95
Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning

Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Embed Size (px)

Citation preview

Page 1: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Iterative Techniques in Matrix Algebra

Eigenvalues & Eigenvectors

Numerical Analysis (9th Edition)R L Burden & J D Faires

Beamer Presentation Slidesprepared byJohn Carroll

Dublin City University

c© 2011 Brooks/Cole, Cengage Learning

Page 2: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 2 / 33

Page 3: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 2 / 33

Page 4: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 2 / 33

Page 5: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 2 / 33

Page 6: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 3 / 33

Page 7: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector MultiplicationAn n ×m matrix can be considered as a function that uses matrixmultiplication to take m-dimensional column vectors inton-dimensional column vectors.

So an n ×m matrix is actually a linear function from IRm to IRn.A square matrix A takes the set of n-dimensional vectors intoitself, which gives a linear function from IRn to IRn.In this case, certain nonzero vectors x might be parallel to Ax,which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33

Page 8: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector MultiplicationAn n ×m matrix can be considered as a function that uses matrixmultiplication to take m-dimensional column vectors inton-dimensional column vectors.So an n ×m matrix is actually a linear function from IRm to IRn.

A square matrix A takes the set of n-dimensional vectors intoitself, which gives a linear function from IRn to IRn.In this case, certain nonzero vectors x might be parallel to Ax,which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33

Page 9: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector MultiplicationAn n ×m matrix can be considered as a function that uses matrixmultiplication to take m-dimensional column vectors inton-dimensional column vectors.So an n ×m matrix is actually a linear function from IRm to IRn.A square matrix A takes the set of n-dimensional vectors intoitself, which gives a linear function from IRn to IRn.

In this case, certain nonzero vectors x might be parallel to Ax,which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33

Page 10: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector MultiplicationAn n ×m matrix can be considered as a function that uses matrixmultiplication to take m-dimensional column vectors inton-dimensional column vectors.So an n ×m matrix is actually a linear function from IRm to IRn.A square matrix A takes the set of n-dimensional vectors intoitself, which gives a linear function from IRn to IRn.In this case, certain nonzero vectors x might be parallel to Ax,which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33

Page 11: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Ax = λx

Matrix-Vector Multiplication (Cont’d)

For these vectors, we have

(A− λI)x = 0

There is a close connection between these numbers λ and thelikelihood that an iterative method will converge.We will consider this connection in this section.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 5 / 33

Page 12: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Ax = λx

Matrix-Vector Multiplication (Cont’d)For these vectors, we have

(A− λI)x = 0

There is a close connection between these numbers λ and thelikelihood that an iterative method will converge.We will consider this connection in this section.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 5 / 33

Page 13: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Ax = λx

Matrix-Vector Multiplication (Cont’d)For these vectors, we have

(A− λI)x = 0

There is a close connection between these numbers λ and thelikelihood that an iterative method will converge.

We will consider this connection in this section.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 5 / 33

Page 14: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Ax = λx

Matrix-Vector Multiplication (Cont’d)For these vectors, we have

(A− λI)x = 0

There is a close connection between these numbers λ and thelikelihood that an iterative method will converge.We will consider this connection in this section.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 5 / 33

Page 15: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 6 / 33

Page 16: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & EigenvectorsDefinition: Characteristic PolynomialIf A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI)

CommentsIt is not difficult to show that p is an nth-degree polynomial and,consequently, has at most n distinct zeros, some of which mightbe complex.If λ is a zero of p, then, since det(A− λI) = 0, we can prove thatthe linear system defined by

(A− λI)x = 0

has a solution with x 6= 0.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 7 / 33

Page 17: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & EigenvectorsDefinition: Characteristic PolynomialIf A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI)

CommentsIt is not difficult to show that p is an nth-degree polynomial and,consequently, has at most n distinct zeros, some of which mightbe complex.

If λ is a zero of p, then, since det(A− λI) = 0, we can prove thatthe linear system defined by

(A− λI)x = 0

has a solution with x 6= 0.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 7 / 33

Page 18: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & EigenvectorsDefinition: Characteristic PolynomialIf A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI)

CommentsIt is not difficult to show that p is an nth-degree polynomial and,consequently, has at most n distinct zeros, some of which mightbe complex.If λ is a zero of p, then, since det(A− λI) = 0, we can prove thatthe linear system defined by

(A− λI)x = 0

has a solution with x 6= 0.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 7 / 33

Page 19: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Definition: Eigenvalues & EigenvectorsIf p is the characteristic polynomial of the matrix A, the zeros of pare eigenvalues, or characteristic values, of the matrix A.

If λ is an eigenvalue of A and x 6= 0 satisfies

(A− λI)x = 0

then x is an eigenvector, or characteristic vector, of Acorresponding to the eigenvalue λ.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 8 / 33

Page 20: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Definition: Eigenvalues & EigenvectorsIf p is the characteristic polynomial of the matrix A, the zeros of pare eigenvalues, or characteristic values, of the matrix A.If λ is an eigenvalue of A and x 6= 0 satisfies

(A− λI)x = 0

then x is an eigenvector, or characteristic vector, of Acorresponding to the eigenvalue λ.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 8 / 33

Page 21: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Finding the Eigenvalues & EigenvectorsTo determine the eigenvalues of a matrix, we can use the fact thatλ is an eigenvalue of A if and only if

det(A− λI) = 0

Once an eigenvalue λ has been found, a correspondingeigenvector x 6= 0 is determined by solving the system

(A− λI)x = 0

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 9 / 33

Page 22: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Finding the Eigenvalues & EigenvectorsTo determine the eigenvalues of a matrix, we can use the fact thatλ is an eigenvalue of A if and only if

det(A− λI) = 0

Once an eigenvalue λ has been found, a correspondingeigenvector x 6= 0 is determined by solving the system

(A− λI)x = 0

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 9 / 33

Page 23: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR2 with Ax parallel to x if

A =

[0 1

−1 0

]

Solution (1/2)The eigenvalues of A are the solutions to the characteristic polynomial

0 = det(A− λI) = det[−λ 1−1 −λ

]= λ2 + 1

so the eigenvalues of A are the complex numbers λ1 = i and λ2 = −i .

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 10 / 33

Page 24: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR2 with Ax parallel to x if

A =

[0 1

−1 0

]

Solution (1/2)The eigenvalues of A

are the solutions to the characteristic polynomial

0 = det(A− λI) = det[−λ 1−1 −λ

]= λ2 + 1

so the eigenvalues of A are the complex numbers λ1 = i and λ2 = −i .

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 10 / 33

Page 25: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR2 with Ax parallel to x if

A =

[0 1

−1 0

]

Solution (1/2)The eigenvalues of A are the solutions to the characteristic polynomial

0 = det(A− λI) = det[−λ 1−1 −λ

]= λ2 + 1

so the eigenvalues of A are the complex numbers λ1 = i and λ2 = −i .

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 10 / 33

Page 26: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR2 with Ax parallel to x if

A =

[0 1

−1 0

]

Solution (1/2)The eigenvalues of A are the solutions to the characteristic polynomial

0 = det(A− λI) = det[−λ 1−1 −λ

]= λ2 + 1

so the eigenvalues of A are the complex numbers λ1 = i and λ2 = −i .

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 10 / 33

Page 27: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Solution (2/2)A corresponding eigenvector x for λ1

needs to satisfy[00

]=

[−i 1−1 −i

] [x1x2

]=

[−ix1 + x2−x1 − ix2

]that is, 0 = −ix1 + x2, so x2 = ix1, and 0 = −x1 − ix2.Hence if x is an eigenvector of A, then exactly one of itscomponents is real and the other is complex.

As a consequence, there are no nonzero vectors x in IR2 with Axparallel to x.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 11 / 33

Page 28: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Solution (2/2)A corresponding eigenvector x for λ1 needs to satisfy[

00

]=

[−i 1−1 −i

] [x1x2

]=

[−ix1 + x2−x1 − ix2

]

that is, 0 = −ix1 + x2, so x2 = ix1, and 0 = −x1 − ix2.Hence if x is an eigenvector of A, then exactly one of itscomponents is real and the other is complex.

As a consequence, there are no nonzero vectors x in IR2 with Axparallel to x.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 11 / 33

Page 29: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Solution (2/2)A corresponding eigenvector x for λ1 needs to satisfy[

00

]=

[−i 1−1 −i

] [x1x2

]=

[−ix1 + x2−x1 − ix2

]that is, 0 = −ix1 + x2, so x2 = ix1, and 0 = −x1 − ix2.

Hence if x is an eigenvector of A, then exactly one of itscomponents is real and the other is complex.

As a consequence, there are no nonzero vectors x in IR2 with Axparallel to x.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 11 / 33

Page 30: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Solution (2/2)A corresponding eigenvector x for λ1 needs to satisfy[

00

]=

[−i 1−1 −i

] [x1x2

]=

[−ix1 + x2−x1 − ix2

]that is, 0 = −ix1 + x2, so x2 = ix1, and 0 = −x1 − ix2.Hence if x is an eigenvector of A, then exactly one of itscomponents is real and the other is complex.

As a consequence, there are no nonzero vectors x in IR2 with Axparallel to x.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 11 / 33

Page 31: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Solution (2/2)A corresponding eigenvector x for λ1 needs to satisfy[

00

]=

[−i 1−1 −i

] [x1x2

]=

[−ix1 + x2−x1 − ix2

]that is, 0 = −ix1 + x2, so x2 = ix1, and 0 = −x1 − ix2.Hence if x is an eigenvector of A, then exactly one of itscomponents is real and the other is complex.

As a consequence, there are no nonzero vectors x in IR2 with Axparallel to x.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 11 / 33

Page 32: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & EigenvectorsGeometric Interpretation of λ

If λ is real and λ > 1, then A has the effect of stretching x by afactor of λ (see (a)).If 0 < λ < 1, then A shrinks x by a factor of λ (see (b)).If λ < 0, the effects are similar (see (c) and (d)), although thedirection of Ax is reversed.

Ax

x

Ax 5 lx

(a) l . 1 (b) 1 . l . 0 (c) l , 21 (d) 21 , l , 0

x

xx

Ax

Ax

Ax

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 12 / 33

Page 33: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

ExampleDetermine the eigenvalues and eigenvectors for the matrix

A =

2 0 01 1 21 −1 4

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 13 / 33

Page 34: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)The characteristic polynomial of A is

p(λ) = det(A− λI)

= det

2− λ 0 01 1− λ 21 −1 4− λ

= −(λ3 − 7λ2 + 16λ− 12)

= −(λ− 3)(λ− 2)2

so there are two eigenvalues of A: λ1 = 3 and λ2 = 2.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 14 / 33

Page 35: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)The characteristic polynomial of A is

p(λ) = det(A− λI) = det

2− λ 0 01 1− λ 21 −1 4− λ

= −(λ3 − 7λ2 + 16λ− 12)

= −(λ− 3)(λ− 2)2

so there are two eigenvalues of A: λ1 = 3 and λ2 = 2.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 14 / 33

Page 36: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)The characteristic polynomial of A is

p(λ) = det(A− λI) = det

2− λ 0 01 1− λ 21 −1 4− λ

= −(λ3 − 7λ2 + 16λ− 12)

= −(λ− 3)(λ− 2)2

so there are two eigenvalues of A: λ1 = 3 and λ2 = 2.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 14 / 33

Page 37: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)The characteristic polynomial of A is

p(λ) = det(A− λI) = det

2− λ 0 01 1− λ 21 −1 4− λ

= −(λ3 − 7λ2 + 16λ− 12)

= −(λ− 3)(λ− 2)2

so there are two eigenvalues of A: λ1 = 3 and λ2 = 2.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 14 / 33

Page 38: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)The characteristic polynomial of A is

p(λ) = det(A− λI) = det

2− λ 0 01 1− λ 21 −1 4− λ

= −(λ3 − 7λ2 + 16λ− 12)

= −(λ− 3)(λ− 2)2

so there are two eigenvalues of A: λ1 = 3 and λ2 = 2.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 14 / 33

Page 39: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)An eigenvector x1 corresponding to the eigenvalue λ1 = 3 is a solutionto the vector-matrix equation (A− 3 · I)x1 = 0,

so 000

=

−1 0 01 −2 21 −1 1

· x1

x2x3

which implies that x1 = 0 and x2 = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalueλ1 = 3. For example, when x3 = 1 we have the eigenvectorx1 = (0, 1, 1)t , and any eigenvector of A corresponding to λ = 3 is anonzero multiple of x1.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 15 / 33

Page 40: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)An eigenvector x1 corresponding to the eigenvalue λ1 = 3 is a solutionto the vector-matrix equation (A− 3 · I)x1 = 0, so 0

00

=

−1 0 01 −2 21 −1 1

· x1

x2x3

which implies that x1 = 0 and x2 = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalueλ1 = 3. For example, when x3 = 1 we have the eigenvectorx1 = (0, 1, 1)t , and any eigenvector of A corresponding to λ = 3 is anonzero multiple of x1.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 15 / 33

Page 41: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)An eigenvector x1 corresponding to the eigenvalue λ1 = 3 is a solutionto the vector-matrix equation (A− 3 · I)x1 = 0, so 0

00

=

−1 0 01 −2 21 −1 1

· x1

x2x3

which implies that x1 = 0 and x2 = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalueλ1 = 3.

For example, when x3 = 1 we have the eigenvectorx1 = (0, 1, 1)t , and any eigenvector of A corresponding to λ = 3 is anonzero multiple of x1.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 15 / 33

Page 42: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)An eigenvector x1 corresponding to the eigenvalue λ1 = 3 is a solutionto the vector-matrix equation (A− 3 · I)x1 = 0, so 0

00

=

−1 0 01 −2 21 −1 1

· x1

x2x3

which implies that x1 = 0 and x2 = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalueλ1 = 3. For example, when x3 = 1 we have the eigenvectorx1 = (0, 1, 1)t , and any eigenvector of A corresponding to λ = 3 is anonzero multiple of x1.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 15 / 33

Page 43: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)An eigenvector x 6= 0 of A associated with λ2 = 2 is a solution of thesystem (A− 2 · I)x = 0,

so 000

=

0 0 01 −1 21 −1 2

· x1

x2x3

In this case the eigenvector has only to satisfy the equation

x1 − x2 + 2x3 = 0

which can be done in various ways.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 16 / 33

Page 44: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)An eigenvector x 6= 0 of A associated with λ2 = 2 is a solution of thesystem (A− 2 · I)x = 0, so 0

00

=

0 0 01 −1 21 −1 2

· x1

x2x3

In this case the eigenvector has only to satisfy the equation

x1 − x2 + 2x3 = 0

which can be done in various ways.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 16 / 33

Page 45: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)An eigenvector x 6= 0 of A associated with λ2 = 2 is a solution of thesystem (A− 2 · I)x = 0, so 0

00

=

0 0 01 −1 21 −1 2

· x1

x2x3

In this case the eigenvector has only to satisfy the equation

x1 − x2 + 2x3 = 0

which can be done in various ways.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 16 / 33

Page 46: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)For example, when x1 = 0 we have x2 = 2x3, so one choice wouldbe x2 = (0, 2, 1)t .

We could also choose x2 = 0, which requires that x1 = −2x3.Hence x3 = (−2, 0, 1)t gives a second eigenvector for theeigenvalue λ2 = 2 that is not a multiple of x2.The eigenvectors of A corresponding to the eigenvalue λ2 = 2generate an entire plane. This plane is described by all vectors ofthe form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of theconstants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33

Page 47: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)For example, when x1 = 0 we have x2 = 2x3, so one choice wouldbe x2 = (0, 2, 1)t .We could also choose x2 = 0, which requires that x1 = −2x3.

Hence x3 = (−2, 0, 1)t gives a second eigenvector for theeigenvalue λ2 = 2 that is not a multiple of x2.The eigenvectors of A corresponding to the eigenvalue λ2 = 2generate an entire plane. This plane is described by all vectors ofthe form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of theconstants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33

Page 48: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)For example, when x1 = 0 we have x2 = 2x3, so one choice wouldbe x2 = (0, 2, 1)t .We could also choose x2 = 0, which requires that x1 = −2x3.Hence x3 = (−2, 0, 1)t gives a second eigenvector for theeigenvalue λ2 = 2 that is not a multiple of x2.

The eigenvectors of A corresponding to the eigenvalue λ2 = 2generate an entire plane. This plane is described by all vectors ofthe form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of theconstants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33

Page 49: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)For example, when x1 = 0 we have x2 = 2x3, so one choice wouldbe x2 = (0, 2, 1)t .We could also choose x2 = 0, which requires that x1 = −2x3.Hence x3 = (−2, 0, 1)t gives a second eigenvector for theeigenvalue λ2 = 2 that is not a multiple of x2.The eigenvectors of A corresponding to the eigenvalue λ2 = 2generate an entire plane. This plane is described by all vectors ofthe form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of theconstants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33

Page 50: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 18 / 33

Page 51: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral RadiusThe spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A

(For complex λ = α + βi , we define |λ| = (α2 + β2)1/2.)

For the matrix in the previous example, namely

A =

2 0 01 1 21 −1 4

note that

ρ(A) = max{2, 3} = 3

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 19 / 33

Page 52: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral RadiusThe spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A

(For complex λ = α + βi , we define |λ| = (α2 + β2)1/2.)

For the matrix in the previous example, namely

A =

2 0 01 1 21 −1 4

note that

ρ(A) = max{2, 3} = 3

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 19 / 33

Page 53: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral RadiusThe spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A

(For complex λ = α + βi , we define |λ| = (α2 + β2)1/2.)

For the matrix in the previous example, namely

A =

2 0 01 1 21 −1 4

note that

ρ(A) = max{2, 3} = 3

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 19 / 33

Page 54: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shownin the following theorem.

TheoremIf A is an n × n matrix, then

(i) ‖A‖2 = [ρ(AtA)]1/2

(ii) ρ(A) ≤ ‖A‖for any natural norm ‖ · ‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 20 / 33

Page 55: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shownin the following theorem.

TheoremIf A is an n × n matrix,

then(i) ‖A‖2 = [ρ(AtA)]1/2

(ii) ρ(A) ≤ ‖A‖for any natural norm ‖ · ‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 20 / 33

Page 56: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shownin the following theorem.

TheoremIf A is an n × n matrix, then

(i) ‖A‖2 = [ρ(AtA)]1/2

(ii) ρ(A) ≤ ‖A‖for any natural norm ‖ · ‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 20 / 33

Page 57: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shownin the following theorem.

TheoremIf A is an n × n matrix, then

(i) ‖A‖2 = [ρ(AtA)]1/2

(ii) ρ(A) ≤ ‖A‖

for any natural norm ‖ · ‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 20 / 33

Page 58: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shownin the following theorem.

TheoremIf A is an n × n matrix, then

(i) ‖A‖2 = [ρ(AtA)]1/2

(ii) ρ(A) ≤ ‖A‖for any natural norm ‖ · ‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 20 / 33

Page 59: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Proof (1/2)

The proof of part (i) requires more information concerningeigenvalues than we presently have available.For the details involved in the proof, see p. 21 of Ortega, J. M.,Numerical Analysis; a Second Course, Academic Press, NewYork, 1972, 201 pp.

Note: It can be shown that this result implies that if A is symmetric,then ‖A‖2 = ρ(A).

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 21 / 33

Page 60: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Proof (1/2)The proof of part (i) requires more information concerningeigenvalues than we presently have available.

For the details involved in the proof, see p. 21 of Ortega, J. M.,Numerical Analysis; a Second Course, Academic Press, NewYork, 1972, 201 pp.

Note: It can be shown that this result implies that if A is symmetric,then ‖A‖2 = ρ(A).

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 21 / 33

Page 61: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Proof (1/2)The proof of part (i) requires more information concerningeigenvalues than we presently have available.For the details involved in the proof, see p. 21 of Ortega, J. M.,Numerical Analysis; a Second Course, Academic Press, NewYork, 1972, 201 pp.

Note: It can be shown that this result implies that if A is symmetric,then ‖A‖2 = ρ(A).

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 21 / 33

Page 62: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Proof (1/2)The proof of part (i) requires more information concerningeigenvalues than we presently have available.For the details involved in the proof, see p. 21 of Ortega, J. M.,Numerical Analysis; a Second Course, Academic Press, NewYork, 1972, 201 pp.

Note: It can be shown that this result implies that if A is symmetric,then ‖A‖2 = ρ(A).

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 21 / 33

Page 63: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ρ(A) ≤ ‖A‖

Proof (2/2)To prove part (ii), suppose λ is an eigenvalue of A with eigenvector xand ‖x‖ = 1. Then Ax = λx and

|λ| = |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖

Thusρ(A) = max |λ| ≤ ‖A‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 22 / 33

Page 64: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ρ(A) ≤ ‖A‖

Proof (2/2)To prove part (ii), suppose λ is an eigenvalue of A with eigenvector xand ‖x‖ = 1.

Then Ax = λx and

|λ| = |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖

Thusρ(A) = max |λ| ≤ ‖A‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 22 / 33

Page 65: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ρ(A) ≤ ‖A‖

Proof (2/2)To prove part (ii), suppose λ is an eigenvalue of A with eigenvector xand ‖x‖ = 1. Then Ax = λx and

|λ| = |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖

Thusρ(A) = max |λ| ≤ ‖A‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 22 / 33

Page 66: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ρ(A) ≤ ‖A‖

Proof (2/2)To prove part (ii), suppose λ is an eigenvalue of A with eigenvector xand ‖x‖ = 1. Then Ax = λx and

|λ| = |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖

Thusρ(A) = max |λ| ≤ ‖A‖

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 22 / 33

Page 67: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ExampleDetermine the l2 norm of

A =

1 1 01 2 1

−1 1 2

Note: We will apply part (i) of the theorem, namely that

‖A‖2 = [ρ(AtA)]1/2

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 23 / 33

Page 68: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ExampleDetermine the l2 norm of

A =

1 1 01 2 1

−1 1 2

Note: We will apply part (i) of the theorem, namely that

‖A‖2 = [ρ(AtA)]1/2

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 23 / 33

Page 69: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (1/3)We first need the eigenvalues of AtA, where

AtA =

1 1 −11 2 10 1 2

1 1 01 2 1

−1 1 2

=

3 2 −12 6 4

−1 4 5

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 24 / 33

Page 70: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (2/3)If

0 = det(AtA− λI)

= det

3− λ 2 −12 6− λ 4−1 4 5− λ

= −λ3 + 14λ2 − 42λ

= −λ(λ2 − 14λ + 42)

then λ = 0 or λ = 7±√

7.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 25 / 33

Page 71: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (2/3)If

0 = det(AtA− λI) = det

3− λ 2 −12 6− λ 4−1 4 5− λ

= −λ3 + 14λ2 − 42λ

= −λ(λ2 − 14λ + 42)

then λ = 0 or λ = 7±√

7.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 25 / 33

Page 72: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (2/3)If

0 = det(AtA− λI) = det

3− λ 2 −12 6− λ 4−1 4 5− λ

= −λ3 + 14λ2 − 42λ

= −λ(λ2 − 14λ + 42)

then λ = 0 or λ = 7±√

7.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 25 / 33

Page 73: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (2/3)If

0 = det(AtA− λI) = det

3− λ 2 −12 6− λ 4−1 4 5− λ

= −λ3 + 14λ2 − 42λ

= −λ(λ2 − 14λ + 42)

then λ = 0 or λ = 7±√

7.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 25 / 33

Page 74: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (2/3)If

0 = det(AtA− λI) = det

3− λ 2 −12 6− λ 4−1 4 5− λ

= −λ3 + 14λ2 − 42λ

= −λ(λ2 − 14λ + 42)

then λ = 0 or λ = 7±√

7.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 25 / 33

Page 75: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (3/3)By part (i) of the theorem, we have

||A||2 =√

ρ(AtA)

=

√max{0, 7−

√7, 7 +

√7}

=

√7 +

√7

≈ 3.106

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 26 / 33

Page 76: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (3/3)By part (i) of the theorem, we have

||A||2 =√

ρ(AtA)

=

√max{0, 7−

√7, 7 +

√7}

=

√7 +

√7

≈ 3.106

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 26 / 33

Page 77: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (3/3)By part (i) of the theorem, we have

||A||2 =√

ρ(AtA)

=

√max{0, 7−

√7, 7 +

√7}

=

√7 +

√7

≈ 3.106

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 26 / 33

Page 78: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (3/3)By part (i) of the theorem, we have

||A||2 =√

ρ(AtA)

=

√max{0, 7−

√7, 7 +

√7}

=

√7 +

√7

≈ 3.106

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 26 / 33

Page 79: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 27 / 33

Page 80: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

In studying iterative matrix techniques, it is of particular importance toknow when powers of a matrix become small (that is, when all theentries approach zero). Matrices of this type are called convergent.

Definition: Convergent MatrixWe call an n × n matrix A convergent if

limk→∞

(Ak )ij = 0, for each i = 1, 2, . . . , n and j = 1, 2, . . . , n

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 28 / 33

Page 81: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

In studying iterative matrix techniques, it is of particular importance toknow when powers of a matrix become small (that is, when all theentries approach zero). Matrices of this type are called convergent.

Definition: Convergent MatrixWe call an n × n matrix A convergent if

limk→∞

(Ak )ij = 0, for each i = 1, 2, . . . , n and j = 1, 2, . . . , n

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 28 / 33

Page 82: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

ExampleShow that

A =

[12 014

12

]is a convergent matrix.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 29 / 33

Page 83: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

SolutionComputing powers of A, we obtain:

A2 =

[14 014

14

]A3 =

[18 0316

18

]A4 =

[116 018

116

]

and, in general,

Ak =

[(1

2)k 0k

2k+1 (12)k

]So A is a convergent matrix because

limk→∞

(12

)k

= 0 and limk→∞

k2k+1 = 0

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 30 / 33

Page 84: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

SolutionComputing powers of A, we obtain:

A2 =

[14 014

14

]A3 =

[18 0316

18

]A4 =

[116 018

116

]

and, in general,

Ak =

[(1

2)k 0k

2k+1 (12)k

]

So A is a convergent matrix because

limk→∞

(12

)k

= 0 and limk→∞

k2k+1 = 0

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 30 / 33

Page 85: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

SolutionComputing powers of A, we obtain:

A2 =

[14 014

14

]A3 =

[18 0316

18

]A4 =

[116 018

116

]

and, in general,

Ak =

[(1

2)k 0k

2k+1 (12)k

]So A is a convergent matrix because

limk→∞

(12

)k

= 0 and limk→∞

k2k+1 = 0

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 30 / 33

Page 86: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Notice that the convergent matrix A in the last example hasρ(A) = 1

2 , because 12 is the only eigenvalue of A.

This illustrates an important connection that exists between thespectral radius of a matrix and the convergence of the matrix,asdetailed in the following result.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 31 / 33

Page 87: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Notice that the convergent matrix A in the last example hasρ(A) = 1

2 , because 12 is the only eigenvalue of A.

This illustrates an important connection that exists between thespectral radius of a matrix and the convergence of the matrix,asdetailed in the following result.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 31 / 33

Page 88: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.(ii) limn→∞ ‖An‖ = 0, for some natural norm.(iii) limn→∞ ‖An‖ = 0, for all natural norms.(iv) ρ(A) < 1.(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 89: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.

(ii) limn→∞ ‖An‖ = 0, for some natural norm.(iii) limn→∞ ‖An‖ = 0, for all natural norms.(iv) ρ(A) < 1.(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 90: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.(ii) limn→∞ ‖An‖ = 0, for some natural norm.

(iii) limn→∞ ‖An‖ = 0, for all natural norms.(iv) ρ(A) < 1.(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 91: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.(ii) limn→∞ ‖An‖ = 0, for some natural norm.(iii) limn→∞ ‖An‖ = 0, for all natural norms.

(iv) ρ(A) < 1.(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 92: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.(ii) limn→∞ ‖An‖ = 0, for some natural norm.(iii) limn→∞ ‖An‖ = 0, for all natural norms.(iv) ρ(A) < 1.

(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 93: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.(ii) limn→∞ ‖An‖ = 0, for some natural norm.(iii) limn→∞ ‖An‖ = 0, for all natural norms.(iv) ρ(A) < 1.(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 94: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

TheoremThe following statements are equivalent.

(i) A is a convergent matrix.(ii) limn→∞ ‖An‖ = 0, for some natural norm.(iii) limn→∞ ‖An‖ = 0, for all natural norms.(iv) ρ(A) < 1.(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.B. Keller, Analysis of Numerical Methods, John Wiley & Sons, NewYork, 1966, 541 pp.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 32 / 33

Page 95: Iterative Techniques in Matrix Algebra …homen.vsb.cz/~lud0016/NM/Lecture_Notes_05-Eigenvalues.pdf · Iterative Techniques in Matrix Algebra Eigenvalues & Eigenvectors Numerical

Questions?