40
PREDAVANJE 6 Izvori energije u zvijezdama Nukleosinteza

Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

  • Upload
    dotruc

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

PREDAVANJE 6

Izvori energije u zvijezdama

Nukleosinteza

Page 2: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

kemijska energija gravitacijska energija

radioaktivnost fisija fuzija

anihilacija

Page 3: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

kg

J10

kg102

J102 11

30

41

m

E

R

MG

R

MM

G2

422

E ≈ 2.1041 J

L

Et = 2.1041 J/4.1026 W = 5.1014 s ≈ 20 mil. god.

Ugljen: = 3.107 J/kg , E = 2.1030.3.107 = 6.1037 J

IZVORI ENERGIJEGRAVITACIJSKI IZVOR ENERGIJE – prijelaz gravitacijske potencijalne energije u kinetičku, a kinetičke u unutarnju (termičku)

r

mmGE 21

p

Page 4: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

E ≈ 2.1041 J30

57o27

p

kin

2 1010

1 67 10

3

2

?

MN

m ,

EE kT

N

T

Energija zarađena gravitacijskim izvorom zagrijava plin i podiže mutemperaturu do termonuklearnih vrijednosti 5-10 mil. K, barem usredištu Sunca (zvijezde).

Page 5: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Koliko je vruć centar Sunca?

• Najzastupljeniji element u Suncu je H: jedan proton + jedan elektron

• zbog vrlo visoke temperature protoni i elektroni su oslobođeni atomske vezanosti i gibaju se bez međusobne povezanosti

• protoni su 1836 puta masivniji od elektrona i dominiraju gravitacijskim efektom unutar zvijezde

O

OPC

R

MmGkT

O2

3

KkR

MGmT

O

OPCO

7105,13

2

15 milijuna K!!!!

mR

kgM

kgm

kgNmG

JKk

O

O

p

8

30

27

2211

123

10955,6

10989,1

106726,1

10674,6

1038065,1

Page 6: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Koliki su tlak i gustoća u centru Sunca?

PaR

GM

R

R

MGM

S

Fp

O

O

O

O

OO

CO

15

4

2

2

2

10

Iz jednadžbe stanja idealnog plina

3510 kgmkT

mp

m

kTNkTp

CO

PCOCO

P

COCOCOCO

Zadatak 1.

Odredite prosječnu gustoću Sunca!

3

338

30

/4,1411

10955,63

4

10989,1mkg

m

kg

V

M

o

o

Page 7: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

νeDHH 211

γHeHD 311

H2HeHeHe 1433

3 -proces:

4 4 8

8 4 12

He He Be

Be He C γ

12 4 16C He O γ16 4 20O He Ne γ12 12 24C C Mg γ16 16 28 4O O Si He

NUKLEOSINTEZA - ukratko.....

NUKLEOSINTEZA - detaljno.....

Page 8: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Nukleosinteza u zvijezdama od vodika ..... do željeza

Page 9: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Gorenje vodika

Page 10: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

1. pp lanac

Nuklearne reakcije u zvijezdama nisu bile objašnjene do 30-ih godina 20. stoljeća jer nisu bile poznate subatomske čestice: neutron, pozitron i neutrino.

“The formation of deuterons by proton combination” Bethe & Critchfield, 1938.

Page 11: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

PP I CIKLUS• KORAK

• Dva protona 1H ili p tuneliraju kroz kulonsku barijeru i tvore 2D

• 2D se sastoji od 1p i 1n (što znači da jedan p postaje n uz emisiju pozitrona i elektronskog neutrina – pozitivni beta raspad):

• Potpuna je reakcija:

uz oslobađanje 0,425 MeV energije

eenp

eeDpp 2

e+ i e- u anihilaciji postaju čista energija

MeV

ee

511,0

2

odlazi sa Sunca bez interakcije, odnoseći energiju

Page 12: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

2. KORAK

• 2D i proton tvore izotop He (tzv. lagani helij) 3He uz oslobađanje energije u obliku gama fotona od 5,49 MeV

• Ova je reakcija tako energetski povoljna da se deuteron praktički ne nalazi u zvijezdama, nego odmah stvara teže jezgre

HepD 32

3. KORAK

• Dva lagana helija 3He, fuziraju u 4He uz oslobađanje dva protona natrag u lančanu reakciju uz oslobađanje 12,86 MeV energije

• 4He sadrži 2p i 2n stoga su dva protona morala kroz beta pozitivan raspad prijeći u dva neutrona

pHeHeHe 2433

Netto rezultat PP I ciklusa: pretvaranje 4 protona u α česticu

+ 26, 7 MeV energije (Q vrijednost)

Page 13: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

PP II CIKLUS4. KORAK (u 14% slučajeva)

BeHeHe 743

HeHeHLi

LieBe e

4417

77

PP III CIKLUSU oprilike (u 0,02% slučajeva)

HeHeB

eBeB

BHBe

e

448

88

817

Page 14: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Shematski prikaz pp ciklusa

Page 15: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

2. CNO ciklusi

a) Hladni CNO ciklusib)Vrući CNO ciklusi

Ugljik, dušik, kisik – nuklearni katalizatori koji sudjeluju u reakcijama ali se na kraju njihov broj ne mijenja!

Očito se (zbog C) te reakcije događaju u zrelijim zvijezdama.

• Hans Bethe , 1939. • objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama• dijelom i radi toga dobiva Nobelovu nagradu• kasnije je pokazano da ima desetak podvarijanti tog ciklusa.....

Page 16: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

a) Hladni CNO ciklusi

Osnovni CNO ciklus ili CNO1 ciklus

12C(p,γ)13N(p,γ)14O(β+)14N(p,γ)15O(β+)15N(p,α)12C

Netto rezultat je isti kao i kod pp ciklusa:

4 p se kroz niz reakcija prerade u α česticu!

Page 17: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

•Naravno barem dva koraka u nizu moraju biti procesi slabe interakcije (dva ulazna protona pretvaraju se u neutrone) – β raspad jezgara 13N (T1/2 = 9,97 min) i 15O (T1/2 = 122,2 s)

• U odnosu na pp cikluse Q vrijednost je veća jer u ovim raspadima neutrini odnose manje energije!

Glavna razlika među CNO ciklusima je ta da se konačna reakcija ciklusa koja je uvijek (p,α) događa nakon jedne ili više reakcija radijativnog uhvata (p, γ).

Page 18: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Koliko će se kojeg izotopa stvoriti u CNO ciklusu ovisi o brzini odvijanja pojedinih koraka (temperatura!):

Sve reakcije normirane su na najsporiju reakciju 16O(p,γ)

Page 19: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

b) Vrući CNO ciklusi

• Na T = 0,1 GK cikus se odvija izbjegavajući spore β raspade 13N (T1/2 = 9,97 min) i 15O (T1/2 = 122,2 s)

• β raspad jezgara određuje “tempo” reakcije a ovdje su reda veličine 10 – 100 s

• Na još većim temperaturama T = (0,3 – 0,4) GK (npr. eksplozije nove) brža reakcija s većom proizvodnjom energije izgleda:

14O(p,α)17F(p,γ)18Ne(β+)18F(p,α)15O

• na još većim temperaturama dolazi do bijega (engl. break-out) iz CNO ciklusa najčešće reakcijom 15O(α, γ)19Ne

Page 20: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Temperaturna ovisnost energije proizvedena u pp1 i CNO1 ciklusu.

Page 21: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Gorenje helija

Page 22: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

• Nakon što je gorenjem potrošen sav H, jezgra zvijezde (sredica) sastoji se uglavnom od potpuno ioniziranog He i počinje se sažimati (rastu T i ρ):

• Kontrakcijom se zagrijava i H u ljusci oko He jezgre te započinju i nuklearne reakcije u ljusci – to povećava termički tlak u vanjskim slojevima zvijezde što uzrokuje ekspanziju (i do 50 puta veći polumjer!)

• Ta ekspanzija uzrokuje pad površinske T (3 000 – 4 000 K) i zvijezda od plave postaje crvena: CRVENI SUPERDIV!

Page 23: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

• Temperature zvjezdanih sredica u ovoj fazi dostižu vrijednosti kod kojih dolazido elektronske degeneracije.

• Kada He jezgra postane dovoljno vruća i gusta, počinje gorenje He.

• Zvijezda pri tome postane nestabilna i gubi svoje vanjske slojeve - He bljeskovi(koji nisu uočeni praćenjem sjaja zvijezde!) koji nastaju samo ako je sredicadegenerirana.

• Kada termički tlak u He jezgri postane veći od tlaka elektronske degeneracijejezgra se opet počinje širiti...

• To dovodi do smanjene proizvodnje energije i hlađenja jezgre i vanjskih slojevai zvijezda postaje CRVENI DIV i mirno gori He (u HR dijagramu pomiče se duž“horizontalne grane” ).

Page 24: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

PROCESI S TRI ULAZNE ČESTICEGorenje He započinje sintezom 12C iz tri α čestice (reakcija s tri ulazne čestice –bitno sporije reakcije –potrebno je da se istovremeno nađu tri čestice u dometunuklearnih sila koji je vrlo malen (fm)!)

Shematski prikaz mreža reakcija važnih za gorenje He

Page 25: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

3α proces• preskakanje jaza između A = 4 i A = 12 nuklida gdje ne postoje stabilni izotopi!

• glavni zvor energije tijekom gorenja He

C123

gdje je oslobođena energija od ≈ 7,2 MeV

• Na slici je shematski prikazan proces koji se odvija u dva koraka:

α +α → 8Be

α +8Be → 12C +γ

• jezgra 8Be ne živi dovoljno dugo (T1/2 =10-16 s) pa se ovaj proces rijetko dijeli u dva koraka

Page 26: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Reakcija 12C(α, γ)16O• ugljik je nakon H, He i O nazastupljeniji element u svemiru

• ugljik nastaje u 3α procesu a kisik ovom reakcijom

• ovom reakcijom određen je i zastupljenost svih težih elemenata – vrlo važna i vrlo istraživana reakcija (i eksperimentalno i teorijski)

3α proces

Page 27: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Reakcija 16O(α, γ)20Ne• daljnjim dodavanjem alfa čestica....ide dalje niz....iako su te reakcije vrlo rijetke

Reakcija 20Ne(α, γ)24Mg

Page 28: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Druge reakcije s 3 ulazne čestice.....

Page 29: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Gorenje ugljika

Page 30: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

• Crveni superdivovi masa većih od 8Mo nakon potrošenog He nastavljaju svojugravitacijsku kontrakciju - raste temperatura i dolazi do paljenja sljedećeg goriva:UGLJIKA

• sredica jezgre sastoji se uglavnom od ugljika i kisika, porastom T pale sesljedeće reakcije: 12C + 12C, pa 12C + 16O i na kraju 16O+ 16O

•Ipak najvažnije i najvjerojatnije su sljedeće reakcije:

Endotermna reakcija!

Zvijezda je sada u fazi kada je i ovo moguće.

• veći dio energije sa zvijezde ne odnosi emg zračenje s površine, nego neutrini iz sredice!

Page 31: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Fotodezintegracija neona

Page 32: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

•Potrošnjom svog ugljika u sredici zvijezde, doći će do ponovne kontrakcije i porasta T – u jezgi se nalaze 16O, 20Ne, 23Na i 24Mg – sve jako vezane osim 20Ne koji doživljava reakciju (fotodezintegraciju)

20Ne(γ, α)16O (Q= - 4,73 MeV)

•Dio α čestica biti će uhvaćen na jezgrama 16O i opet će stvoriti neon, ali dio izaziva i sljedeće nizove reakcija (i to egzotermnih – “gorenje neona”):

20Ne(α, γ)24Mg (α, γ)28Si

23Na(α, p)26Mg (α, n)29Si

•Neon izgara prije kisika!

Page 33: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Gorenje kisika

Page 34: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

•Nakon izgaranja Ne sredica zvijezde sastoji se od 16O, 24Mg i 28Si

•Reakcije 16O + 16O prve počinju zbog najniže kulonske barijere, izlazni kanali su:

p + 31P (Q = 7,68 MeV)

2p + 30Si (Q = 0,38 MeV)

α + 28Si (Q = 9,59 MeV)

2α + 24Mg (Q = - 0,39 MeV)

d + 30P (Q = - 2,41 MeV)

n + 31Si (Q = 1,50MeV)

• gorenje kisika rezultira uglavno stvaranju velikih količina nuklida 28Si i 32S, u manjoj mjeri i: 38Ar, 36Ar, 34S i 40Ca.

Page 35: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Gorenje silicija

Page 36: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

•Nakon potrošnje kisika sredica zvijezde sastoji se od 28Si i 32S

• Kontrakcijom sredica T raste ali ne do mjere da svlada kulonsku barijeru za reakciju 28Si + 28Si i 28Si + 32S

• Nuklesinteza do Ni i Fe ne ide direktnom interakcijom dvije jezgre Si i/ili S već kompleksnom mrežom reakcija koji započinju fotodezintegracijom 28Si i 32S koji rezultiraju tokom protona, α čestica i neutrona – što rezultira nizom reakcija kojima se Si i S pretvaraju u željezo Fe i nikal Ni.

Kraj mirnog gorenja u zvijezdama!

• Gorenjem Si ne oslobađa se velika količina energije jer ju dobrim dijelom odnose neutrini

• Po završetku ove faze sredica se sastoji od Ni i Fe (jezgara s najvećom energijom vezanja po nukleonu)

• Zvijezda ima ljuskastu strukturu!

Page 37: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

He7 mil. god. 5-100 mil. K

C/O

0,5

mil. god. 230 mil. K

Ne/O

600

god. 930 mil. K

O1

god.

930 mil. K

Si0,5

god.2,3

mlrd. K

H

Fe/Ni 1 d 4,1 mlrd. K

kolaps 1 s 8 mlrd. K

• Na granici svake dvije ljuskepostoji vrlo usko područje u kojimase i dalje događaju fuzije lakšihizotopa u teže

• zbog velikog gradijenta gustoćene dolazi do miješanja raznih ljuskizvijezda (koja se u ovoj fazi zovepresupernova)

Kraj života zvijezda ovisi o MASI:

• zvijezde male mase (do 0,5 Mo) završit će životni vijek gorenjem vodika

• zvijezde mase od 0,5 Mo do 8Mo završit će životni vijek gorenjem helija

• zvijezde mase od 8 Mo do 11 Mo završit će životni vijek gorenjem ugljika

• zvijezde još većih masa završit će životni vijek kao supernove

Page 38: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

BUDŽET:

4000 t H

2,4 x 1021 J

6 µs života Sunca

RAZVOJ SUNCA

Page 39: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

Udio pojedinih elemenata (engl. abundance)U SVEMIRUU KOZMIČKOM ZRAČENJU

Page 40: Izvori energije u zvijezdama Nukleosintezakolegij.fizika.unios.hr/uaa/files/2011/02/Nukleosinteza.pdf · •objašnjava CNO ciklus kao način proizvodnje energije u zvijezdama •dijelom

1. Nađite temperaturu plina kod koje je srednja kvadratična brzina atoma vodika jednaka brzini oslobađanja s 2R.2. 13 puta ionizirani atom željeza zrači intenzivnu koroninu spektralnu liniju u zelenom, na 503,3 nm. Za toliku ionizaciju atoma željeza nužna je energija 361 eV. Izračunajte temperaturu plin kod koje je srednja kinetička energije čestica dovoljna za toliku ionizaciju atoma željeza!3. Izračunajte brzinu elektrona u plinu na temperaturi T = 106 K i promjenu valne duljine .4. Odredite brzinu oslobađanja s površine Sunca i na udaljenosti jednog Sunčevog polumjera. Dobivene vrijednosti usporedite s brzinom Sunčeva vjetra.5. Odredite temperaturu potrebnu da bi se čestice plina gibale brzinom Sunčeva vjetra! Postoje li na Suncu takve temperature?6. Pri formiranju helija fuzijom iz vodika, oslobađa se energija 6x107 J/kg. Proračunajte najveći mogući vijek trajanja Sunca uzevši da se pri nastanku sastojalo od 75% mase vodika, te pretpostavi da će stalno zračiti jednakom snagom!7. Procijenite vijek trajanja modrog diva koji zrači sto tisuća puta više od Sunca, a vodika ima deset puta više! Iskoristi podatke iz prethodnog zadatka.8. Koliku energiju oslobodi formiranje zvijezde Sunčeve mase do radijusa crne jame?

NUMERIČKI ZADACI