................... 42 5. ELEKTRIČNI POTENCIJAL I RASPODJELA NABOJA PO VODIČIMA ............................................... 68

6. RAD I POTENCIJALNA ENERGIJA ........................... 78 7. VODIČI U ELEKTROSTATIČKOM POLJU .............. 89 8. KAPACITET I KONDENZATORI ................................. 95 9. DIELEKTRICI U ELEKTROSTATIČKOM POLJU .............................................................................. 103 10. ENERGIJA I SILA ELEKTROSTATIČKOG POLJA.................................. 116

Page 3: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 3

1. COULOMBOV ZAKON To je zakon o međudjelovanju dva elektrizirana (nabijena) tijela. Ako se dva tijela mase m1 i naboja Q1 odnosno mase m2 i naboja Q2 nalaze na međusobnoj udaljenosti r tada među njima vlada elektrostatička - Coulombova sila (3.5).**

N4 02

0

21e r

rQQF

(1.1)

gdje je: Q1, Q2 naboji (As), r udaljenost među nabojima (m), 0r

jedinični vektor, a

0 permitivnost vakuuma )VmAs1085,8( 12

Jednostavnosti (računanja) radi izraz (1.1) se vrlo često daje u obliku:

0221

e K rrQQF

(1.2)

gdje je:

)109(K 9

AsVm

Ako su naboji Q1 i Q2 istog predznaka tada je sila među njima odbojna i ima smjer jediničnog vektora 01r , slika 1.1.a, a ako su naboji različitih predznaka sila je među njima privlačna i ima smjer suprotan jediničnom vektoru, slika 1.b. Iz slike 1.1. je također vidljivo da pravac djelovanja sile između dva točkasta naboja je na pravcu spojnice ista ta dva naboja.

Sl. 1.1. Sila među nabojima istog predznaka je odbojna a) dok je među

nabojima različitih predznaka privlačna b)

Coulombov zakon dan u obliku (1.1) odnosno (1.2) primjenljiv je samo za točkaste ili

kvazitočkaste naboje (vidi 4. poglavlje, svezak I) ** Broj jednadžbe u udžbenicima

Page 4: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

4 1. Coulombov zakon

Ima li se skup od n - naboja, slika 1.2., tada je rezultirajuća sila od n - 1 naboja na k - ti naboj jednaka vektorskom zbroju pojedinih sila, slika 1.2.

Sl. 1.2. Sila n-1 nabojâ na k-ti naboj

n21k FFFF

(1.3a) ili u obliku:

n

kii

FF1

ik

(1.3b)

Uvrštenjem (1.1) u (1.3b) dobije se:

i01

2i

kik 4

vek rr

QQFn

kii

0

(1.4)

gdje je: ri udaljenost između i-tog i k-tog naboja, i0r

jedinični vektor radijvektora ir

Uvjet statičke ravnoteže: Tijelo, koje se može smatrati točkastim, je u statičkoj ravnoteži ako zbroj sila (ili njihovih komponenti) koje djeluju na njega tvori zatvoreni poligon sila ili drugačije rečeno ako je njihov vektorski zbroj jednak nuli. 0k F

(1.5)

Page 5: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 5

U zadacima elektrostatike uočit će te da su iznosi naboja reda mikro ili nano kulona (10-6 As, 10-9 As). Naime, naboj od 1 C = 1 As je izuzetno velika količina naboja. Da se dobije osjećaj veličine naboja uvodno će se riješiti par zadataka. Primjer 1.3. Dvije kugle jednakih promjera i naboja smještene su na međusobnoj udaljenosti a. Prva od kugli smještena je na tvrdoj podlozi a druga je smještena iznad nje na pravcu djelovanja sile teže, slika 1. Odredite tako masu druge kugle da pod djelovanjem Coulombove sile ona lebdi iznad prve kugle. Podaci: ,m1a ,nAs11 Q ,As1 ,mAs1 As1 . Napomena: Pri proračunu Coulombove sile pretpostavite da su naboji i mase kugli skoncentrirani u točki.

Rješenje:

Sl. 1. Prostorni smještaj kugli s ucrtanim silama

Druga kugla bit će u satičkoj ravnoteži (lebdjet će) ako je vektorski zbroj sila koje djeluju na nju jednak nuli (1.5)* (pri tome se nabijena kugla smatra materijalnom točkom): 0g12 FF

(1)

Jer su vektori sila 12F

i gF

međusobno suprotni to vektorski zbroj prelazi u algebarski i (1) postaje: g12 FF (2) gdje je:

* Broj jednadžbe u zbirci zadataka

Page 6: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

6 1. Coulombov zakon

221

12 Ka

QQF (3)

prema (1.2) Coulombova sila prve na drugu kuglu, a gmFg (4) sila teže koja djeluje na drugu kuglu. Uvrštenjem (3) i (4) u (2) dobije se:

221K

agQQm (5)

Jer je QQQ 21 i m1a (5) postaje:

gQm

2K (6)

Uvrštenjem pojedinih iznosa naboja dobije se: za: kg10917,0,nAs1 9

11 mQ

kg10917,0,As1 322

mQ kg10917,0,mAs1 3

33 mQ

kg10917,0,As1 944 mQ

Iz dobijenih iznosa pojedinih masa (mase su proporcionalne Coulombovim silama) vidljivo je da su već naboji reda veličine jedne tisućinke kulona vrlo veliki.

Primjer 1.4. Dvije metalne kuglice, zanemarivih dimenzija, nabijene su istoimenim nabojima Q1 i Q2 i nalaze se na međusobnoj udaljenosti a, slika 1. Odredite naboje na svakoj od kuglica ako je ukupna količina naboja na njima Q i sila među njima FFF |||| 2112

.

Podaci: ,N1F ,m2a As105 5Q .

Page 7: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 7

Rješenje:

Sl. 1. Među istoimenim nabojima sila je odbojna

Sile među nabojima su suprotne i iznosa su:

221

e Ka

QQF (1)

Naboj na kuglicama (ukupni) prema zadatku jest: 21 QQQ (2) Rješenje sustava (1) i (2) po jednom od naboja jest:

02

e2

22

KaFQQQ (3)

odakle je:

2

4 2e2

2,12K

aFQQQ

(4)

Uvrštenjem zadanih vrijednosti dobije se: As1016,1 5

21Q As1084,3 5

22Q

As1084,3 5

11Q As1016,1 5

12Q

Primjer 1.6. U vrhovima istostraničnog trokuta duljine stranice a smješteni su naboji Q1, Q2 i Q3, slika 1. Odredite silu na naboj Q1 po iznosu i smjeru. Podaci: nAs,9000 1 Q nAs,500 2 Q nAs,3000- 3 Q m3a .

Page 8: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

8 1. Coulombov zakon

Rješenje:

Sl. 1. Naboji Q1, Q2 i Q3 smješteni su u vrhovima istostraničnog trokuta Sila na naboj Q1 jest vektorski zbroj sila i prema (1.3) jest: 31211 FFF

(1)

gdje je: 21F

odbojna sila drugog naboja na prvi, a

31F

privlačna sila trećeg naboja na prvi. Zadatak će se riješiti tako da se sile 21F

i 31F

rastave na komponente

pravokutnog koordinatnog sustava. Poznavajući komponente silâ uporabom Pitagorinog poučka dobije se rezultirajuća sila (iznos): 2

y2

x1 )()( FFF (2) Ishodište pravokutnog sustava postavlja se u vrhu trokuta sa nabojem Q1, dok apscisna os se podudara sa spojnicom među nabojima Q1 i Q2. Rastavljanjem sila po komponentama dobije se: 21x31x FFF (3.1) y31y FF (3.2) gdje je: 0

31x31 60cosFF (4.1)

Page 9: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 9

031y31 60sinFF (4.2)

F21 i F31 su iznosi sila i prema (1.2) iznose:

)105,4( 32

1221 N

aQQKF (5.1)

N)1027( 32

1331

a

QQKF (5.2)

Uvrštenjem (5) u (4) odnosno (3) dobije se: N109 3

xF (6.1)

N104,23 3

yF (6.2)

Uvrštenjem (6) u (2) dobije se iznos rezultirajuće sile: N07,251 F Rezultirajuća sila zatvara kut prema pozitivnoj apscisnoj osi:

000

x

y 04,11118096,68tgarc

FF

Primjer 1.8. Točkasti naboji Q1 i Q2 nalaze se na međusobnoj udaljenosti a. Odredite tako naboj Q2 po iznosu i predznaku da naboj Q3 (naboj Q3 smješten je na spojnici naboja Q1 i Q2) bude u statičkoj ravnoteži. Naboj Q3 nalazi se na udaljenosti 2a/3 od naboja Q1, slika 1. Podaci: As 60 1 Q . Rješenje: Naboj Q3 bit će u statičkoj ravnoteži (1.5) ako je: 02313 FF

(1)

gdje je:

Page 10: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

10 1. Coulombov zakon

2313, FF

sila prvog/drugog naboja na treći naboj.

Sl. 1. Naboji Q1 i Q2 uravnotežuju naboj Q3 Jer su vektori sila 13F

i 23F

međusobno suprotni vektorski zbroj prelazi u

algebarski i (1) postaje: 2313 FF (2) Iz (2) slijedi da su naboji Q1 i Q2 istog predznaka, bilo pozitivni bilo negativni. Uporabom (1.2) jednadžba (2) postaje:

2

32

2

31

)31(

K)

32(

Ka

QQ

a

QQ (3)

Iz (3) se dobije:

As1541

12 QQ

Primjer 1.9. Dva pozitivna točkasta naboja Q1 i Q2 nalaze se na međusobnoj udaljenosti a. Odredite naboj Q3 po iznosu i predznaku, te njegov položaj u odnosu na naboje Q1 i Q2 da sva tri naboja budu u statičkoj ravnoteži. Podaci: ,nAs5001 Q ,nAs3002 Q cm16a . Rješenje: Naboj Q3 bit će u statičkoj ravnoteži ako je zbroj sila koje djeluju na njega jednak nuli, (1.5). Jer su naboji Q1 i Q2 istog predznaka (pozitivni) među njima djeluje odbojna sila 12F

odnosno 21F

slika 1. Slijedi naboj Q3 mora biti suprotnog predznaka

Page 11: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 11

(negativnog) tako da svojom privlačnom silom 31F

i 32F

na naboje Q1 i Q2 ih uravnoteži. I nadalje, nužno je da je naboj Q3 smješten na spojnici naboja Q1 i Q2, slika 1.

Sl. 1. Tri naboja mogu biti u statičkoj ravnoteži samo ako leže na istom

pravcu te ako je naboj Q3 suprotnog predznaka od preznaka naboja Q1 i Q2

Naime, ako bi naboj Q3 bio smješten lijevo ili desno od naboja Q1 odnosno Q2 sustav se ne bi mogao uravnotežiti (sile 13F

i 23F

naboj Q3 bi bile

kolinearne - potpomagale bi se a ne poništavale). Iz slike 1. slijedi: 03121 FF

(1.1)

02313 FF

(1.2)

01232 FF

(1.3)

Jer su vektori sila na pojedine naboje suprotni vektorski zbroj prelazi u algebarski i (1) postaje: 3121 FF (2.1) 2313 FF (2.2) 1232 FF (2.3) Ima se dvije nepoznanice: naboj Q3 i njegov položaj (udaljenost x od naboja Q1) a formiran je sustav od tri jednadžbe (1) odnosno (2), sustav je predefiniran, koristit će se reducirani sustav od dvije jednadžbe dok će se treća jednadžba upotrebiti za kontrolu. Uvrštenjem (1.2) u (2.1) odnosno (2.2) dobije se:

Page 12: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

12 1. Coulombov zakon

213

212

xQQ

aQQ

(3.1)

232

231

)-( xaQQ

xQQ

(3.2)

Iz (3.2) se dobije:

1

21

1

1

QQ

ax

(4.1)

1

22

1

1

QQ

ax

(4.2)

Drugo rješenje (4.2) za bilo kakav omjer Q2/Q1 daje takav položaj naboja Q3 da je on ili s lijeve strane sustava )0( x ili s desne strane sustava )( ax , a za takav položaj naboja Q3 ne može biti statičke ravnoteže sustava. Uvrštenjem (4.1) u (3.1) dobije se:

2

1

2

23

1

QQ

QQ (5)

Uvrštenjem zadanih vrijednosti dobije se: cm02,91 x (6) nAs26,953 Q (7) Predznak minus je iz fizikalnog smisla rješenja zadatka. Kontrola će se načiniti na način da se dobiveni rezultati (6) i (7) uvrste u razvijenu jednakost (2.3)

Page 13: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 13

Primjer 1.10. Četiri naboja jednaka po iznosu i predznaku smještena su u vrhove kvadrata stranice a , slika 1. Odredite gdje treba smjestiti nepoznati naboj Q te njegov iznos i predznak da bi naboji u vrhovima kvadrata bili u statičkoj ravnoteži. Podaci: nAs2004321 QQQQ Rješenje: Svaki od naboja koji su smješteni u vrhove kvadrata bit će u statičkoj ravnoteži ako je zbroj sila koje djeluju na njega jednak nuli, (1.5).

Sl. 1. Nabojem -Q uravnotežuju se naboji u vrhovima kvadrata Jer su naboji u vrhovima kvadrata istog predznaka, uzmimo da su pozitivni, to je među njima odbojna sila. Rezultirajuća sila na svaki od naboja, a s obzirom na simetrično smještene naboje, pada na pavac dijagonale među nabojima i ima vanjsko usmjerenje, slika 1. Slijedi, da bi se uravnotežio svaki od naboja dodatni (nepoznati) naboj mora biti smješten u sjecištu dijagonala kvadrata i po predznaku suprotan nabojima u vrhovima, dakle negativan. Iz slike slijedi: 01 FF

(1)

Jer su vektori silâ na naboj Q1 međusobno suprotni to vektorski zbroj prelazi u algebarski i (1) postaje: 1FF (2) ili u obliku: 31241 FFF (3) gdje je: F privlačna sila naboja Q na naboj Q1,

Page 14: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

14 1. Coulombov zakon

214121241 2coscos FFFF (4) odbojna (rezultirajuća) sila naboja Q2 i Q4 na naboj Q1, F31 odbojna sila naboja Q3 na naboj Q1. jest kut što ga vektori 21F

i 41F

zatvaraju se vektorom )45( 01 F

Uvrštenjem (4) u (3) dobije se: 31212 FFF (5) Uvrštenjem (1.2) u (5) dobije se:

213

212

2

1 KK2)

2(

Kd

QQa

QQdQQ

(6)

Iz (6) uz ad 2 i 32 QQ dobije se:

2)41

22( QQ (7)

Iznosa: nAs42,191Q Predznak minus je iz fizikalnog razmatranja problema. Iz (7) se uočava da naboj Q ovisi samo o nabojima na vrhovima kvadrata a ne ovisi o duljini stranice kvadrata.

Primjer 1.13. Dvije, međusobno jednake kuglice, svaka mase m vise o koncima duljine ℓ. Kada se kuglice nabiju nabojima jednakim po iznosu i predznaku, one se razmaknu tako da svaki konac zatvara sa simetralom kut , slika 1. Odredite naboj svake od kuglica. Podaci: gr1m , cm10 , 05 .

Page 15: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 15

Rješenje: Nabijena kuglica, koja se može smatrati materijalnom točkom, bit će se u statičkoj ravnoteži (1.5) ako je: 011 zFF

(1)

gdje je: 1F

vanjska (rezultirajuća) sila na kuglicu,

z1F

zatezna sila u koncu.

Sl. 1. Pod djelovanjem Coulombovih odbojnih sila dolazi do razdvajanja nabijenih kuglica

Jer su sile 1F

i z1F

međusobno suprotne to (1) postaje: 11 zFF (2a) Ako su sile međusobno uravnotežene tada su uravnotežene i njihove komponente: sin11e FF (3a)

cos11g FF (3b) gdje je, prema (1.2):

2

2

1e KrQF (4a)

Coulombova sila među nabijenim kuglicama, a gmF 1g (4b)

Page 16: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

16 1. Coulombov zakon

sila teže na kuglicu mase m. Dijeljenjem (3a) s (3b) dobije se: 11e tg gFF (5) Uvrštenjem (4) u (5) dobije se:

KtggmrQ (6)

gdje je: r prema slici 1., )sin2( . Uvrštenjem zadanih vrijednosti dobije se: nAs38,5Q Oba rezultata su valjana jer se istoimeni naboji međusobno odbijaju.

Primjer 1.15. Naboji Q1 i Q2 istog predznaka smješteni su na osi ordinata i to prvi naboj u točki T1(0, -3) a drugi naboj u točki T2(0, +5). Treba odrediti iznos naboja Q2 tako da je rezultirajuća sila naboja Q1 i Q2 na probni naboj q smješten na apscisnoj osi u točki P(+10, 0). Podaci: As51 Q . Rješenje: Na slici 1. prikazane su sile 1F

i 2F

naboja Q1 i Q2 na probni naboj q. Iz slike je vidljivo da će rezultirajuća sila na probni naboj q biti u smjeru apscisne osi samo ako su komponente sila y1F

i y2F

(dakle u smjeru

oridnatne osi) međusobno jednake: 2211 coscos FF (1) Uvrštenjem (1.1) u (1) dobije se:

2220

212

10

1 cos4

cos4

r

Qqr

Qq

(2)

Page 17: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 17

Sl. 1. Naboji Q1 i Q2 smješteni su na osi ordinata, dok je probni naboj q smješten na osi apscisa

Iz (2) se dobije:

12

12

1

22

2 coscos Q

rrQ

(3)

Iz slike 1. jest:

1

1cosra

2

2cosrb

(4)

Uvrštenjem (4) u (3) dobije se:

131

32

2 Qrr

baQ (5)

gdje su: )cm44,10(22

1 car (6a) )cm18,11(22

2 cbr (6b) udaljenosti naboja Q1 i Q2 od probnog naboja q. Uvrštenjem (6) u (5) i sa zadanim udaljenostima naboja po koordinatnim osima dobije se: As68,32 Q

Page 18: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

18 1. Coulombov zakon

Primjer 1.17. Količinom naboja Q nabiju se dvije metalne kuglice i to prva kuglica nabojem Q1 a druga ostatkom naboja. Odredite pri kojoj količini naboja Q1 (u odnosu na ukupni naboj) sila među kuglicama je maksimalna. Kuglice se nalaze na rastojanju d (udaljenost među njihovim središtima). Rješenje: Iznos sile među kuglicama, prema (1.1), jest.

20

21

4 dQQF

(1)

Uz 12 QQQ iznos sile (1) jest:

20

11

4)Q(

dQQF

(2)

Jer se traži količina naboja Q1 u odnosu na ukupni naboj Q jednadžba (2) poprima oblik:

)1(4

112

0 QQ

QQ

dQF

2

(3)

Nužan uvjet za izračunavanje akstrema funkcije je izjednačavanje prve derivacije s nulom:

0)21(4/d(

d 12

0

2

1

QQ

dQ

Q)QF

(4)

Iz (4) slijedi:

211

QQ (5)

Zaključak: Za ostvarenje maksimalne sile među kuglicama, nužno je ukupni naboj raspodijeliti na jednake dijelove među kuglicama.

Page 19: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

2. RASPODJELA NABOJA S obzirom na raspodijeljenost naboja u prostoru razlikuje se:

– linijska, – plošna i – prostorna gustoća naboja.

Linijska gustoća naboja jest raspodjela naboja na goemetrijskoj crti, označava se grčkim slovom i definira se kvocijentom količine naboja Q i elementa te dužine (4.1):

mAs

Q (2.1)

Ukupna kličina naboja na geometrijskoj crti dužine L, prema (4.2), jest:

Lzy,x,Q d)( (2.2)

Plošna gustoća naboja jest raspodjela naboja po plohi, označava se grčkim slovom i definira se kvocijentom količine naboja Q na plohi površine S i elementa te površine (4.3).

2mAs

SQσ

(2.3)

Ukupna količina naboja na plohi površine S, prema (4.4), jest: Szy,x,Q

Sd)( (2.4)

Prostorna gustoća naboja jest raspodjela naboja u prostoru, označava se grčkim slocom i definira se kvocijentom naboja Q u obojmu V i elementa tog obujma (4.5):

3mAs

VQρ

(2.5)

Ukupna količina naboja u obujmu V, prema (4.6), jest: Vzy,x,Q

Vd)( (2.6)

Page 20: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

20 2. Raspodjela naboja

Primjer 2.1. Linijska gustoća naboja mijenja se duž geometrijske crte po zakonu

)1(0 x . Odredite ukupnu količinu naboja na duljini L, te nacrtajte raspodjelu naboja duž crte. Podaci: m3L , m/As200 λ . Rješenje: Količina naboja na goemetrijskoj crti, prema (2.2), jest:

Sl. 1. Raspodjela linijske gustoće naboja duž ravne crte

LL

xxxQ0

00

d)1(d (1)

Integriranjem se dobije:

L

xxQ0

20 |)

21( (2)

Nakon uvrštenja granica se dobije:

)211(0 LLQ (3)

Iznos naboja jest: As150 Q

Page 21: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 21

Primjer 2.9. Disk od teflona zenamarive debljine radijusa R nabijen je nabojem plošne gustoće . Plošna gustoća naboja se mijenja duž radijusa po zakonu

20 r . Odredite ukupnu količinu naboja na disku.

Podaci: cm15R , 20 mAs200 .

Rješenje:

Sl. 1. Raspodjela naboja na disku mijenja se s drugom potencijom radijusa Ukupna količina naboja na disku, prema (2.4) jest:

SSQ d (1)

Napomena: Jer se za prvu koordinatu cilindričnog koordinatnog sustava i prostornu gustoću naboja koristi ista oznaka to će se za prvu koordinatu navedenog sustava koristiti r. gdje je: plošna gustoća naboja zadana zadatkom )( 2

0 r , a rrS d2d (2) element površine kružnog vijenca radijusa r. Uvrštenjem zadane plošne gustoće naboja i (2) u (1) dobije se:

R

rrQ0

30 d (3)

Page 22: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

22 2. Raspodjela naboja

Integriranjem se dobije:

RrQ0

4

0 |4

2 (4)

Uvrštenjem granica se dobije:

40

1 RQ

(5)

iznosa: nAs04,159Q Primjer 2.17. Naboj količine Q formiran je u obliku kugle radijusa R, slika 1. Odredite količinu naboja Q ako je prostorna gustoća naboja: a) 0 (konstantna)

b) Rr

R

0

Podaci: cm10R , 30 cmAsμ10 .

Rješenje:

Sl. 1. Količina naboja Q formirana je u obliku kugle

Ukupna količina naboja formirana u obliku kugle, prema (2.6), jest:

VVQ d (1)

gdje je:

Page 23: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 23

prostorna gustoća naboja, a rrV d4d 2 (2) element obujma kugle*. Uvrštenjem (2) u (1) dobije se: rrQ

Vd4 2 (3)

a) Za konstantnu prostornu gustoću naboja po svim elementima obujma dV,

0 , dobije se:

R

rrQ d4 2 (4)

Integriranjem se dobije:

R

rQ

|314 3 (5)

Uvrštenjem granica se dobije:

3

34 RQ (6a)

ili u obliku: kVQ (6b) gdje je prikrata Vk obujam kugle. Iznos naboja jest: Asn88,41Q b) Prostorna gustoća naboja mijenja se po zakonu:

Rr

Rρρ

0 (7)

* Element obujma (2) moguće je tako izraziti jer prostorna gustoća naboja ne ovisi niti o

jednoj kuglinoj koordinati ili ovisi samo o jednoj koordinati

Page 24: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

24 2. Raspodjela naboja

Uvrštenjem (2) i (7) u (1) dobije se:

R

rRr

rRQ d42

(8)

Integral (8) je tipski integral (v. priručnik I. N. Bronštejn – K. A. Semendjajev):

)]ln()(2)(21[1d 22

3

2baxbbaxbbax

abaxxx

Integriranjem se dobije:

R|RrRRrRRrRQ

)](ln)(2)(21[4 22 (9)

Uvrštenjem granica se dobije:

)212(ln4 3

0 RQ (10)

iznosa: Asn25,24Q

Page 25: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

3. ELEKTROSTATIČKO POLJE1 Elektrostatičko polje postoji u prostoru ili dijelu prostora ako na probni naboj doveden u taj dio prostora djeluje elektrostička sila (5.3).

e1 Fq

E

(3.1)

gdje je: eF

elektrostatička sila, a

q probni naboj. Sila eF

kojom naboj Q djeluje na probni naboj q, prema (3.1) jest:

020

e 4r

rQqF

(3.2)

Uvrštenjem (3.2) u (3.1) dobije se jakost električnog polja E

na mjestu

probnog naboja:

0204

rr

QE

(3.3a)

ili u obliku:

02K rrQE

(3.3b)

gdje je:

K prikrata (≅AsVm109 9 )

r udaljenost točkastog naboja od točke promatranja 0r

jedinični vektor radijvektora r 3.1. Složeno elektrostatičko polje Ako je zadana sila od n–1 naboja na k–ti naboj, prema (1.4) i slici 1.2. ,

i

kii i

kiek r

rQQvekF 0

12

04

(3.4)

1 U tekstu će se podjednako rabiti izrazi elektrostatičko polje i električno polje

Page 26: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

26 3. Elektrostatičko polje

tada je jakost električnog polja od n–1 naboja na mjestu k–tog naboja:

i

kii i

ik r

rQvekE 0

12

04

(3.5a)

ili u obliku:

i

kii i

i rrQvekE 0

12k K

(3.5b)

gdje je: ri udaljenost i–tog naboja i točke u kojoj se traži jakost električnog polja, i0r

jedinični vektor radijvektora ir ,

)AsVm109(K 9

prikrata. Električno polje, po zamisli M. Faradaya, zorno se prikazuje električnim silnicama. Dogovorno, električne silnice izviru iz pozitivnog naboja a poniru u negativni naboj. Primjer 3.2. U vrhovima pravokutnog trokuta stranica a, b i c smještena su tri naboja od kojih je jedan probni naboj, slika 1. Odredite:

a) silu na probni naboj q po iznosu i smjeru, b) jakost električnog polja u točki C (vrh trokuta s probnim nabojem)

po iznosu i smjeru.

Podaci: cm3a , ,cm4b ,cm5c ,nAs131Q ,nAs62 Q pAs1,0q Rješenje: Rezultirajuća sila na mjestu probnog naboja (vrh C trokuta), prema (3.4) jest: 21 FFF

(1)

gdje je: 1F

sila naboja Q1 na probni naboj q, a

2F

sila naboja Q2 na probni naboj q.

Page 27: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 27

Sl. 1. Raspored naboja i rezultirajući vektor sile i polja Jednostavnosti radi vektori sila rastavit će se u dvije međusobo okomite osi: apscisnu os i ordinatnu os. S dobivenim komponentama sile xF i yF rezultirajuća sila (iznos) jest: 2

y 2

x FFF (2) gdje je: x2x1x FFF (3a) coscos 21x FFF (3b) Komponente u smjeru osi apscise, y2y1y FFF (4a) sinsin 21y FFF (4b) Komponente u smjeru osi ordinate, a

x

ytgarcFF

(5)

kut što ga rezultirajuća sila zatvara s pozitivnom osi apscise. Iznosi sila i kuta jesu:

Page 28: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

28 3. Elektrostatičko polje

N1044,9 9x

F N1042,0 9

yF

Rezultirajuća sila, prema (2), jest: N1045,9 9F Kut što ga zatvara rezultirajući vektor sile s pozitivnom osi apscise, prema (5), jest: 055,2 Jakost električnog polja u točki C (na mjestu probnog naboja q) prema (3.1), jest:

mV1045,9 4E

Iz (3.1) također slijedi da su vektori E

i F

međusobno kolinearni, pa vektor

jakosti polja zatvara također kut s pozitivnom osi apscise.

Primjer 3.3. Tri naboja smještena su u tri vrha pravokutnika stranica a x b, slika 1. Odredite jakost polja u četvtom vrhu, točka A. Podaci: cm17a , cm10b , nAs21 Q , nAs162 Q , nAs53 Q .

Rješenje:

Sl. 1. Raspored naboja i vektori polja u točki A

Page 29: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 29

Rezultirajuća jakost elektrostatičkog polja u točki A prema (3.5) jest: 321 EEEE

(1)

Jednostavnosti radi pojedini vektori jakosti polja rastavit će se u dvije međusobno okomite osi: apscisnu os i ordinatnu os. S dobijenim komponentama polja Ex i Ey rezultirajuće polje jest: 2

y2x EEE (2)

gdje je: 32x cos EEE (3a) komponenta polja u smjeru osi apscise, sin21y EEE (3b) komponenta polja u smjeru osi ordinate, a

046,30tgarc ab

kut što ga dijagonala pravokutnika zatvara s negativnom apscisnom osi. Iznosi jakosti ekektrostatičkog polja pojedinih naboja u točki A jesu:

mV1800K 2

11

bQE (4a)

mV3703K 2

22

dQE (4b)

gdje je: cm72,1922 bad

mV1557K 2

33

aQE (4c)

Uvrštenjem (4) u (3) s poznavanjem kuta dobije se:

Page 30: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

30 3. Elektrostatičko polje

mV92,4748xE

mV18,77y E (5)

Uvrštenjem (5) u (2) dobije se:

mV55,4749E

Vektor jakosti polja zatvara kut s pozitivnom apscisnom osi:

0

x

y 180tgarc EE

000 93,18018093,0

Primjer 3.5. Dva točkasta naboja jednaka po iznosu i suprotna po predznaku nalaze se na međusobnoj udaljenosti a i tvore električni dipol. Odredite jakost elektrostatičkog polja u točkama A i B, slika 1. i komentirajte dobijene rezultate. Podaci: As10 Q ,, cm2a , cm31 b , cm602 b . Rješenje: a) Jakost polja u točki A. Iz razloga simetrije u točki A rezultirajuće polje

okomito je na simetralu (os ordinata) među nabojima (komponente vektora polja čiji pravac djelovanja pada u os ordinata međusobno se poništavaju):

coscosA EEE

(1)

Jer su iznosi vektora cosE

i cosE

u točki A međusobno jednaki to iz

(1) se dobije: αEE cos2A

(2a) iznosa: αEE cos2A

(2b)

Page 31: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 31

Sl. 1. Dva naboja jednakog iznosa i suprotnog predznaka čine električni dipol gdje je:

204 r

QE

(3)

jakost električnog polja naboja, prema (3.3) u točki A, a

r2

acosarc (4)

kut što ga radijvektor r zatvara sa spojnicom dvaju točkastih naboja. Iznos radijvektora, prema slici 1, jest:

22)2

( bar (5)

Uvrštenjem (3), (4) i (5) u (2b) dobije se:

23

220A

])2

[(4

baa

επQE

(6)

posebno ako je ab dobije se:

Page 32: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

32 3. Elektrostatičko polje

30

A 4 ba

επQE

(7)

Uvrštenjem zadanih vrijednosti dobije se:

za cm31 bb : mV1066,6 7

A E

za cm602 bb : mV1033,8 3

A E

Iz dobijenih rezultata se vidi da pomjeranjem točke A na dvadeset puta većoj udaljenosti, jakost električnog polja se smanji za približno desettisuća puta. b) Jakost polja u točki B. Vektori jakosti polja u točki B su suprotni pa je

iznos rezultirajućeg vektora: EEEB (8) gdje je:

204

rQE

(9a)

204

rQE

(9b)

jakost električnog polja, prema (3.3), u točki B (na osi apscisa), a

2

,2

abrabr (10) Uvrštenjem (9) i (10) u (8) dobije se:

2

220

B

)4

(

24 ab

baεπ

QE

(11)

Posebno ako je ab dobije se:

Page 33: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 33

30

B2

4 ba

επQE

(12)

Uvrštenjem zadanih vrijednosti se dobije:

za cm31 bb : mV1088,16 7

B E

za cm602 bb : mVEB

31066,16

Smjer rezultirajućeg vektora je u smjeru prirasta apscisne osi. Komentar rezultata kao i a).

Primjer 3.6. Dvije metalne kuglice različitih radijusa nabijene su nabojima Q1 i Q2 i nalaze se na međusobnom rastojanju a, slika 1. Ako se kuglice međusobno dodirnu a potom vrate u prvobitni položaj jakost polja u točki P je okomita na spojnicu dvaju naboja. Odredite naboje na svakoj od kuglica. Podaci: cm4a , pAs301 Q , pAs702 Q . Rješenje: Međusobnim dodirom kuglica doći će do preraspodjele naboja među kuglicama, ali ukupni naboj na kuglicama će ostati sačuvan: '

2'121 QQQQQ (1)

Rezultirajuća jakost električnog polja u točki P bit će okmita na spojnicu dvaju naboja samo ako komponente poljâ x1E i x2E međusobno jednake i suprotne: x2x1 EE (2) ili u obliku: coscos 21 EE (2b) gdje su:

2j

'j

j K||rQ

E

(3)

Page 34: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

34 3. Elektrostatičko polje

iznosi vektora jakosti polja, prema (3.3), rj udaljenost j–tog naboja od točke promatranja, a , kutovi što ih radijvektori zatvaraju sa spojnicom među nabojima.

Sl. 1. Rezultirajuće polje E

okomito je na spojnicu dvaju naboja

Uvrštenjem (3) u (2b) s izraženim kosinusom kuteva, prema slici 1, dobije se:

32

'2

31

'1 3

rQ

rQ

(4)

Rješenjem sustava (1) i (4) dobije se:

Qrr

rQ 32

31

31'

1 33

(5a)

Qrr

rQ 32

31

32'

2 3 (5b)

Uvrštenjem zadanih vrijednosti dobije se: pAs16,21'

1 Q pAs84,78'2 Q

pri čemu je:

cm83,224

ar1 cm62,3110

42 ar

Page 35: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 35

Primjer 3.8. Izračunajte jakost električnog polja, u svim točkama prostora, beskonačno duge ravne linije nabijene linijskom gustoćom naboja konstantnog iznosa. Također zorno prikažite (električnim silnicama) ovo električno polje. Rješenje:

Sl. 1. Beskonačno duga nabijena linija može se predočiti beskonačnim

zbrojem točkastih naboja Neka je beskonačno duga nabijena linija smještena u apscisnoj osi, slika 1. Nabijena linija može se predočiti beskonačnim zbrojem kvazitočkastih naboja: xq dd (1) Polje što ga kvazitočkasti naboj (1) uzrokuje u točki promatranja P, prema (3.3.b), jest:

02dKd rrqE

(2)

gdje je: r udaljenost kvazitočkastog naboja dq do točke promatranja K prikrata )As/Vm109( 9 Uvrštenjem (1) u (2) dobije se:

02dKd r

rxE

(3)

Page 36: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

36 3. Elektrostatičko polje

Za odabranu točku promatranja P odredi se njezina projekcija P' na apscisnu os. Zatim se uoče dva kvazitočkasta naboja dq1 i dq2, slika 1, koji su jednako udaljeni od točke P'. Iz razloga simetrije njihovo rezultirajuće polje u točki P je okomito na nabijenu liniju (detaljnije vidjeti Primjer 3.3, svezak I). Slijedi, rezultirajuća jakost elektirčnog polja u bilo kojoj točki promatranja što ga uzrokuje beskonačno duga nabijena linija je okomita na tu istu liniju i jednaka je y komponenti polja u točki promatranja.

cosdKd 2y rxE (4)

gdje je: kut što ga radijvektor r zatvara s ordinatnom osi u točki promatranja, slika 1. Jer u (4) se ima koordinate pravokutnog i cilindričnog koordinatnog sustava to je nužno se odrediti prema jednom od njih. Bira se, s obzirom na izgled polja, cilindrični koordinatni sustav:

dyxdyxtg 2cos

, (5a)

cos

,cos yrry

(5b)

Uvrštenjem (5) u (4) dobije se:

dcosKd y yE (6)

Iz točke promatranja P beskonačno duga nabijena linija vidi se pod kutem

]2

,2

[ . Posljednja jednadžba poprima oblik:

2

2

y dcosK

y

E (7)

Integriranjem se dobije:

2

2

y |sinK

y

E (8)

Page 37: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 37

Uvrštenjem granica i prikrate K dobije se:

y

E0

y 2

(9)

Zaključak: Električno polje beskonačno duge nabijene linije opada s prvom potencijom udaljenosti. Na slici 2 električno polje zorno je prikazano silnicama.

Sl. 2. Silnice beskonačno duge nabijene linije su radijalni pravci s osi u osi

nabijene linije

Primjer 3.20. Kuglica mase m nabijena je pozitivnim nabojem Q i obješena je o tanki neprovodni konac. Ako se obješena kuglica unese u homogeno elektrostatičko polje E

usmjereno suprotno gravitacijskoj sili tada je sila

zatezanja konca zF

, slika 1. Odredite jakost homogenog elektrostatičkog polja. Podaci: gr2m , N01,0z F , As2 Q . Rješenje: Bez prisustva električnog polja kuglica mase m bit će uravnotežena (vektorski zbroj sila koji djeluju na kuglicu mora biti jednak nuli), slika 1a:

0g0z FF

(1) gdje je: 0zF

zatezna sila u koncu bez prisustva elektrostatičkog polja, a

gmF g

(2)

Page 38: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

38 3. Elektrostatičko polje

sila teže koja djeluje na kuglicu mase m.

Sl. 1. Nabijena kuglica bez prisustva polja a) i uz prisustvo polja b) Kada se unese kuglica mase m u elektrostatičko polje zbroj njegovog smjera djelovanja smanjit će se zatezna sila u koncu )( z0z FF

. Iz uvjeta statičke

ravnoteže dobije se, slika 1b: 0gez FFF

(3)

Jer su sile međusobno kolinearne odnosno suprotne (3) postaje: gez FFF (4) gdje je: EQF e (5) elektrostatička sila jakosti polja E

na naboj Q.

Uvrštenjem (2) i (5) u (4) dobije se: gmEQF z (6) Iz (6) se dobije:

Q

FgmE z (7)

iznosa:

mV1081,4 3E

Page 39: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 39

Primjer 3.21. Vrlo dugi okomito postavljeni štap zanemarivog presjeka i nabijenog nabojem linijske gustoće naboja obješena je na koncu duljine L, kuglica mase m nabijena nabojem Q. Odredite:

a) na kojoj udaljenosti kuglice od nabijenog štapa će konac s nabijenim štapom zatvarati kut od 300;

b) pripadnu duljinu konca.

Podaci: mg10m , m/μAs5,0 , As3Q . Rješenje:

Sl. 1. Nabijena kuglica mase m obješena je na nabijeni vrlo dugački štap Kuglica mase m bit će u statičkoj ravnoteži ako je vektorski zbroj sila ili njihovih komponenti koji djeluju na nju jednak nuli (pri tome se kuglica smatra materijalnom točkom): 0Rz FF

(1)

gdje je: zF

zatezna sila u koncu, a

egR FFF

(2)

rezultirajuća sila koja je jednaka vektorskom zbroju gravitacijske sile. 0ngmF

g (3)

Page 40: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

40 3. Elektrostatičko polje

i električne sile EQF

e (4)

E jest jakost električnog polja vrlo dugačkoj nabijenog štapa (vrlo dugački nabijeni štap malog presjeka može se zamijeniti beskonačno dugom nabijenom linijom), okomito je na štap i opada s prvom potencijom udaljenosti. Prema (9) primjera P3.8 jakost polja na udaljenosti a jest:

002

ra

E

(5)

Uvrštenjem (5) u (4) dobije se:

00

e 2r

aQF

(6)

a) Iz pravokutnog trokuta sila, slika 1, dobije se:

g

etgFF

(7)

Uvrštenjem (3) i (6) u (7) uz zadani kut dobije se:

gma

Q023

3

(8)

Iz (8) se dobije:

m)476,0(23

3

0

gmQa

b) Iz pravokutnog trokuta dužina, slika 1, dobije se:

m)952,0(sin

aL

Page 41: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 41

Primjer 3.22. Kako se odnose iznosi i predznaci naboja Q1 i Q2, ako rezultirajući vektor jakosti elektrostatičkog polja u točki promatranja P ima smjer, slika 1a, b) i c). Rješenje: Zaokružite točan odgovor i obrazložite:

1. poz2poz121 ,,|||| QQQQ

2. neg2poz121 ,,|||| QQQQ

3. neg2neg121 ,,|||| QQQQ 4. neg2poz121 ,,|||| QQQQ

5. poz2neg121 ,,|||| QQQQ

1. poz2poz121 ,,|||| QQQQ

2. neg2poz121 ,,|||| QQQQ

3. neg2neg121 ,,|||| QQQQ 4. neg2poz121 ,,|||| QQQQ

5. poz2neg121 ,,|||| QQQQ

1. poz2poz121 ,,|||| QQQQ

2. neg2poz121 ,,|||| QQQQ

3. neg2neg121 ,,|||| QQQQ 4. neg2poz121 ,,|||| QQQQ

5. poz2neg121 ,,|||| QQQQ

Page 42: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

4. GAUSSOV ZAKON Tok vektora jakosti elektrostatičkog polja E kroz zatvorenu plohu SG jednak je kvocijentu naboja obuhvaćenog zatvorenom plohom SG i dielektrične konstante vakuuma:

0

E q

(4.1)

Tok vektora kroz zatvorenu plohu SG jednak je integralu po zatvorenoj plohi SG skalarnog umnoška jakosti elektrostatičkog polja E

i elementa plohe S

d :

GE d

S

SE

(4.2)

Uvrštenjem (4.2) u (4.1) dobije se:

G 0

dS

qSE

(4.3)

što je Gaussov zakon u integralnom obliku. Gaussov zakon (4.3) prilagođen načinu raspodjele naboja: - za linijsku raspodjelu naboja:

LS

SE

d1d0G

(4.4)

- za plošnu raspodjelu naboja:

SS

SSE d1d0G

(4.5)

- za prostornu raspodjelu naboja:

VSEVS d1d

0G

(4.6)

Page 43: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 43

Primjer 4.2. Količina naboja Q formirana je u obliku kugline plohe (ljuske) radijusa R. Odredite jakost električnog polja u svim točkama prostora i grafički prikažite jakost polja u ovisnosti o udaljenosti od središta kugline plohe. Rješenje:

Sl. 1. Naboj Q formiran je u obliku kugline plohe (ljuske)

Za Gaussove plohe SG1 i SG2 biraju se kugline plohe koje su koncentrično smještene nabijenoj kuglinoj plohi (ljusci). Na slici 1. prikazana je nabijena kuglina ploha s ucrtanim Gaussovim plohama i to za: Rr i Rr . a) Jakost polja za Rr (polje unutar kugline plohe). Prema (4.3) ima se:

1G 0

dS

QSE

(1)

Jer Gaussova ploha SG1 ne obuhvaća naboj Q to (1) postaje:

1G

0dS

SE

(2)

Umnožak dvaju vektora jednak je nuli ako je jedan od njih jednak nuli. Jer element plohe dS postoji to slijedi da je jakost polja jednaka nuli: RrE ,0 (3) (v. primjer P.3.19).

Page 44: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

44 4. Gaussov zakon

b) Jakost polja za Rr (polje izvan kugline plohe). Polje kugline plohe je sferno simeterično, radijalni pravci koji pod pravim kutem poniru/izviru iz kugline plohe (v. Primjer 6.2, svezak I). Prema (4.3) ima se:

2G 0

dS

QSE

(4)

Jer su vektori E

i S

d kolinearni vektori i jakost elektrostatičkog polja je u

svim točkama promatrane Gaussove plohe (za r = konst.) jednakog iznosa to (4) postaje:

2G 0

dS

QSE

(5)

Zbroj (integral) svih elemenata površine dS daje površinu kugline plohe radijusa r:

0

24

QrE (6)

Odnosno:

Rrr

QE ,4 2

0 (7)

Sl. 2. Raspodjela jakosti polja u ovisnosti o udaljenosti od središta kugline

plohe

Page 45: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 45

Primjer 4.3. Naboji Q1 i Q2 formiraju kugline plohe (ljuske) radijusa R1 i R2 i smještene su koncentrično jedna spram druge. Odredite jakost polja na udaljenosti:

a) 2

)( 21 RRr ,

b) 22Rr od središta kugle. Rješenje: Za Gaussove plohe SG1 i SG2

biraju se kugline plohe koje su koncentrično smještene nabijenim kuglinim plohama (ljuskama), slika 1. a) Jakost polja za 21 RrR . Prema (4.3) ima se:

1G 0

dS

qSE

(1)

Gaussova ploha SG1 obuhvaća samo naboj Q1, pa (1) postaje):

1G 0

dS

1QSE

(2)

Sl. 1. Nabijene kugline plohe (ljuske) i Gaussove plohe Jer je vektor jakost električnog polja E

u svakoj točki Gaussove plohe

kolinearan s vektorom elementa površine S

d to skalarni umnožak u (2) prelazi u obični umnožak.

Page 46: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

46 4. Gaussov zakon

G1 0

dS

1QSE

(3)

I nadalje jer je iznos jakosti električnog polja ||EE

u svakoj točki

Gaussove plohe, a na udaljenosti r od njenog središta, jednako to iznos jakosti električnog polja kao konstanta može izaći ispred znaka integrala:

G1 0

dS

1QSE

(4)

Zbroj (integral) svih elemenata dS kugline plohe daje njezinu površinu:

0

124

QrE (5)

Iz (5) se dobije:

2120

1 ,4

RrRr

QE

(6)

Jakost električnog polja u točki A za 2/)( 21 RRr jest:

2210

1A )( RR

QE

(7)

b) Jakost polja za 2Rr . Gaussova ploha SG2 obuhvaća obje nabijene

kugline ljuske, pa (4.3) postaje:

2G 0

2dS

1 QQSE

(8)

Uz sva obješnjenja o međusobnom pložaju vektora E

i S

d te iznosu vektora

E

rečenog u a) (8) postaje:

0

2124

QQrE

ili u obliku:

220

21 ,4

Rrr

QQE

(9)

Page 47: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 47

Jakost električnog polja u točki B, 22Rr , jest:

220

21B 16 R

QQE

(10)

Primjer 4.4. Količina naboja Q formirana je u obliku kugle radijusa R. Odredite jakost električnog polja u svim točkama prostora i grafički prikažite jakost polja u ovisnosti o udaljenosti od središta kugle. Rješenje: Za Gaussove plohe SG1 i SG2 biraju se kugline plohe koje su koncentrično smještene s obzirom na kuglasto formirani naboj. Na slici 1. prikazana je nabijena kugla s ucrtanim Gaussovim plohama i to za: Rr i

Rr .

Sl. 1. Naboj Q formiran je u obliku kugle prostorne (volumne) gustoće naboja

i Gaussove plohe SG1 i SG2 a) Jakost polja za Rr (polje unutar nabijene kugle). Jakost električnog polja nabijene kugle je sferno simetrično, detaljnije vidjeti u primjeru P.6.4., svezak I. Slijedi, jakost polja dijela nabijene kugle radijusa

Rr također je sferno simetrična Prema (4.3) ima se:

1G 0

dS

qSE

(1)

SG1, slika1, je kuglina ploha i odabrana je tako da joj središte pada u središte nabijene kugle pa su vektor jakosti električnog polja E

i vektor elementa

Page 48: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

48 4. Gaussov zakon

Gaussove plohe S

d u svakoj točki ove plohe međusobno kolinearni. Slijedi, skalarni umnožak (1) prolazi u obični umnožak. I nadalje, iznos jakosti polja je konstantnog iznosa u svim točkama Gaussove plohe, pa lijeva strana (1) postaje:

1G

24dS

rESE (2)

Za sve točke prostora koje se nalaze na udaljenosti r od središta nabijene kugle mjerodavna je samo količina naboja obuhvaćena Gaussovom plohom radijusa r, SG1. Obuhvaćena količina naboja2 proporcionalna je obujmu što ga obuhvaća Gaussova ploha SG1:

QRrq 3

3 (3)

Uvrštenjem (2) i (3) u (1) dobije se:

3

3

0

24RrQrE

Slijedi jakost polja za sve točke prostora za koje je Rr :

rR

QE 304

(4)

b) Jakost električnog polja za Rr (polje izvan nabijene kugle). Prema (4.4) ima se:

G 0

dS

qSE

(5)

2 Obuhvaćena količina naboja dobije se iz omjera:

V

Q

V

q*

slijedi:

QR

rQ

R

rQ

V

Vq 3

3

3

3

3

43

4*

Page 49: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 49

Gaussova ploha SG2 je kugline ploha sa središtem u središtu nabijene kugle. Jer je polje nabijene kugle sferno simetrično slijedi da su vektori jakosti polja E

i elementa plohe S

d u svakoj točki Gaussove plohe kolinearni. Skalarni množak prelazi u obični uzmnožak. Jer je iznos jakosti polja jednak za sve točke na Gaussovoj plohi (jednaka udaljenost od središta) lijeva strana (5) jest:

G2

24dS

rESE (6)

Gaussova ploha SG2 obuhvaća ukupni naboj Q: Qq (7) Uvrštenjem (6) i (7) u (5) dobije se:

0

24

QrE

Slijedi jakost polja za sve točke prostora za koje je Rr :

204 r

QE

(8)

Na slici 2. dat je grafički prikaz iznosa jakosti polja u ovisnosti udaljenosti od središta nabijene kugle.

Sl. 2. Raspodjela polja nabijene kugle u ovisnosti udaljenosti od njezinog

središta

Page 50: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

50 4. Gaussov zakon

Primjer 4.5.

Električni naboj prostorne gustoće naboja raspoređen je ravnomjerno između dviju zamišljenih koncentričnih ploha radijusa R1 i R2. Odredite silu na naboj Q0 koji se nalazi na udaljenosti od središta kuglnih ploha: a) r1 = 1 cm; b) r2 = 9 cm; c) r3 = 20 cm. Podaci: 36 As/m10 , As102 8

0Q , cm51 R , cm102 R .

Rješenje: Na slici 1. prikazana je prostorna razdioba naboja s označenim točkama u kojim se traži sila na naboj Q0.

Sl. 1. Naboj je prostorno ravnomjerno raspodijeljen između dviju zamišljenih

kuglinih ploha Sila na naboj, prema (2.1 ), jest: EQF

0 (1)

Slijedi, zadatak se svodi na određivanje jakosti polja u navedenim točkama. Jakost elektrostatičkog polja određuje se uporabom Gaussovog zakona (4.6):

VS

VSE d1d0G

(2)

Jakost polja u pojedinim točkama odredit će se tako da Gaussova ploha, koja se zbog prostorne raspodjele naboja bira kao kuglina ploha sa središtem u središtu zakrivljenosti prostorne raspodjele, poprimi tri različita radijusa. a) Radijus Gaussove plohe jest 10 Rr . Ovako odabrana Gaussova ploha

ne obuhvaća prostornu raspodjelu naboja, pa je desna strana (2) jednaka nuli:

Page 51: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 51

0dG

S

SE

(3)

Jer je umnožak dvaju faktora jednak nuli ako je jedan od faktora jednak nuli (element S

d Gaussove plohe postoji), slijedi:

0E (4) za sve točke prostora za koje je Rr . Jasno je da bez prisutnosti polja nema ni sile na naboj: 0F (5) b) Radijus Gaussove plohe jest 21 RrR . Gaussova ploha s navedenim

radijusom obuhvaća* samo dio prostorne raspodjele naboja:

V

Vq d (6)

Integriranjem, uz = konst., se dobije:

)(34 3

13 Rrq (7)

Uvrštenjem (7) u (2) dobije se:

)(34d 3

13

0G

RrSES

(8)

* Obuhvaćena količina naboja jest:

)(3

4)1'( 3

13 RrVVq

ili: rSq

rdkp

)(3

4d4 3

13

1

2 Rrrrqr

R

Page 52: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

52 4. Gaussov zakon

Jer je naboj prostorno simetrično raspodijeljen to su jakost polja E

i element plohe S

d u svakoj točki na Gaussovoj plohi međusobno kolinearni (smjer

vektora polja uzima se u račun s predznakom prostorne gustoće naboja). Iznos jakosti polja u svakoj točki Gaussove plohe je jednak, što je opet posljedica prostorne simetričnosti, pa (8) postaje:

)(34d 3

13

0G

RrSES

(9)

Integriranjem po Gaussovoj plohi radijusa r dobije se:

)(34 3

13

0Rrr4E 2

ili u obliku:

)(3

31

32

0Rr

rE

(10)

Uvrštenjem (10) u (1) dobije se:

)(3

31

32

0

0 Rrr

QF (11)

Uvrštenjem zadanih vrijednosti dobije se sila iznosa: N106,5 5F (12) Iz (12) slijedi, sila je usmjerena suprotno prirastu radijusa. c) Radijus Gaussove plohe jest 2Rr . Gaussova ploha s navedenim

radijusom obuhvaća* ukupni raspodjeljni naboj: * Obuhvaćena količina naboja jest:

)(3

4)( 3

13212

RRVVQ

ili: rSQ

rdkp

)(3

4d4 3

132

2

1

2 RRrrQR

R

Page 53: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 53

V

VQ d

Integriranjem, uz = konst., se dobije:

)(34 3

132 RRQ (13)

Uz prostornosimetričnu raspodjelu naboja i polja, te uz obrazloženja dana za b) dobije se:

)(3

31

322

0RR

rE

(15)

Uvrštenjem (15) u (1) dobije se:

)(3

31

322

0

0 RRr

QF (16)

Uvrštenjem zadanih vrijednosti dobije se sila iznosa: N1065,1 5F (17) I ovdje kao i u b) predznak minus govori o smjeru sile.

Primjer 4.6. Beskonačno dugi ravni vodič zanemarivog presjeka nabijen je linijskom gustoćom naboja konstantnog iznosa. Treba odrediti jakost polja u svim točkama prostora i grafički ga prikazati u ovisnosti o udaljenosti od nabijene linije. Rješenje: Silnice električnog polja, prema slici 2. primjera P3.8 ravnog beskonačno dugog vodiča nabijenog nabojem linijske gustoće naboja su radijalni pravci s ishodištem u osi cilindra i okomiti su na nabijeni vodič: Jakost električnog polja određuje se upotrebom Gaussovog zakona (4.4):

Page 54: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

54 4. Gaussov zakon

d1d0G

S

SE (1)

Sl. 1. Za Gaussovu plohu bira se cilindrična ploha

Za Gaussovu plohu bira se cilindrična ploha dužine h i površine baza B. Cilindrična ploha se u polju postavlja tako da joj os pada u os nabijenog vodiča a površine baza su okomite na ravni vodič. Ovakvo postavljanje cilindrične plohe znači da niti jedna silnica električnog polja neće prožimati baze cilindrične ploha a prožimat će plašt cilindra i to pod pravim kutem. Integral po Gaussovoj plohi može se načiniti kao zbroj tri integrala: po bazama i plaštu:

LBLPB

SESESE

d1ddd021

(2)

Jer silnice električnog polja ne prožimaju baze cilindrične plohe to je električni tok jednak nuli. Slijedi, prvi i treći integral u (2) jednaki nuli, ima se:

LP

SE

d1d0

(3)

Silnice električnog polja u svakoj točki plašta cilindrične plohe su kolinearne s vektorom elementa

PSd te plohe, skalarni umnožak u (3) prelazi u obični

umnožak. I nadalje, u svim točkama cilindrične plohe jakost električnog polja ima jednaki iznos, pa se ima:

Page 55: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 55

hrESEP

2d

(4)

Naboj što ga obuhvaća Gaussova ploha jest: h

L

d (5)

Uvrštenjem (4) i (5) u (3) dobije se:

0

2 hhrE

odakle je:

r

E02

(6)

Na slici 2. dat je grafički prikaz iznosa jakosti polja u ovisnosti udaljenosti od nabijene linije.

Sl. 2. Raspodjela polja nabijene linije u ovisnosti o udaljenosti od nabijene

linije

Primjer 4.7. Beskonačno dugi ravni cilindar radijusa R nabijen je nabojem plošne gustoće naboja konstantnog iznosa. Odredite jakost električnog polja u svim točkama prostora i grafički ga prikažite u ovisnosti o udaljensoti od osi cilindra.

Page 56: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

56 4. Gaussov zakon

Rješenje: Silnice električnog polja beskonačno dugog nabijenog cilindra su, iz razloga simetrije, radijalni pravci, izvor im je na plaštu cilindra i okomiti su na taj isti plašt, slika 1. Na slici 1. prikazana je Gaussova ploha i to za Rr . U primjeru P4.2. pokazano je da unutar nabijene zatvorene plohe nema električnog polja, pa se određuje polje samo za Rr . Jakost električnog polja određuje se upotrebom Gaussovo zakona (4.5):

cSS

SSE d1d0G

(1)

Sl. 1. Za Gaussovu plohu bira se cilindrična ploha Za Gaussovu plohu bira se cilindrična ploha dužine h i površine baza B. Cilindrična ploha se postavlja tako da joj os pada uz os nabijenog cilindra a površine baza su pri tome okomite na ravni vodič. Uz obrazloženja dana u primjeru P4.6. ima se:

cSBPB

SSESESE d1ddd021

(2)

Jer silnice električnog polja ne prožimaju baze cilindrične plohe to je električni tok jednak nuli. Slijedi, prvi i treći integral u (2) jednaki su nuli, ima se:

cSP

SSE d1d0

(3)

Page 57: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 57

Silnice električnog polja u svakoj točki plašta cilindrične plohe su kolinearne s vektorom elementa

PSd te plohe, skalarni umnožak u (3) prelazi u obični

umnožak. I nadalje, jakost električnog polja u svim točkama plašta cilindrične plohe ima jednaki iznos, pa se ima: hrESE

P

2d

(4)

Naboj što ga obuhvaća Gaussova ploha jest: hRS

S

2dc

(5)

Uvrštenjem (4) i (5) u (3) dobije se:

RrrRE , (6)

Na slici 2 dat je grafički prikaz iznosa jakosti polja u ovisnosti o udaljenosti od osi cilindra.

Sl. 2. Raspodjela polja nabijenog cilindra u ovisnosti o udaljenosti od osi

cilindra

Primjer 4.8.

Naboj prostorne gustoće formira u prostoru beskonačno dugi ravni cilindar radijusa R. Odredite jakost električnog polja u svim točkama prostora i grafički ga prikažite u ovisnosti o udaljenosti od osi cilindra.

Page 58: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

58 4. Gaussov zakon

Rješenje: Na slici 1 prikazan je nabijeni cilindar s ucrtanim Gaussovim plohama i to za: Rr i Rr .

Sl. 1. Cilindar gustoće naboja i Gaussove plohe SG1 i SG2

a) Jakost polja za Rr (polje unutar nabijenog cilindra). Jakost električnog

polja nabijenog cilindra je radijalno, jednako kao i polje beskonačno dugog vodiča znemarivog presjeka i nabijenog linijskom gustoćom naboja , odnosno kao polje beskonačno dugog cilindra nabijenog plošnom gustoćom naboja . Slijedi i polje dijela nabijenog cilindra radijusa Rr također je radijalno simetrično.

Prema (4.6) ima se:

VS

VSE d1d01G

(1)

Gaussova ploha SG1, slika 1, je cilindrična ploha i odabrana je tako da joj os pada u os nabijenog cilindra. Zbog ovakvog odabira, silnice vektora električnog polja, vidi primjer P4.4. i P4.5., samo prožimaju plašt cilindrične plohe, dok ne prožimaju baze cilindra (električni tok kroz baze cilindra jednak je nuli):

VP

VSE d1d0

(2)

Vektor električnog polja u svakoj točki plašta kolinearan je s vektorom elementa plohe S

d , odnosno s njegovom normalom 0n , pa lijeva strana (2)

postaje:

Page 59: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 59

P

hrESE 2d (3)

Gaussova ploha obuhvaća samo dio prostorne raspodjele naboja*: hrV

V

2d (4)

Uvrštenjem (3) i (4) u (2) dobije se:

rE02

(5)

b) Jakost polja za Rr (polje izvan nabijenog cilindra). Gaussova ploha

SG2, slika 1, je cilindrična ploha kojoj os pada u os nabijenog cilindra, dakle ploha SG1 je koncentrična nabojem cilindra.

Prema (4.6) ima se:

VS

VSE d1d0G2

(6)

Zbog ovakvog odabira i smještaja Gaussove plohe silnice elektristatičkog polja samo prožimaju plašt cilindra, dok nema prožimanja bâza cilindra. Vektor električnog polja u svakoj točki plašta kolinearan je sa vektorom elementa plohe S

d , odnosno s njegovom normalom 0n , pa lijeva strana (6)

postaje: hrESE

P

2d

(7)

Gaussova ploha obuhvaća ukupni prostorni naboj na dužini cilindra h: hRV

V

2d (8)

Uvrštenjem (7) i (8) u (6) dobije se:

* Obuhvaćena količina naboja na radijusu r uz kontantnu gustoću naboja jest:

hrVVV

2d

Page 60: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

60 4. Gaussov zakon

r

RE0

2

2

(9)

Na slici 2 dat je grafički prikaz iznosa jakosti polja u ovisnosti o udaljenosti od osi cilindra prostorne gustoće naboja = konst.

Sl. 2. Raspodjela polja ravnog cilindra nabijenog nabojem prostorne gustoće

naboja = konst. u ovisnosti o udaljenosti od osi cilindra

Primjer 4.9.

Beskonačno velika ravna ploha nabijena je nabojem plošne gustoće konstantnog iznosa. Odredite jakost polja u svim točkama prostora i grafički prikažite jakost polja u ovisnosti o udaljenosti od nabijene ravne plohe.

Rješenje:

Sl. 1. Za Gaussovu plohu bira se cilindrična ploha

Page 61: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 61

Iz primjera P3.18, slika 2 je vidljivo da je električno polje beskonačno velike ravne plohe nabijene nabojem plošne gustoće naboja homogeno polje i da električne silnice su okomite na ravnu plohu. Jakost električnog polja određuje se upotrebom Gaussovog zakona (4.5):

SS

SSE d1d0G

(1)

Za Gaussovu plohu SG bira se cilindrična ploha visine h i površine baza B. Cilindrična ploha se postavlja tako da su joj baze paralelene s nabijenom plohom dok se izvodnice plašta podudaraju sa silnicma polja. Baze cilindra su na jednakoj udaljenosti h/2 od nabijene plohe čime se osigurava da je jakost polja na bazama cilindra B1 i B2 međusobno jednaka. Integral po Gaussovoj plohi može se načiniti kao zbroj tri integrala: po bazama i plaštu:

SBPB

SSESESE dddd021

(2)

U prvom i trećem intervalu vektori jakosti polja i vektor normale baza su kolinearni pa skalarni množak prelazi u obični umnožak. U drugom integralu vektor jakosti električnog polja i vektor normale plašta su međusobno okomiti pa je njihov skalarni množak jednak nuli – što je za očekivati jer niti jedna silnica električnog polja ne prodire kroz plašt cilindra. Jednadžba (2) postaje:

SBB

SSESE ddd021 (3)

Površine baza* plašta su međusobno jednake i jednake su površini beskonačno velike plohe obuhvaćene plaštom cilindra. Jednadžba (3) postaje:

0

2

E (4)

odakle se dobije:

02

E (5)

* Prema (3) ima se:

SESES0

Page 62: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

62 4. Gaussov zakon

Ovaj rezultat jednak je rezultata (9) u Primjeru 3.18. Na slici 2 dat je grafički prikaz iznosa jakosti polja u ovisnosti o udaljenosti od nabijene plohe:

Sl. 2. Raspodjela polja nabijene ravne plohe plošnom gustoćom naboja

=konst. u ovisnosti o udaljenosti od nabijene plohe Primjer 4.10.

Dvije beskonačno velike ravne plohe nabijene su nabojem plošne gustoće konstantnog iznosa jednakim po iznosu i suprotnim po predznaku. Odredite jakost polja u svim točkama prostora. Rješenje: Traženo polje odredit će se dvojako: - metodom superpozicije (koristite rezultat zadatka P4.9) - uporabom Gaussovog zakona.

Sl. 1. Električno polje svake od beskonačno velikih ravnih ploha a) i

rezultirajuće polje b)

Page 63: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 63

a) metoda superpozicije. Na slici 1 prikazano je električno polje svake od nabijenih ravnih beskonačno velikih ploha. Električno polje svake od nabijenih ploha je homogeno, s time što je pozitivno nabijena ravna ploha izvor električnih silnica dok je negativno nabijena ravna ploha njihov ponor. Prema (5) zadatka P4.9. iznos električnog polja jest:

02

E (1)

i ne ovisi o udaljenosti od nabijene ravne plohe.

Iz slike 1 je vidljivo da se silnice električnog polja izvan nabijenih ploha međusobno poništavaju dok se u prostoru između nabijenih ploha međusobno superponiraju. Slijedi, elektrostatičko polje van nabijenih ploha jednako je nuli 0E (2) dok je u međurpostoru nabijenih ploha

0

E (3)

b) upotreba Gaussovog zakona. Jakost električnog polja određuje se

upotrebom Gaussovog zakona (4.5):

SS

SSE d1d0G

(4)

Sl. 2. Za Gaussovu plohu se bira cilindrična ploha

Page 64: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

64 4. Gaussov zakon

Za Gaussovu plohu SG bira se cilindrična ploha visine h i površina bazâ B. Cilindrična se ploha u polju postavlja tako da su joj baze paralelne s nabijenom plohom, dok se izvodnice plašta podudaraju sa silnicama električnog polja, slika 2 (v. primjer P4.9). Integral po Gaussovoj plohi može se načiniti kao zbroj tri integrala: po bazama i plaštu:

SBPB

SSESESE dddd021

(5)

Prvi integral, po prvoj bazi, jednak je nuli jer je jakost električnog polja van nabijenih ploha jednaka nuli. Drugi integral, po plaštu, također je jednak nuli jer niti jedna silnica električnog polja ne prožima plašt (vektor električnog polja E

i vektor normale 0n su međusobno okomiti). Treći integral, jer je

jakost električnog polja u svim točkama druge baze jednakog iznosa i kolinearan je s vektorom normale 2n , može se pisati:

SB

SSE dd2 0

(6)

Površina druge baze B2 jednaka je površini S beskonačno velike plohe obuhvaćenoj Gaussovom plohom SG, pa (6) postaje:

0

E (7)

Primjer 4.11. Tri beskonačno velike ravne plohe međusobno su paralelno postavljene i nabijene nabojem plošnih gustoća 1, 2 i 3. Odredite jakost polja po iznosu i smjeru u točkama A, B, C i D. Podaci: 1 , 22 , 3 . Rješenje: Na slici 1 prikazane su ravne plohe s ucrtanim vektorima polja svake od njih. Zadatak će se riješiti metodom superpozicije koristeći se rezultatom dobijenim u Primjeru 4.9. Električno polje beskonačno velike ravne plohe je homogeno i ne ovosi o udaljenosti od nabijene plohe i iznosa jest:

Page 65: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 65

Sl. 1. Slika polja pojedinih ravnih nabijenih ploha i rezultirajuće polje u

karakterističnim točkama

02

E

Prva ravna ploha nabijena je nabojem plošne gustoće 1 pa je ona ponor silnicama električnog polja, dok su druge dvije ravne plohe nabijene nabojem plošne gustoće 22 i 3 pa su one izvor silnicama električnog polja. Rezultirajuće polje jednako je vektorskom zbroju pojedinih polja u točki promatranja. Jer su vektori polja pojedinih ploha međusobno ili kolinearni ili suprotni to se vektorski zbroj svodi na algebarski zbroj. Iznosi polja u pojedinim točkama jesu: - točka A: EEEEE 22A B: EEEEE 42B C: 02C EEEE D: EEEEE 22D Predznak polja govori o smjeru: + u smjeru prirasta pozitivne apscisne osi i obrnuto.

Page 66: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

66 4. Gaussov zakon

Primjer 4.12. Usporedno s beskonačno velikom ravnom plohom nabijenom plošnom gustoćom naboja proteže se beskonačno dugi ravni vodič zanemarivog presjeka i nabijen nabojem linijske gustoće . Nabijeni vodič je udaljen za d od nabijene plohe. Odredite tako linijsku gustoću naboja na vodiču po predznaku i iznosu da na plovici razmaka između vodiča i ravne plohe jakost električnog polja bude jednaka nuli. Podaci: 2mAsμ10 , mm5d . Rješenje:

Sl. 1. Prostorni razmještaj ravne plohe i vodiča s ucrtanim vektorima polja u

točki promatranja Na slici 1 prikazan je prostorni razmještaj ravne plohe i vodiča, te njihovi vektori polja u točki promatranja P. Polje beskonačno velike ravne plohe nabijene ravnomjerno nabojem plošne gustoće , v. Primjer 4.9, je okomito na nabijenu ravnu plohu i neovisno je o udaljenosti od te plohe, jednažba (5) istog zadatka:

02

E (1)

Polje beskonačno dugog ravnog vodiča ravnomjerno nabijeno nabojem linijske gustoće , v. Primjer 4.6, jest radijalno s ishodištem u osi cilindra i okomito je na ravni vodič i prema jednadžbi (6) istog zadatka opada s prvom potencijom:

r

E0

v 2

(2)

Page 67: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 67

Iz slike 1. je vidljivo, da bi rezultirajuće polje u točki promatranja bilo jednako nuli, ravni beskonačno dugi vodič mora biti nabijen nabojem pozitivnog predznaka. Iz zahtjeva zadatka, da je jakost polja u točki P jednako nuli ima se: 0v EE

(3)

Jer su vektori suprotni (3) postaje: vEE (4) Uvrštenjem (1) i (2) u (4) uz 2/dr dobije se:

222

00 d

Iz posljednje jednadžbe se dobije:

2

d

iznosa: 1mAsn54,78

Page 68: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

5. ELEKTRIČNI POTENCIJAL I RASPODJELA NABOJA PO VODIČIMA

Potencijalna energija elektrostatičkog polja, prema (7.22), jest: VAsdp

EqW (5.1)

Električni potencijal, prema (7.32), jest:

Vp

qW

(5.2)

Uvrštenjem (5.1) u (5.2) dobije se:

dE (5.3)

Električni potencijal brojčano je jednak radu koji izvrši sila koja je po iznosu jednaka sili elektrostatičkog polja pomičući točkasti naboj jediničnog iznosa,

1q , iz beskonačnosti do točke promataranja protivno sili polja. Razlika potencijala (napon) između točaka M i N (7.37) jest:

M

N

EU

dMN (5.4)

Ekvipotencijalna ploha – ploha na kojoj je u svakoj točki potencijal jednakog iznosa, prema (7.42), jest:

0d B

A

E

(5.5)

Ako je zadan potencijal ),,( zyx tada je električno polje jednako negativnoj derivaciji potencijala po, sasvim općenito, elementu puta dℓ (7.45):

E (5.6)

Page 69: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 69

Primjer 5.6. Metalne kugle radijusa RA i RB nabijene su nabojima QA0 i QB0. Kugle se nalaze na međusobnoj udaljenosti d (udaljenost središta). Ako se kugle međusobno spoje tankom metalnom niti odredite: a) naboj svake kugle b) jakost električnog polja svake od kugli neposredno uz njezinu površinu. Podaci: nAs30A0 Q , nAs10B0 Q , m2d , cm10A R , cm2B R . Rješenje:

Sl. 1. Metalne kugle spojene su tankom metalnom niti Nakon spajanja kugli naboj na njima jest: nAs20BAB0A0u QQQQQ (1) (pretpostavlja se da na spojnoj niti nema naboja). Spajanjem dviju kugli one postaju ekvipotencijalno tijelo: BA (2) Potencijal pojedinih kugli jest:

d

QR

Q0

B

A0

ABAAAA 44

(3a)

d

QR

Q0

A

B0

BABBBB 44

(3b)

Napomena: Postupak proračuna potencijala na površini vodljive kugle jednak je proračunu potencijala točkastog naboja na udaljenosti jednakoj radijusu kugle (ne zaboravite da je vodljiva kugla ekvipotencijalna ploha).

Page 70: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

70 5. Električni potencijal i raspodjela naboja po vodičima

Jer je BA , RRd to se drugi pribrojnik u (3) može zanemariti, pa (3) postaje:

A0

AA 4 R

Q

(4a)

B0

BB 4 R

Q

(4b)

Uvrštenjem (4) u (2) dobije se:

B

A

B

A

RR

QQ

(5)

Rješenjem sustava (1) i (5) dobije se:

nAs)67,16(uBA

AA

Q

RRRQ (6)

nAs)33,3(uBA

BB

Q

RRRQ (7)

Jakost električnog polja na površini kugline plohe, prema (8) primjera 6.2. I. sveska, jest:

)m

μ5,1(4 2

A0

AA

VR

QE

(8)

)m

μ49,7(4 2

B0

BB

VR

QE

Primjer 5.9. Naboji Q1 i Q2 formirani su u obliku kuglinih ljuski plošnih gustoća naboja 1 i 2 i radijusa R1 i R2, 12 RR . Kugline ljuske smještene su simetrično jedna u drugu, slika 1. Odredite potencijal u točki promatranja T koja je na udaljenosti r od središta kugle, 21 RrR . Podaci: cm,51 R cm,152 R cm,10r 2

21 nAsm85,8 .

Page 71: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 71

Rješenje:

Sl. 1. Nabijene metalne kugline ljuske smještene su simetrično jedna na

drugu Zadatak će se riješiti na dva načina: a) korištenjem već stečenih saznanja b) primjenom izraza za električni potencijal (5.3). a) Potencijal nabijene kugline ljuske jest:

RrR

Q 0

4 0 (1)

rRr

Q04

(2)

Potencijal unutar nabijene kugline ljuske jednak je potencijalu ljuske v. primjer 8.1. I. sveska, dok izvan kugle opada s prvom potencijom udaljenosti, v. primjer 7.3.5. I. sveska. Na slici 2. dana je grafička interpretacija potencijala dvije nabijene kugline ljuske. Iz slike 2. slijedi da je potencijal u točki T na udaljenosti r od središta kuglinih ljuski, prema (1) i (2) jednak zbroju potencijala prve i druge nabijene kugline ljuske:

20

2

0

121T 44 R

Qr

Q

(3a)

ili u obliku:

Page 72: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

72 5. Električni potencijal i raspodjela naboja po vodičima

)(4

1

2

21

0T R

Qr

Q

(3b)

Sl. 2. Raspodjela potencijala nabijenih kuglinih ljuski Naboji Q1 i Q2 jesu: pAs2784 2

11111 RSQ pAs25024 2

22222 RSQ Potencijal točke T, prema (3b), jest: V14,175T b) Potencijal, prema (5.3), jest:

rr

rEE ddT

(4)

Potencijal u točki T jednak je zbroju potencija u odnosu na referentnu točku u beskonačnosti:

)d(d2

1

2

12T

r

R

R

rErE

(5)

gdje je:

Page 73: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 73

20

2112 4 r

QQE

(6)

jakost električnog polja izvan metalnih ljuski, a:

20

11 4 r

QE

(7)

jakost električnog polja u međurpostoru metalnih ljuski (ne zaboravite naboj Q2 druge metalne ljuske ne doprinosi jakosti polja u međuprostoru metalnih ljuski). Uvrštenjem (6) i (7) u (5) dobije se:

)d4

(d4

22

0

12

20

21T

r

R

R

rrQ

rrQQ

Integriranjem se dobije:

r

R

R

rQ

rQQ

20

12

0

21T |)1(

4|)1(

4

Uvrštenjem granica dobije se:

)11(44 20

1

20

21T Rr

QR

QQ

ili u obliku:

)(4

1

2

21

0T R

Qr

Q

(8)

što je identično s (3).

Page 74: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

74 5. Električni potencijal i raspodjela naboja po vodičima

Primjer 5.15. Ravni beskonačno dugi vodič zanemarivog presjeka nabijen je nabojem linijske gustoće naboja nepoznatog iznosa. Između točaka A i B, koje se nalaze na udaljenosti RA i RB od nabijenog vodiča a na istom pravcu, izmjeren je napon UAB. Odredite: a) linijsku gustoću naboja b) odredite točku C na udaljenosti RC tako da je napon ABBC UU . Podaci: V100AB U , cm10A R , cm5,14B R . Rješenje:

Sl. 1. Prostorni raspored nabijene linije i točaka promatranja a) Napon (razlika potencijala) između točaka A i B prema (5.3) jest.

A

B

A

B

BAAB ddR

R

R

R

rEEU

(1)

gdje je:

r

E02

(2)

jakost polja ravne nabijene linije prema (6) primjera 4.6. Uvrštenjem (2) u (1) dobije se:

A

B0AB

d2

R

R rrU

Nakon integriranje se dobije:

A

B

0AB ln

2 RRU

(3)

Iz (3) se dobije:

)m

nAs95,14(ln

2

A

B

AB0

RRU

Page 75: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 75

b) Napon između točaka B i C, prema (3), koristeći analogiju jest:

B

C

0BC ln

2 RRU

(4)

Iz jednakosti naboja, BCAB UU , dobije se:

B

C

0A

B

0ln

2ln

2 RR

RR

odakle je:

cm025,21A

2B

C RRR

Primjer 5.18. Dva vodiča konačnog presjeka S i duljine L na međusobnom razmaku L čine električni vod. Vod je priključen na pogonski napon U. Odredite: a) naboj na svakom od vodiča b) minimalnu jakost polja na spojinici među vodičima. Podaci: mm4R , m2,1d , km2L , kV6,3U Rješenje: Jer je dužina voda mnogo veća od razmaka među vodičima to se može uzeti da je električno polje u svim poprečnim presjecima voda jednako. a) Naboj na vodičima odredit će se iz poznavanja razlike potencijala među

njima – pogonski napon. Razlika potencija među vodičima, prema (7.37) I. sveska, jest:

Sl. 1. Vektori električnog polja na spojnici među vodičima i raspodjela polja

svakog od nabijenog vodiča

Page 76: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

76 5. Električni potencijal i raspodjela naboja po vodičima

M

N

EU

dMN (1)

Za određivanje razlike potencijala može se uzeti bilo koji put integracije na liniji koja povezuje vodiče, pa se odabire najjednostavniji (spojnica među vodičima). Vektori jakosti polja i element dužine na spojnici su međusobno kolinearni, slika 1. Jednadžba (1) postaje:

M

N

M

N

xExEUU ded xMN

(2)

gdje je: EEE (3) rezultirajuća jakost električnog polja, a dx element dužine. Prema (7) primjera 10.5 I. sveska, jednadžba (3) postaje:

)(22 00 xdx

E

(4)

Uvrštenjem (4) u (2) dobije se:

xxdx

UR

Rd

d)11(2 0

(5)

Integriranjem se dobije:

R

R-dx-dxU )](lnln[

2 0

(6)

Uvrštenjem granica dobije se:

R

R-dU ln0

(7)

Iz (7) dobije se linijska gustoća naboja:

Page 77: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 77

RR-d

U

ln0 (8)

Tražena količina naboja na svakom od vodiča, prema (4.2) I. sveska, jest:

L

LdxQ0

(9)

Uvrštenjem (8) u (9) dobije se:

RR-dULQ

ln0

(10)

iznosa: μAs09,35Q b) Minimalna jakost električnog polja na spojnici među vodičima voda

odredit će se iz nužnog uvjeta ekstrema funkcije: prva derivacija funkcije jednaka je nuli. Iz (4) se dobije:

0])(

11[2d

d22

0

xdxxE

(11)

Iz (11) se dobije:

2dx (12)

u točki 2/dx moguć je minimum i maksimum jakosti električnog polja. Stoga je nužno potražiti drugu derivaciju funkcije:

])(

212[2d

d33

02

2

xdxxE

(13)

Uvrštenjem (12) u (13) dobije se:

08)2

(dd

32

2

ddx

xE

Page 78: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

78 5. Električni potencijal i raspodjela naboja po vodičima

Funkcija – jakost električnog polja na polovici spojnice ima minimalnu vrijednost:

d

E0

2

(14)

iznosa: V7,1052E

Page 79: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

6. RAD I POTENCIJALNA ENERGIJA Rad, prema Maxwellu, jest savladavanje sile na putu (sasvim općenito): LFA (6.1) Ako se sila mijenja na tom putu od točke do točke između točaka P i T a uz to smjer sile ne pada u smjer puta tada je rad između promatranih točaka:

dT

P

FA (6.2)

Jednako tako i rad što ga načini elektrostatička sila pomičući točkasti naboj iz točke u točku jest:

deT

P

FA (6.3)

gdje je: EqF

e (6.4)

sila elektrostatičkog polja na naboj q. Uvrštenjem (6.4) u (6.3) dobije se:

dT

P

EqA (6.5a)

ili promjenom granica

)d(

P

T

EqA (6.5b)

Izraz u zagradama jest razlika potencijala između točaka P i T. )( TPqA (6.6) Potencijalna energija je po iznosu jednaka radu potrebnom da se naboj dovede iz beskonačnosti u promatranu točku P u električnom polju i prema (7.30), jest:

Page 80: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

80 6. Rad i potencijalna energija

P

EqW

dp (6.7)

Pomicanjem pozitivnog naboja u smjeru električnog polja njegova potencijalna energija se smanjuje. Suprotno, ako se naboj pomiče protiv sile električnog polja, ulaže se rad/energija, pa se potencijalna energija naboja povećava. Ako je taj rad pozitivan, tada je energija negativna i obratno (o predznaku rada v. odjeljak 7.2, svezak I.). Primjer 6.1. Naboj Q nalazi se u homogenom električnom polju pločastog kondenzatora, slika 1. Odredite rad dobijen pomičući naboj: a) iz točke B u točku C b) iz točke C u točku B. Podaci: L – razmak među točkama CB . Rješenje:

Sl. 1. Naboj Q se pomiče u smjeru električnog polja a) i protivno b) a) Sila električnog polja može pomicati naboj samo duž silnice električnog

polja. Slijedi, pomičući naboj u smjeru polja dobije se korisni rad i to na račun smanjenja potencijalne energije naboja Q. Put BC može se prikazati kao zbroj puteva CCBC '' , gdje je C' projekcija točke C na silnicu električnog polja na kojoj je točka B.

Page 81: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 81

dd'

e

'

e C

C

C

B

FFA (1)

Dio puta C'C je stoga okomit na silnice električnog polja odnosno pripada dijelu ekvipotencijalne plohe. Jer je rad sile po ekvipotencijalnoj plohi jednak nuli, to (1) postaje:

d'

eC

B

FA (2)

Sila električnog polja eF

i element puta

d na dijelu puta BC' su međusobno

kolinearni pa u (2) skalarni umnožak prelazi u obični:

d'

eC

B

FA (3)

Ovaj rad prema (5.9) i (5.12) jest: )( C'B QA (4) gdje je: cosdC'B LEE (5) Uvrštenjem (5) u (4) dobije se: cosLEQA (6) b) Pomicanje naboja iz točke C u B, dakle suprotno sili električnog polja

može se ostvariti samo s pomoću vanjske sile vF

. Put CB opet se može prikazati kao zbroj puteva BCCC '' . Rad na dijelu puta CC' jednak je nuli (objašnjeno u a)) i ostaje rad na dijelu puta C'B:

d'

vB

C

FA (7)

Vanjska sila na svakom dijelu puta jednaka je po iznosu i suprotnog je smjera sili električnog polja:

Page 82: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

82 6. Rad i potencijalna energija

d'

eB

C

FA (8)

Vektori eF

i

d su suprotni vektori pa (8) postaje:

dd'

e'

e C

B

B

C

FFA (9)

Ovaj rad prema (5.9) i (5.12) jest: )( C'B QA (10) Uvrštenjem (5) u (10) dobije se: cosLEQA (11) Uloženi rad jednak je potencijalnoj energiji naboja u promatranoj točki: cosp LEQAW (12)

Primjer 6.2. Pločastom kondenzatoru poznate su izmjere i naboj na oblogama. Odredite rad da se naboj q prenese s pozitivne obloge na negativnu i obratno. Podaci: nAs50Q , nAs1,0q , cm200xcm50S , mm5,0d , Rješenje:

Sl. 1. Promjena potencijala među oblogama kondenzatora je linearna

Page 83: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 83

Rad što ga ostvari elektrostatička sila pomičući točkasti naboj q od točke P (pozitivna obloga kondenzatora) do točke T (negativna obloga kondenzatora) jest koristan rad i prema (5.12) jest: )( TP qA (1) gdje su P i T potencijali pozitivne odnosno negativne obloge i prema (4) primjera 7.9. I sveska jest:

V)25,28(2 0

00

d (2)

Uvrštenjem (2) u (1) dobije se: nJ)65,5(2 0 qA (3) Ostvareni rad jednak je, prema (5.13), negativnoj vrijednosti potencijalne energije naboja: J)65,5( AW Da bi se premjestio naboj iz točke T u točku P treba uložiti rad vanjske sile, suprotno sili elektrostatičkog polja: nJ)65,5()()( TPPT qqA (5) Premještanjem naboja suprotno sili elektrostatičkog polja naboju se povećava njegova potencijalna energija i na pozitivnoj oblozi kondenzatora iznosi: nJ65,5 AW (6)

Primjer 6.4. Dva točkasta naboja Q1 i Q2 nalaze se na međusobnoj udaljenosti a, slika 1. Odredite rad sile elektrostatičkog polja pri pomicanju naboja q od: a) točke P do točke R b) točke R do točke T c) točke P do točke T

Page 84: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

84 6. Rad i potencijalna energija

Točke P i T s nabojima Q1 i Q2 čine romboid stranice a. Podaci: nAs51Q , nAs102 Q , nAs1,0q , cm3a .

Rješenje:

Sl. 1. Naboji Q1 i Q2 smješteni su u dva vrha romboida Rad što ga sila elektrostatičkog polja ili vanjska sila ostvari pomičući naboj iz točke P do točke T, prema (6.6) jest: )( TP qA (1) Prema (1) za odrediti rad sile elektrostatičkog polja nužno je odrediti potencijale u točkama P, R i T. Potencijal dva ili više naboja, prema (1), Primjera 5.2. jest:

2

1k k

k

0alg

41

rQ

(2)

ili razvijeni zbroj:

)(4

1

2

2

1

1

0 rQ

rQ

(3)

gdje su: r1 i r2 udaljenosti naboja Q1 i Q2 do promatrane točke. Potencijal u točki P:

V)1500()(4

1)(4

121

0

21

0P QQ

aaQ

aQ

(4)

Page 85: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 85

Potencijal u točki R:

V)3000()(4

2)

22

(4

121

0

21

0R QQ

aaQ

aQ

(5)

Potencijal u točki T: jer je točke T simetrična točki P s obzirom na spojnicu

21 QQ to je: V)1500(PT Prema (1) određuje se rad: a) nJ)150()( RPPR qA b) nJ)150()( TRRT qA c) nJ)0()( TPPT qA Zaključak: Za pomicanje naboja od točke P do točke R odgovorna je sila elektrostatičkog polja (rad je pozitivan – koristan rad). Za pomicanje naboja od točke R do točke T (rad je negativan – uloženi rad) treba upotrijebiti vanjsku silu. Točka P i točka T su na jednakom potencijalu, što znači da pripadaju istoj ekvipotencijalnoj plohi pa ne treba uložiti rad za pomicanje naboja.

Primjer 6.5. Četiri jednaka točkasta naboja Q nalaze se u vrhovima baze pravilne četverostrane primade stanice a. Odredite kakav je rad (koristan, utrošen) pri pomicanju točkastog naboja q iz beskonačnosti u vrh piramide visine h. Podaci: nAs1,0Q , nAs5,0q , m1,0a , ah . Rješenje: Jer su i naboji u vrhovima baze piramide i naboj koji se pomiče iz beskonačnosti istog predznaka među njima vlada odbojna Coulombova sila. Slijedi, za pomicanje naboja treba utrošiti rad. Rad što ga mora načiniti vanjska sila pomičući točkasti naboj q iz beskonačnosti u promatranu točku P (vrh piramide) prema (6.6) jest:

Page 86: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

86 6. Rad i potencijalna energija

)( P qA (1)

Sl. 1. Točkasti naboji nalaze se u bazi pravilne četverostranične piramide Potencijal, što ga stvaraju četiri naboja, u beskonačnost jest nula: 0 (2) Potencijal četiri naboja u promatranoj točki, prema (1) primjera 5.5. jest:

)()4(4

.1

00P b

QbQ

(3)

Brid piramide prema slici 1. jest:

m)12,2(23

ab (4)

Traženi potencijal prema (3) jest: V7,1P (5) Uvrštenjem (2) i (5) u (1) dobije se: nJ85,0A

Page 87: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 87

Primjer 6.6. Metalna kugla radijusa R nabijena je nabojem +Q. Odredite rad elektrostatičke sile da se točkasti naboj +q pomakne s njezine površine u: a) beskonačnost b) do udaljenosti na kojoj je rad 90% rada za pomjeranje u beskonačnost. Podaci: m2,0R , μAs5Q , nAs5q . Rješenje: Jer su naboj kugle i točkasti naboj istog predznaka među njima vlada odbojna Coulombova sila. Slijedi, ostvareni rad je korisni rad i ostvaruje se na račun smanjenja potencijalne energije točkastog naboja.

Sl. 1. Pod djelovanjem Colulombove sile točkasti naboj se pomiče s površine

metalne kugle u beskonačnost a) Rad što ga ostvaruje elektrostatička sila pomičući točkasti naboj s površine

kugle u beskonačnost, prema (6.6) jest: )( KK qA (1) gdje je: K potencijal na površini kugle. Potencijal na kuglinoj plohi jednak je radu koji treba uložiti da bi se točkasti naboj jediničnog iznosa podsredstvom vanjske sile prenio iz beskonačnosti do površine kugle suprotno sili elektrostatičkog polja (vidi primjer 5.1):

RR

rEE ddK

(2)

Električno polje nabijene vodljive kugle, v. Primjer 6.2, I. sveska, jest:

Page 88: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

88 6. Rad i potencijalna energija

Rrr

QE ,4 2

0 (3)

Uvrštenjem (3) u (2) dobije se:

R

rrQ2

0K

d4

(4)

Integriranjem se dobije:

R

Q0

K 4 (5)

poencijal u beskonačnosti za koji se uzima da je nula. 0 (6) Uvrštenjem (5) i (6) u (1) dobije se:

μJ)1125(4 0

K RQqA

(7)

b) Rad što ga ostvaruje elektrostatička sila pomičući točkasti naboj s poršine

kugle do točke na udaljenosti r u kojoj je ostvareni rad jednak 90% ostvarenog rada pomicanjem točkastog naboja u beskonačnost, prema (6.6), jest:

)( PKKP qA (8) gdje je: K potencijal na površine kugle (5) P potencijal na udaljenosti r od središta kugle, točka P. Ovaj potencijal prema (4) jest:

r

rrQ2

0P

d4

(9)

Integriranjem se dobije:

Page 89: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 89

Rrr

Q ,

4 0P

(10)

Uvrštenjem (5) i (10) uz zadani uvjet KKP 9,0 AA dobije se:

)44

(4

9,0000 r

QR

QqR

Qq

(11)

Iz (11) tražena udaljenost jest: Rr 10 (12) iznosa: m2r

Page 90: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

7. VODIČI U ELEKTROSTATIČKOM POLJU Električna influencija – razdvajanje naboja u vodiču pod djelovanjem sile elektrostatičkog polja. Mjera električne influencije jest gustoća influenciranog naboja, ima vektorski karakter i bilježi se vektorom D

(9.4)

nDD

(7.1) Vektor D

naziva se vektorom električnog pomaka. Iznos vektora električnog

pomaka definiran je iznosom maksimalnog influenciranog naboja svedenog na jedinicu površine (9.5)

2maksi

mAs

SQ

D (7.2)

Smjer vektora električnog pomaka n definiran je smjerom normale na plohu Maxwellovih dvoploča pri koje je influencirani naboj maksimalnog iznosa. Vektor električnog pomaka D

i vektor jakosti električnog polja E

stoje u

međusobnom odnosu (9.9) ED

0 (7.3)

Metoda odslikavanja – metoda koja se sastoji u ustrojstvu jednog ili više fiktivnih naboja koji zajedno s izvornim nabojima uzrokuju takvo polje u kojem se vodljiva ploča poklopi s jednom od ekvipotencijalnih ploha. Broj odslikanih naboja, prema (9.9.) jest:

12

n (7.4)

Primjer 7.5. Dvije ravne plohe na međusobnoj udaljenosti d nabijene su nabojem plošne gustoće naboja, jednakim po iznosu i suprotnim po predznaku, . Odredite:

a) napon između nabijenih ploha b) napon između nabijenih ploha ako se umetne vodljiva ploča debljine

a paraleno s nabijenim plohama.

Page 91: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 91

Na osnovi dobijenih rezultata zaključite ovisi li napon između nabijenih ploha o debljini vodljive ploče te o njezinom pložaju. Rješenje: Elektrostatičko polje između dvije ravne plohe nabijene nabojem jednakim po iznosu i suprotnim po predznaku, prema (1) Primjera 5.3, I. sveska, jeset homogeno i iznosi:

0

E (1)

a) Napon između dviju točaka, prema (7.37), jest:

d

EU0

d

(2)

Na slici 1a prikazane su silnice polja, a na slici 1b njegov iznos u ovisnosti o udaljenosti od pozitvno nabijene plohe.

Sl. 1. Zorni prikaz polja a) i njegova ovisnost o udaljenosti među nabijenim

plohama b) Integriranje (2) odabire se po jednoj od silnica s čime se postiže da su element puta

d i vektor jakosti polja E

međusobno kolinearni. Uzme li se

da je jedinični vektor elementa puta u smjeru prirasta apscisne osi:

xdd ex , jednadžba (2) postaje:

Page 92: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

92 7. Vodiči u elektrostatičkom polju

d

xEU0

d (3)

Integriranjem se dobije: dEU (4) b) Umetne li se vodljiva ploča među nabijenim plohama dolazi do

influenciranja u njoj, slika 2a, v. primjer P 7.3.

Sl. 2. Zorni prikaz polja a) i njegova ovisnost o udaljenosti među nabijenim

plohama b) Napon među nabijenim plohama prema (3) i slici 2b jest:

d

ax

ax

x

xd

xExExExEU dddd00

(4a)

Električnog polja u vodljivoj ploči nema pa je drugi integral jednak nuli:

d

ax

d

xExEU dd0

(4b)

Integriranjem se dobije:

Page 93: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 93

)]([ axdExEU

)( adEU (5) Zaključak: Napon između nabijenih ploha umetanjem vodljive ploče, usporedba (5) s (4), se smanjio. I dalje, napon je ovisan o debljini umetnute ploče a ne ovisi o njenom položaju. Primjer 7.15. Maxwellova pločica površine S nalazi se u homogenom elektrostatičkom polju E i njezina normala zatvara kut sa silnicama polja. Odredite influencirani naboj na pločici. Podaci: 000 0,30,90 , 2cm200S , kV/cm25E .

Rješenje:

Sl. 1. Influencirani naboj ovisi o orijentaciji pločice u prostoru Influencirani naboj na pločici prema (9.7) , jest: SDQ

i (1)

ili u obliku: cosi SDQ (2) gdje je: D

vektor električnog pomaka.

Vektor električnog pomaka D

i vektor jakosti električnog polja stoje u

međusobnom odnosu prema (9.9), jest: ED

0 (3)

Uvrštenjem (3) u (1) odnosno (2) dobije se:

Page 94: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

94 7. Vodiči u elektrostatičkom polju

cos0i SEQ (4) za: 090 , As0i Q

030 , 2i mnAs22,383Q

00 , 2i mnAs5,442Q

Primjer 7.19. Beskonačno dugi ravni vodič zanemarivog presjeka nabijen je nabojem linijske gustoće . Na udaljenosti a od nabijenog vodiča nalaze se Maxwellove dvoploče. Dvoploča je površine hS x , i dio je plašta cilindra radijusa a. Jedinični vektor normale plohe dvoploča je radijalnog smjera. Odredite influencirani naboj na dvoploči. Podaci: nAs/m25 cm5a , cm30h , 030 (kut pod kojim se vidi dvoploča iz nabijenog vodiča). Rješenje:

Sl. 1. Maxwellova dvoploča je dio plašta cilindra radijusa a Influencirani naboj na dvopločama, prema (9.5), jest: SDQ

i (1)

Vektor električnog pomaka izražen s pomoću vektora jakosti električnog polja, prema (9.9), jest:

Page 95: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 95

ED

0 (2) Uvrštenjem (2) u (1) dobije se: SEQ

0i (3)

Jer su vektori E

i S

međusobno kolinearni (3) postaje: SEQ 0i (4) Jakost električnog polja nabijenog ravnog vodiča, prema (6) primjera 6.7. I. sveska, jest:

r

E02

(5)

gdje je: ar udaljenost Maxwellovih dvoploča od osi vodiča. Uvrštenjem (5) u (4) dobije se:

a

SQ

2i (6)

Površina S, prema slici 1., jest: hS (7) gdje je: h visina Maxwellovih dvoploča, a (8) dio luka (druga dimenzija) Maxwellovih dvoploča. Uvrštenjem (7) i (8) u (6) dobije se:

nAs)625,0(2i hQ (9)

Page 96: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

8. KAPACITET I KONDENZATORI Kapacitet – električna mjera kondenzatora kojom se karakterizira fizičko svojstvo tijela u svezi s njegovom sposobnošću primitka naboja pri određenom naponu.

Naboj, kapacitet i napon stoje u omjeru, v. (10.1.): UCQ (8.1) Kondenzator – fizička naprava. Način spajanja kondenzataora: kondenzatori se spajaju na dva osnovna načina: - serijski - paralelno.

Kombinacijom ova dva način spajanja nastaje tzv. mješoviti spoj. Kapacitet n kondenzatora spojenih u seriju, prema (10.26), jest:

n

k CC 1 k

11 (8.2)

Kapacitet n kondenzatora spojenih paralelno, prema (10.32) jest:

n

kCC

1k (8.3)

Primjer 8.1. Odredite kapacitet pločastog kondenzatoara. Rješenje:

Sl. 1. Pločasti kondenzator

Page 97: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 97

Pločasti kondenzator je konfiguracija dvije vodljive obloge u obliku ploča, svaka površine S na međusobnoj ekvidistantnoj udaljenosti d, slika 1. Kapacitet, prema (8.1) , jest:

UQC (1)

gdje je: SQ (2) naboj na jednoj oblogi kondenzatora, plošna gustoća naboja, dEU (3) napon (razlika potencijala) među oblogama kondenzatora,

0

E (4)

jakost električnog polja (smatra se da je električno polje homogeno među oblogama kondenzatora, te da ga nema van obloga). Uvrštenjem (2), (3) i (4) u (1) dobije se:

dSC 0 (5)

Primjer 8.2. Odredite kapacitet kuglastog kondenzatora.

Rješenje:

Sl. 1. Kuglasti kondenzator

Page 98: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

98 8. Kapacitet i kondenzatori

Kuglasti kondenzator je konfiguracija dviju vodljivih kuglinih ploha, površina S1 i S2 smještenih koncentrično jedna u drugu, slika 1. Kapacitet, prema (8.1), jest:

UQC (1)

Napon među oblogama kondenzatora jest:

2

1

dR

R

rEU (2)

gdje je:

204 r

QE

(3)

prema (7) primjera 6.2. I. sveska jakost električnog polja. Uvrštenjem (3) u (2) te integriranjem dobije se:

)11(4 210 RR

QU

(4)

Uvrštenjem (4) u (1) dobije se:

21

011

4

RR

C

(5)

Primjer 8.3. Odredite kapacitet cilindričnog kondenzatora. Rješenje: Cilindrični kondenzator je konfiguracija dviju vodljivih cilindričnih obloga konačnih duljina h, površine S1 i S2 sa zajedničkom aksijalnom osi, slika 1. Kapacitet, prema (8.1), jest:

Page 99: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 99

UQC '

(1)

Sl. 1. Cilindrični kondenzator gdje je: 12' RQ (2) naboj na oblozi kondenzatora po jedinici duljine*, plošna gustoća naboja, R1 radijus unutrašnje obloge kondenzatora

2

1

dR

R

rEU (3)

napon među oblogama kondenzatora,

rRE

0

1

(4)

Jakost električnog polja, prema (1) primjera 6.7. I. sveska, R2 radijus vanjske obloge kondenzataora

Uvrštenjem (4) u (3) te integriranjem dobije se:

1

2

0

1 lnRRRU

(5)

* Naboj na oblozi kondenzatora podieljen s njegovom duljinom )/( hQ

Page 100: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

100 8. Kapacitet i kondenzatori

Zamjenom plošne gustoće naboja (5) s (2) dobije se:

1

2

0ln

2'

RRQU

(6)

Uvrštenjem (5) u (1) dobije se:

1

2

0

ln

2

RRC

(7)

Primjer 8.6. Kondenzator kapaciteta C1 nabijen je nabojem Q1. Ako se tom kondenzatoru spoji nenabijeni kondenzator kapaciteta 12 2CC , slika 1., odredite naboj na prvom i drugom kondenzatoru. Rješenje: Nakon spajanja drugog kondenzatora s prvim kondenzatorom dio naboja s prvog kondenzatora će prijeći na drugi kondenzator. '

112 QQQ (1)

Sl. 1. Kondenzatori su spojeni paralelno gdje je: '

1Q naboj koji će ostati na prvom kondenzatoru. Nakon prelaznog stanja doći će do izjednačenja napona na kondenzatorima:

2

2

1

1

CQ

CQ

'

(2)

Prema zadatku jest 12 2CC , pa (2) postaje:

Page 101: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 101

'12 2QQ (3)

Sustav (1) s (3) daje:

11 31 QQ ' , 12 3

2 QQ

Primjer 8.11. Tri kondenzatora kapaciteta C1, C2 i C3 spojena su prema shemi na slici 1a. Odredite naboje i napone na svakom od kondenzatora. Podaci: μF51 C , μF22 C , μF83 C , V400U . Rješenje:

Sl. 1. Tri kondenzatora čine mješoviti spoj Naboj, napon i kapacitet, prema (8.1), stoje u međusobnom odnosu: UCQ (1) Za odrediti naboj, što ga izvor preda kondenzatoru, prema (1), uz zadani napon U, nužno je odrediti kapacitet mješovitog spoja:

μF)333,3()(

)(

321

321

CCC

CCCC (2)

Prema (1) slijedi naboj izvora: μAs1332Q Kod serijskog spoja kondenzatora naboj na svakom kondenzatoru bez obzira na njegov kapacitet je međusobno jednak. Slijedi, naboj izvora Q jednak je

Page 102: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

102 8. Kapacitet i kondenzatori

naboju prvog kondenzatora odnosno jednak je naboju na ekvivalentnom kondenzatoru kapaciteta C23: 231 QQQ (3) gdje je: 3223 QQQ (4) naboj ekvivalentnog spoja. Jer su drugi i treći kondenzatori pod istim naponskim prilikama, U23, iz (1) se dobije:

3

3

2

2

CQ

CQ

(5)

Sustav (4) i (5) daje:

)μAs4,266(32

22

Q

CCCQ (6)

Iz (4) uz (6) se dobije: μAs6,10653 Q S poznatim nabojima, prema (1), naponi su:

V)4,266(1

11

CQU (7)

V)2,133(3

3

2

223

CQ

CQU (8)

Page 103: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 103

Primjer 8.13. Odredite ekvivalentni kapacitet četiri kondenzatora spojena prema slici 2. Podaci: nF11C , nF32 C , nF53 C , nF74 C . Rješenje:

Sl. 1. Mješoviti spoj kondenzatora

Spoj na slici 1 može se prikazati kao na slici 2.

Sl. 2. Presloženi mješoviti spoj sa slike 1

Iz slike 2a je vidljivo da su kondenzatori kapaciteta C1 i C2 paralelno spojeni: 2112 CCC (1) Kapaciteti C12 i C4 spojeni su serijski:

312

312123 CC

CCC

(2)

Kapaciteti C3 i C124 spojeni su paralelno: nF)22,9(1234ek CCC (3)

Page 104: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

9. DIELEKTRICI U ELEKTROSTATIČKOM POLJU Unese li se dielektrik, primjerice parafin, staklo, prešpan i slično u prostor između obloga kondenzatora, koji je prethodno nabijen a potom odvojen od električnog izvora, napon kondenzatora se smanji. Uzrok je u polarizaciji dielektrika. Pod pojmom polarizacije podrazumijeva se skupni naziv za usmjeravanje permanentnih dipola odnosno nastajanje dipola pod djelovanjem električnog polja, v. 11. poglavlje I. sveska. Električna polarizacija opisuje se vektorom polarizacije, (11.7):

V

vekP V

i

ip

(9.1)

gdje je: ip dipolni moment i-tog obujma Vi

V element obujma koji sadrži N1 obujma Vi

U homogenom dielektriku vektor polarizacije P

i vektor električnog polja E

stoje u odnosu, (11.12) : EP

0 (9.2)

gdje je: električna susceptibilnost. Vezani naboj v je posljedica polarizacije i javlja se kao plošna gustoća naboja na granici dvaju dielektrika (mjesto diskontinuiteta) (11.27) : Pn

0v (9.3)

Dielektričnost dielektrika je bezdimenzionalni broj koji kaže koliko se puta smanji električno polje uz prisustvo dielektrika u odnosu na jakost polja bez njega, (11.32).

rv

0

EE (9.4)

gdje je: E0 jakost električnog polja u vakuumu, E jakost električnog polja uz pristustvo dielektrika, plošna gustoća naboja.

Page 105: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 105

Opći oblik Gaussovog zakona glasi: Integral po zatvorenoj plohi SG skalarnog umnoška vektora električnog pomaka D

i elementa površine S

d

te plohe jednak je naboju Q obuhvaćenom tom plohom, i prema (11.50), jest: QSD

S

dG

(9.5)

Vektor električnog pomaka, prema (11.47), jest: PED

0 (9.6)

Jednadžba (9.6) sa (9.2) može se pisati: ED

)1(0 (9.7)

ili u obliku: ED

r0 (9.8)

gdje je umnožak: r0 (9.10) permativnost dielektrika. Tok vektora električnog pomaka D bilo kroz koji poprečni presjek D – cijevi je konstantan i jednak naboju na koji se ta D – cijev oslanja.

S

QSD

dD (9.11)

Ako ploha S obuhvaća naboj Q tada je vektor električnog pomaka:

S

QSD

dD (9.12)

Uvjeti na granici:

- tangencijalna komponenta električnog polja E

na graničnoj ravnini dvaju dielektrika prolazi kontinuirano: 2t1t EE (9.13) - normalna komponenta vektora električnog pomaka D

prolazi

skokovito na graničnoj ravnini dvaju dielektrika:

Page 106: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

106 9. Dielektrici u elektrostatičkom polju

2n1n DD (9.14) gdje je: plošna gustoća naboja na granici dvaju dielektrika.

Primjer 9.1. Točkasti naboj Q1 i Q2 na međusobnoj udaljenosti d nalaze se u sredini karakteriziranoj dielektričnosti r. Odredite jakost električnog polja i silu prvog naboja na mjesto drugog. Podaci: nAs201Q , nAs452 Q , cm75d , 5,2r Rješenje: Električno polje u sredini koja je različita od vakuuma, prema (9.4) jest:

r

0

EE (1)

gdje je:

20

0 4 rQE

(2)

jakost električnog polja točkastog naboja u vakuumu. Uvrštenjem (2) u (1) dobije se:

2r04 r

QE

(3)

Slijedi jakost polja prvog naboja na mjestu drugog:

)mV128(

4 2r0

112

dQE

(4)

Sila, prema (5.4), jest: 12212 EQF (5) Uvrštenjem (4) u (5) dobije se:

μN)76,5(4 2

r0

21 d

QQF

(6)

Page 107: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 107

Primjer 9.3. Pločasti kondenzator, sa zrakom kao izolatorom, spojen je na električni izvor napona U, pa zatim odspojen od njega. Ako se razmak među oblogama kondenzatora dvostruko poveća, a zrak kao izolator zamijeni tinjcem )6( r odredite: električno polje, napon među oblogama i kapacitet. Rješenje:

Sl. 1. Kondenzator prije a) i nakon odspajanja s električnog izvora b) Prije odspajanja kondenzatora s električnog izvora ima se:

0

0

E (1)

dEUU 00 (2)

dSC 00 (3)

Nakon odspajanja kondenzatora na njegovim oblogama sačuvan je naboj Q:

0r

0

61 EEE

(4)

dEU 2 (5) Uvrštenjem (2) i (4) u (5) dobije se:

00r 3

12 UUU

(6)

Kapacitet kondenzatora se promijenio i iznosi:

Page 108: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

108 9. Dielektrici u elektrostatičkom polju

0r

r0 22C

dSC (7)

03 CC (8) Primjer 9.5. Pločasti zračni kondenzator s razmakom među oblogama d ima kapacitet C0. Odredite koliko će se promijeniti njegov kapacitet ako se uz jednu od obloga umetne pločica stakla debljine d1. Podaci: mm4d , mm11 d , 5r . Rješenje:

Sl. 1. Zračni pločasti kondenzator s umetnutom pločicom od prešpana a)

njegova nadomjesna shema b) Kondenzator s dva sloja dielektrika, slika 1a, nadomješta se serijskim spojem dva kapaciteta, slika 1b. Kapacitet ove kombinacije jest:

21

21

CCCCC

(1)

gdje je:

1

r01 dSC (2)

kapacitet ekvivalentnog kondenzatora s dielektrikom od stakla:

Page 109: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 109

2

02 dSC (3)

kapacitet ekvivalentnog zračnog kondenzatora. Uvrštenjem (2) i (3) u (1) dobije se:

r21

0r21 )(

ddCddC

(4)

Uvrštenjem zadanih vrijednosti dobije se:

045 CC

Primjer 9.8. Dvoslojni pločasti kondenzator, slika 1a, ima debljine slojeva d1 i d2 pripadnih dielektričnih konstanti 1r i 2r . Kondenzator je prikjučen na naponski izvor napona U. Odredite:

a) jakost polja u svakom od dielektrika, b) raspodjelu naponâ po slojevima, c) površinske gustoće vezanih naboja.

Podaci: mm21d , mm62 d , 21r , 52r , V75U Rješenje:

Sl. 1. Dvoslojni kondenzator a) i njegova nadomjesna shema. Prema slici 1b narinuti napon jest:

Page 110: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

110 9. Dielektrici u elektrostatičkom polju

21 UUU (1) Normalna komponenta vektora električnog pomaka, prema (9.2) ako nema plošne gustoće slobodnih naboja na razdijelnoj plohi, jest: 21 DD (2) ili izraženo s pomoću jakosti električnog polja: 22r11r EE (3) Jednadžba (1) može se također izraziti s pomoću jakosti polja: 2211 dEdEU (4) Sustav (3) i (4) daju:

2

2r

1r1

1dd

UE

(5)

21

1r

2r2

dd

UE

(6)

iznosa:

mkV05,171 E

mkV82,62 E

Prema (1) odnosno (4) naponi pojedinih slojeva jesu: V1,34111 dEU (7) V9,40222 dEU (8) c) Plošna gustoća vezanih naboja, prema (9.3) jest: 0v nP

(9) Uvrštenjem (9.2) u (9) uz kolinearnost vektora P

i 0n dobije se:

Page 111: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 111

E0v (10) gdje je: 1r (11) električna susceptibilnost: Uvrštenjem (11) u (10) dobije se: E0rv )1( (12) Vezani naboji su:

- u prvom dielektriku

2v1 mnAs89,150

- u drugom dielektriku:

2v2 mnAs43,241

Primjer 9.15. Pločasti kondenzator s dva dielektrika, slika 1, priključen je na električni izvor konstantnog napona U. Odredite: a) kapacitet kondenzatora, b) jakost električnog polja u svakom od dielektrika, c) plošnu gustoću naboja na oblogama kondenzatora. Podaci: V500U , 2

1 cm10x4S , 22 cm10x6S mm4d , 4r1 ,

6r2 . Rješenje: a) Kapacitet pločastog kondenzatora sa slike 1a jest kapacitet paralelnog

spoja dva kondenzatora, slika 1b: 21 CCC (1) gdje je:

Page 112: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

112 9. Dielektrici u elektrostatičkom polju

dSC 1

1r01 (2)

dSC 2

2r02 (3)

parcijalni kapacitet kondenzatora.

Sl. 1. Pločasti kondenzator s dva dielektrika a) i nadomjesna shema b) Uvrštenjem (2) i (3) u (1) dobije se:

)( 22r11r0 SS

dC

(4)

iznosa: nF115,0C b) Jakost polja, prema (9.11), bit će u oba dielektrika jednake jakosti

(tangencijalne komponente jakosti električnog polja prolaze kontinuirano iz jedne u drugu sredinu):

21 EE (5) Uz zadani napon među oblogama kondenzatora jakost polja jest:

dUEE 21 (6)

iznosa:

mkV12521 EE

Page 113: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 113

c) Plošna gustoća naboja , prema (9.5), dimenzionalno odgovara iznosu vektora električnog pomaka:

D (7) Prema (9.8) slijede plošne gustoća naboja na oblogama kondenzatora: 11r011 ED (8) 22r022 ED (9) iznosa:

21 mμAs425,4 22 m

μAs637,6

Primjer 9.16. Cilindrični kondenzator s dvoslojnim dielektrikom (polietilen, polivinil klorid), slika 1, priključen je na električni izvor konstantnog napona U. Odredite: a) naboj na oblozi kondenzatora (po jedinici duljine) b) jakost polja u svakom od dielektrika. Podaci: 3,21r , 4,32r , mm51 R , mm82 R , mm103 R ,

V24U . Rješenje:

Sl. 1. Cilindrični kondenzator s dvoslojnim dielektrikom a) i nadomjesna shema b)

Page 114: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

114 9. Dielektrici u elektrostatičkom polju

Jer je dielektrik postavljen koncentrično po čitavom obujmu, slika 1a, to se kondenzator može nadomjestiti serijskim spojem dva kondenzatora, slika 1b. Prema slici 1b ima se: 21 UUU (1) Napon se može izraziti s pomoću jakosti električnog polja:

3

2

22

2

1

11 ddR

R

R

R

EEU

(2)

ili u obliku:

3

2

2

2

1

1 ddR

R

R

R

rErEU (3)

gdje je:

211

1 ,2

RrRr

E (4)

jakost električnog polja, prema (6) primjera 6.6. I. sveska, u dielektriku dielektrične konstante 1r ,

322

2 ,2

RrRr

E (5)

jakost električnog polja u dielektriku dielektrične konstane 2r ,

hQ

(6)

linijska gustoća naboja (naboj po jedinici duljine). Uvrštenjem (5) i (4) u (3) te integriranjem se dobije:

)ln1ln1(2 2

3

21

2

1 RR

RRU

(7)

a) Iz (7) slijedi:

Page 115: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 115

)m

nAs94,4(ln1ln1

2

2

3

21

2

1

RR

RR

U

(8)

b) Uvrštenjem (8) u (4) i (5) dobije se:

2

3

2

1

1

21

lnln

1

RR

RRr

UE

(9)

2

3

1

2

1

22

lnln

1

RR

RRr

UE

(10)

Jakost električnog polja na granici vodič – dielektrik odnosno dielektrik – dielektrik jest:

mkV73,71R1 E

mkV83,42R1 E

mkV27,32R2 E

mkV62,23R2 E

Primjer 9.20. Kuglasti kondenzator ispunjen je s dva sloja dielektrika dielektričnih konstanti 1r i 2r , slika 1. Koliki treba biti omjer 2r1r / da iznos električnog polja u oba sloja bude jednak i maksimalan? Podaci: 12 3RR , 13 4 RR . Rješenje: Maksimalna jakost električnog polja u svakom od dielektrika pojavit će se na njegovom najmanjem radijusu:

211r0

maks1 4 RQE

(1)

222r0

maks2 4 RQE

(2)

Page 116: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

116 9. Dielektrici u elektrostatičkom polju

Sl. 1. Kuglasti kondenzator s dva dielektrika i označenim točkama

maksimalne jakosti polja Iz uvjeta jednakosti maksimalnih polja, izjednačenjem (1) i (2), dobije se: 2

22r211r RR (3)

Jer je: 12 3RR iz (3) se dobije:

92r

1r

Page 117: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

10. ENERGIJA I SILA ELEKTROSTATIČKOG POLJA Potencijalna energija sustava od n naboja, prema (12.16), jest:

iie q21

i

W (10.1)

gdje je: iq i-ti naboj sustava od n naboja

i potencijal n-1 - og naboja sustava na mjestu i - tog naboja. Ako sustav nije izgrađen od n točkastih naboja nego sadrži linijske, plošne ili prostorne raspodjele naboja tada 1 poprima, prema (12.17) , oblik: - za linijsku gustoću naboja :

d21

e W (10.2)

- za plošnu raspodjelu naboja :

S

SW d21

e (10.3)

- za prostornu raspodjelu naboja :

V

VW d21

e (10.4)

Potencijalna energija elektrostatičkog polja može se izraziti veličinom polja, prema (12.35), jest:

V D

VDEW dde

(10.5)

Ako je sredina homogena i izotropna, prema (12.34), jest:

V

VEDW d21

e

(10.6)

Page 118: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

118 10. Energija i sila elektrostatičkog polja

Energija pločastog kondenzatora, prema (12.23), jest:

UQCQUCW

21

21

21 2

2e (10.7)

Gustoća energije izražena veličinama polja, prema (12.37), jest:

D

DEw

d (10.8)

Ako je sredina homogena i izotropna, prema (12.38), jest:

2

21 Ew (10.9)

Sila elektrostatičkog polja, ako je poznata energija tog istog polja, prema (12.7), jest:

d

d eW (10.10)

gdje je: d element puta. Primjer 10.1. Pločasti kondenzator kapaciteta C1 spojen je na električni izvor napona U a potom odspojen od njega. Nakon odspajanja kondenzatora razmaknu se obloge na dvostruko veći razmak. Odredite odnos energije prije i nakon povećanja razmaka obloga. Rješenje: Energija pločastog kondenzatora, prema (10.7), jest:

CQW

21

e (1)

Jer je kondenzator nabijen pa potom odspojen od električnog izvora naboj Q na oblogama kondenzatora ostao je sačuvan. Slijedi: - energija prije povećanja razmaka

Page 119: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 119

1

2

e1 21

CQW (2)

gdje je:

d01SC (3)

- energija poslije povećanja razmaka:

2

2

e2 21

CQW (4)

gdje je:

102 21

2dCSC (5)

Dijeljenjem (2) s (4) dobije se: e1e2 2 WW (6) Energija se povećala za dva puta. Primjer 10.11.

Električni naboj prostorne gustoće naboja konstantnog iznosa formiran je u obliku kugle radijusa R. Izračunajte energiju elektrostatičkog polja akumuliranu unutar kugle )( 0 .

Podaci: cm20R , 36 As/m10 . Rješenje:

Sl. 1. Prostorni naboj formira se u obliku kugle radijusa R

Page 120: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

120 10. Energija i sila elektrostatičkog polja

Energija elektrostatičkog polja, prema (10.6), jest:

VEWV

d21 2

0e (1)

gdje je: E jakost električnog polja, rrV d4d 2 (2) element obujma. Jakost električnog polja odredit će se upotrebom Gaussovog zakona:

VS

VSE dd0G

(3)

Na radijusu r vektor jakosti električnog polja u svim točkama je jednakog iznosa i kolienaran je s vektorom elementa plohe S

d . Ima se:

3

0

2

3414 rrE (4)

Slijedi:

rE03

(5)

Uvrštenjem (2) i (5) u (1) dobije se:

rrrWR

d492

1 22

020

2

0e (6)

Integriranjem se dobije:

μWs)05,5(59

2 5

0

2

e RW

(7)

Page 121: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 121

Primjer 10.14. Pločasti kondenzator poznatih izmjera nabijen je nabojem Q. Pod djelovanjem sile jedna obloga kondenzatora se pomjeri za a. Odredite:

a) rad elektrostatičke sile pri pomicanju jedne obloge, b) prirast elektrostatičke energije kondenzatora. Podaci: nAs20Q , mm2d , mm1,0a , 2cm50S . Rješenje:

Sl. 1. Elektrostatička sila među oblogama kondenzatora je privlačna a) Rad, što ga načini sila eF

na putu

d jest:

d0

ea

FA (1)

gdje je:

SEF 20e 2

1 (2)

sila među oblogama kondenzatora (v. primjer 10.13.). Jer je pomak obloge u smjeru apscisne osi ima se: xdd ex

(3)

Uvrštenjem (2) i (3) u (1) uz kolinearnost vektora eF

i

d dobije se:

a

xSEA0

20 d

21

Nakon integriranja se dobije:

Page 122: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

122 10. Energija i sila elektrostatičkog polja

aSEA 202

1 (4)

Izrazi li se jakost polja kao:

S

QE00

(5)

i uvrsti u (4) dobije se:

μNm)45,0(21

0

2 a

SQA

(7)

b) Prirast energije jest razlika energije koju ima kondenzator nakon i prije pomicanja obloge: epene WWW (8) gdje je:

adS

QCQW

0

2

n

2

en 21

21

(9a)

dS

QCQW

0

2

p

2

ep 21

21

(9b)

Uvrštenjem (9) u (8) dobije se:

μNm)45,0(21

0

2

e SaQW

(10)

Usporedbom dobijenih rezultata (7) i (10) ima se: eWA Rad se ostvario na račun smanjenja elektrostatičke energije kondenzatora.

Page 123: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 123

Primjer 10.15. Cilindrični kondenzator radijusâ Ru i Rv, Ru < Rv, duljine h spojen je trajno na električni izvor napona U. Oredite elektrostatičku energiju akumuliranu u električnom polju ako je dielektrik među njegovim oblogama: a) zrak )1( r b) ulje )4,2( ru Podaci: cm1u R , cm2v R , cm15h , V160U Rješenje:

Sl. 1. Cilindrični kondenzator sastoji se od dva cilindra simetrično

postavljena jednog u drugom Ako je kondenzator trajno spojen na električni izvor napona U, tada energija akumulirana u elektrostatičkom polju, prema (10.7), jest:

2e 2

1 UCW (1)

a) Kapacitet cilindričnog kondenzataora, prema (5) primjera (10.5) I. sveska jest:

pF)03,12(ln

2

u

v

00

RR

hC (2)

Energija, prema (1), jest: μJ154,00e W b) Ako je u kondenzatoru umjesto zraka neki drugi dielektrik tada se njegov kapacitet povećava r puta. Slijedi, prema (1) da će se i akumulirana energija povećati r puta:

Page 124: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

124 10. Energija i sila elektrostatičkog polja

20rue 2

1 UCW (3)

ili u obliku:

μJ)37,0(21

e0rue WW (4)

Primjer 10.17. Kuglasti kondenzator s polivinilom kao dielektrikom trajno je spojen na električni izvor napona U. Odredite radijus R zamišljene kugle, 21 RRR , kod kojeg će se energija akumulirana u elektrostatičko polje razdijeliti na dva jednaka dijela. Podaci: cm31 R , cm52 R , 5rp , V120U Rješenje:

Sl. 1. Kuglasti kondenzator s polivinilom kao dielektrikom Energija izaržena veličinama polja u homogenoj i izotropnoj sredini, prema (10.6), jest:

VEWV

d21 2

e (1)

gdje je: dielektričnost, rrV d4d 2 (2) element obujma,

Page 125: Jajac, Grulović - Riješeni zadaci iz OE - elektrostatika.pdf

Elektrostatika 125

24 rQE

(3)

jakost električnog polja među oblogama kondenzatora. Iz uvjeta zadatka se ima: 2e1e WW (4) Uvrštenjem (2) i (3) u (1) uz jednakost (4), dobije se:

2

21

2dd R

R

R

R rr

rr

Integriranjem se dobije:

2

1|)1(|)1(

R

R

R

R rr

Uvrštenjem granica i sređivanjem se dobije:

cm)75,3(2

21

21

RRRRR (5)