1
IPRAN ATN+CX (HVPN) Solution Access Aggregation CSG L3VPN LTE VRF X2 LTE VRF X2 L3VPN L3VPN LTE VRF S1 HVPN LTE VRF S1 LTE services PWE3 3G ATM PW MS-PW PWE3 PWE3 2G TDM PW MS-PW 2G/3G services PWE3 3G ATM PW 2G TDM PW L3VPN LTE VRF X2 HVPN LTE VRF X2 (on the same access ring) (on different access rings) Multiservices include not only hybrid 2G, 3G, and LTE backhaul services, but also FMC backhaul services, which ensure the maximum return on customer investment. Fast E2E protection switching satisfies carrier-class quality requirements. Comprehensive clock synchronization ensures the quality of services. OSPF/ISIS OSPF/ISIS iBGP iBGP RSVP-TE/LDP LSP RSVP-TE/LDP LSP IGP BGP for VRF Tunnel RR Basic RSG ASG CSG Compared with the SS- PW technology, the MS- PW technology enables an ASG to swap not only the tunnel label but also the PW label. Tunnels are established between CSGs and ASGs and between ASGs and RSGs, but not between CSGs and RSGs. MS-PWs are used to bear 2G (TDM) and 3G (ATM) services on the IPRAN. PDU E1 PDU PW1 LSP1 ETH1 E1 PDU PW2 LSP2 ETH2 E1 PDU STM-1 Tunnel label popping PW label swapping BSC RSG ASG CSG PDU IMA PDU PW1 LSP1 ETH1 ATM PDU PW2 LSP2 ETH2 ATM PDU STM-1 Tunnel label popping PW label swapping NodeB RNC E1 RSG1 ASG1 CSG1 RNC/S- GW/MME Failure Point Detection Protection Switching Path Failure point a/b BFD for TE LSP TE hot-standby : CSG1-CSG3-ASG2-ASG1- P1-RSG1 Failure point c BFD for TE tunnels VPN FRR : CSG1-CSG3-ASG2-P2- RSG2-RSG1 Failure point d/e BFD for TE LSP TE hot-standby : CSG1-CSG2-ASG1-ASG2- P2-RSG2-RSG1 Failure point f BFD for TE tunnels BFD for VRRP VPN FRR VRRP or route backup : CSG1-CSG2-ASG1-ASG2- P2-RSG2 Failure point g Physical link check VRRP or route backup : CSG1-CSG2-ASG1-P1- RSG1-RSG2 2G, 3G, and LTE S1 services require high reliability and therefore RSVP-TE tunnels need to be configured to carry them. Ethernet service protection a b c d e f g CSG2 CSG3 ASG2 P2 P1 RSG2 RSG1 ASG1 CSG1 RNC/S- GW/MME Failure Point Detection Protection Switching Path Failure point a/b BFD for TE LSP TE hot-standby : CSG1-CSG3-ASG2-ASG1- P1-RSG1 Failure point c BFD for PW PW redundancy : CSG1-CSG3-ASG2-P2- RSG2-RSG1 Failure point d/e BFD for TE LSP TE hot-standby : CSG1-CSG2-ASG1-ASG2- P2-RSG2-RSG1 Failure point f BFD for PW Physical link check PW redundancy E-APS : CSG1-CSG3-ASG2-P2- RSG2 Failure point g Physical link check PW redundancy E-APS : CSG1-CSG3-ASG2-P2- RSG2 Note: in independent mode a b c d e f g CSG2 CSG3 ASG2 P2 P1 RSG2 TDM/ATM service protection L3VPN L3VPN 3G ETH VRF HVPN 3G ETH VRF A ASG aggregation site gateway B BFD Bidirectional Forwarding Detection BTS base transceiver station BSC base station controller C CSG cell site gateway L LTE Long Term Evolution M MME mobility management entity MPLS Multiprotocol Label Switching MS-PW multi-segment pseudo wire R RNC radio network controller RR route reflector RSG radio service gateway S SS-PW single-segment pseudo wire V VRF VPN routing and forwarding SyncE is used to implement frequency synchronization, and hop-by-hop 1588v2 is used to implement phase synchronization. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 BC BC BC BC BC BC BC BC BC BITS1 BITS2 M S P M S M S M M S S M S S S P P M M M S OC OC ETH/IP service: The service layer uses ICMP ping/trace for fault locating. L3VPN uses LSP ping/trace for fault locating. TDM/ATM service: L2VPN uses LSP ping/trace and PW ping/trace for fault locating. CSG ASG RSG IP LSP PW ICMP Ping/Trace ICMP Ping/Trace ICMP Ping LSP Ping/Trace LSP Ping/Trace PW Ping/Trace PW Ping/Trace L3VPN L2VPN First priority clock source for SyncE Second priority clock source for SyncE Non-clock source Master port of 1588v2 Slave port of 1588v2 Passive port of 1588v2 Frequency tracing working path Frequency tracing protection path Time tracing path P S M 1 2 BTS 1 M Overview High Reliability LTE S1 Service Bearing 2G TDM/3G ATM Service Bearing Acronyms OAM Clock CX600-X16 Used as an RSG CX600-X8 Used as an RSG or ASG CX600-X3 Used as an ASG ATN 950 Used as a CSG Dimensions (H x W x D) 1420 mm x 442 mm x 650 mm Weight (Full Configuration) 267 kg Typical Power Consumption 6500 W Forwarding Capacity 3200 Mpps Switching Capacity 12.58 Tbit/s (bidirectional) Interface Capacity 3.2 Tbit/s (bidirectional) Dimensions (H x W x D) 620 mm x 442 mm x 650 mm Weight (Full Configuration) 130 kg Typical Power Consumption 3300 W Forwarding Capacity 1600 Mpps Switching Capacity 7.08 Tbit/s (bidirectional) Interface Capacity 1.6 Tbit/s (bidirectional) Dimensions (H x W x D) 175 mm x 442 mm x 650 mm (DC) 220 mm x 442 mm x 650 mm (AC) Weight (Full Configuration) 41 kg (DC) 51 kg (AC) Typical power Consumption 1100 W Forwarding Capacity 300 Mpps Switching Capacity 1.08 Tbit/s (bidirectional) Interface Capacity 240 Gbit/s (bidirectional) ATN 910 Used as a CSG ATN 950B Used as a CSG Dimensions (H x W x D) 2 U x 442 mm x 220 mm Weight (Empty Configuration) 2.80 kg Power Consumption 4GE(O)+8FE(O)+16E1 106.3 W 4GE(O)+8FE(E)+16E1 103.4 W 4GE(O)+8FE(O) 97.2 W 4GE(O)+8FE(E) 93.1 W 4GE(O)+8FE(O)+8FE(E) 107.8 W 4GE(O)+8FE(E)+16FE(O) 123.1 W Packet Processing Capability 12 Mpps Switching Capacity 8 Gbit/s (unidirectional) Dimensions (H x W x D) 2 U x 442 mm x 220 mm Weight (Empty) 2.80 kg Packet Processing Capability 65.48 Mpps (AND1CXPA) 83.33 Mpps (AND1CXPB) Switching Capacity 44 Gbit/s (AND1CXPA)/56 Gbit/s (AND1CXPB) (unidirectional) Dimensions (H x W x D) 1 U x 442 mm x 220 mm Weight (Empty Configuration) 2.36 kg Power Consumption 2GE(O)+4GE/FE(O)+4GE /FE(E) 50 W Packet Processing Capability 17.85 Mpps Switching Capacity 6.8 Gbit/s (CXPI)/12 Gbit/s (CXPL) (unidirectional) ATN9 10I Used as a CSG Dimensions (H x W x D) 1 U x 442 mm x 220 mm Weight (Empty Configuration) 3 kg Power Consumption ATN 910I AC 4GE(O)+4GE/FE(O)+4GE/FE( E) 28 W ATN 910I-C AC 4GE(O)+4GE/FE(O)+4GE/FE( E)+16E1 32.8 W ATN 910I DC 4GE(O)+4GE/FE(O)+4GE/FE( E) 27.6 W 4GE(O)+4GE/FE(O)+4GE/FE( E)+16E1 32.5 W ATN 910I-TC DC 4GE(O)+4GE/FE(O)+4GE/FE( E)+16E1 32.2 W Packet Processing Capability 17.85 Mpps Switching Capacity 12 Gbit/s (unidirectional) Products VRF Service Destination 10.0.0.1/30 I-RT 100:1 E-RT 200:1 Next-Hop 1.1.1.1 Inner-Label Out/In-label 11/3100 Outer- Tunnel 0x11 Interface FE 1/0/0 VRF Service Router 10.0.0.1/30 RSG 1.1.1.1 VRF Service Destination 10.0.0.1/30 I-RT 100:1 E-RT 200:1 Next-Hop 2.2.2.2 Inner-Label Out/In-label 2600/6700 Outer- Tunnel 0x62 VRF Service Destination 0.0.0.0/0 (default route) I-RT 200:1 Next-Hop 6.6.6.6 Inner-Label Out/In-label 6700/Null Outer- Tunnel 0x76 5.5.5.5 Note: It is recommended to use the LDP technology to create tunnels automatically for LTE X2 services. RSVP-TE configuration is complex on the full mesh topology. CSG2 4.4.4.4 VRF Service Destination 10.0.0.1/30 I-RT 1:1 Next-Hop 1.1.1.1 Inner-Label Out/In-label 21/Null Outer- Tunnel 0x41 CSG1 CSG4 ASG2 6.6.6.6 7.7.7.7 CSG1 ASG2 CSG4 CSG2 E-RT I-RT Description 1:1 CSG 1:1 CSG This RT enables routes within the same access ring to be preferred and routes from other access rings not to be received. 100:1 CSG ASG RSG 100:1 ASG RSG This RT enables ASGs and RSGs to receive networkwide routes. 200:1 ASG 200:1 CSG This RT enables CSGs to receive default routes advertised by ASGs. ASG1 RSG CSG2 CSG1 CSG4 ASG2 PDU IP L2 PDU IP L2 PDU 21 0x41 ETH1 IP PDU 11 0x11 ETH2 IP PDU 3100 0x31 ETH3 IP PDU IP L2 PDU 2600 0x62 ETH4 IP PDU 6700 0x76 ETH5 IP PDU IP L2 Key factor: RT CSG3 CSG3 VRF Service Destination 0.0.0.0/0 (default route) I-RT 200:1 Next-Hop 2.2.2.2 Inner-Label Out/In-label 3100/Null Outer-Tunnel 0x31 CSG3 ASG1 VRF Service Destination 10.0.0.1/30 I-RT 100:1 E-RT 100:1 Next-Hop 1.1.1.1 Inner-Label Out/In-label 11/2600 Outer- Tunnel 0x11 ASG1 VRF Service Destination 10.0.0.1/30 E-RT 100:1 Next-Hop 127.0.0.1 Inner-Label Out/In-label Null/11 Outer-Tunnel 0x0 CSG1 ASG1 2.2.2.2 3.3.3.3 VRF Service Destination 10.0.0.1/30 E-RT 1:1 Next-Hop 127.0.0.1 Inner-Label Out/In-label Null/21 Outer- Tunnel 0x0 LTE X2 Service Bearing ASGs are configured with RRs. CSG routes within an access ring are reflected by an RR without changing their next hops. All ASGs set up full mesh iBGP VPNv4 connections using RRs. After changing the next hops in VPNv4 routes to themselves, ASGs send the routes to the RSG. Default routes are manually advertised to CSGs. By using the default routes, inter-ring X2 traffic can be forwarded to ASGs. Data Forwarding LTE X2 services on an access ring connected to an ASG pair (a master ASG and its slave ASG) are forwarded between service nodes (CSG1->CSG2). LTE X2 services on different access rings connected to an ASG pair (a master ASG and its slave ASG) are forwarded through an ASG (CSG1->ASG1->CSG3). LTE X2 services on an access ring connected to different ASG pairs are forwarded between ASGs (CSG1->ASG1->ASG2->CSG4). RSG ASG CSG Interface FE 1/0/0 VRF Service Route 10.0.0.1/30 VRF Service Destination 10.0.0.1/30 E-RT 100:1 Next-Hop 127.0.0.1 Inner-Label Out/In-label Null/21 Outer-Tunnel 0x0 VRF Service Destination 10.0.0.1/30 I-RT 100:1 E-RT 100:1 Nest-Hop 1.1.1.1 Inner Label Out/In-label 21/3200 Outer-Tunnel 0x21 VRF Service Destination 10.0.0.1/30 I-RT 100:1 Next-Hop 2.2.2.2 Inner-Label Out/In-label 3200/Null Outer-Tunnel 0x32 Interface GE 1/0/0 VRF Service Route 20.0.0.1/29 RSG ASG CSG VRF Service Destination 0.0.0.0/0 (default route) I-RT 200:1 Next-Hop 2.2.2.2 Inner-Label Out/In-label 1200/Null Outer-Label 0x12 VRF Service Destination 20.0.0.1 I-RT 100:1 E-RT 200:1 Next-Hop 3.3.3.3 Inner-Label Out/In-label 2300/1200 Outer-Tunnel 0x23 VRF Service Destination 20.0.0.1 E-RT 100:1 Next-Hop 127.0.0.1 Inner-Label Out/In-label Null/2300 Outer-Tunnel 0x0 RSG ASG CSG 1.1.1.1 2.2.2.2 3.3.3.3 PDU IP L2 PDU VRF1 LSP1 ETH1 IP PDU VRF2 LSP2 ETH2 IP PDU IP L2 The HVPN technology is used to bear LTE S1 services and 3G ETH services on the IPRAN. Popping Tunnel label popping Swapping 3.3.3.3 2.2.2.2 1.1.1.1 With an RR configured on an ASG, the ASG becomes the next hop of a private network route. The ASG generates a specific route and reflects it to the RSG. An ASG sends a default route instead of a specific route to a CSG, which reduces routing entries on the CSG. During packet forwarding, inner BGP labels are popped in the uplink direction and swapped in the downlink direction, and tunnel labels are popped. BSC RNC/S-GW/MME RSG ASG ISIS process 100/Area 0 ISIS process 1/Area 1 ISIS process 2/Area 2 iBGP LTE eNodeB FE/GE BTS E1 NodeB FE iBGP Route Advertisement (CSG->RSG) Route Advertisement (RSG->CSG) Packet Forwarding Packet Forwarding Route Advertisement

IPRAN ATN+CX (HVPN) Solution - docshare04.docshare.tipsdocshare04.docshare.tips/files/29419/294196440.pdf · Multiservices Nextinclude not only hybrid 2G, 3G, and LTE backhaul services,

Embed Size (px)

Citation preview

Page 1: IPRAN ATN+CX (HVPN) Solution - docshare04.docshare.tipsdocshare04.docshare.tips/files/29419/294196440.pdf · Multiservices Nextinclude not only hybrid 2G, 3G, and LTE backhaul services,

IPRAN ATN+CX (HVPN) Solution

Access Aggregation

CSG

L3VPN LTE VRF X2 LTE VRF X2

L3VPN L3VPN LTE VRF S1 HVPN LTE VRF S1

LTE services

PWE3 3G ATM PW MS-PW

PWE3 PWE3 2G TDM PW MS-PW 2G/3G

services PWE3 3G ATM PW

2G TDM PW

L3VPN LTE VRF X2 HVPN LTE VRF X2

(on the same access ring)

(on different access rings)

Multiservices include not only hybrid 2G, 3G, and LTE backhaul services, but also FMC backhaul services, which ensure the maximum return on customer investment. Fast E2E protection switching satisfies carrier-class quality requirements. Comprehensive clock synchronization ensures the quality of services.

OSPF/ISIS OSPF/ISIS

iBGP iBGP

RSVP-TE/LDP LSP RSVP-TE/LDP LSP

IGP

BGP for VRF

Tunnel

RR Basic

RSG ASG CSG

Compared with the SS-PW technology, the MS-PW technology enables an ASG to swap not only the tunnel label but also the PW label. Tunnels are established between CSGs and ASGs and between ASGs and RSGs, but not between CSGs and RSGs.

MS-PWs are used to bear 2G (TDM) and 3G (ATM) services on the IPRAN.

PDU E1

PDU

PW1 LSP1 ETH1

E1 PDU

PW2 LSP2 ETH2

E1 PDU STM-1

Tunnel label popping

PW label swapping

BSC

RSG ASG CSG

PDU IMA

PDU

PW1 LSP1 ETH1

ATM PDU

PW2 LSP2 ETH2

ATM PDU STM-1

Tunnel label popping PW label swapping

NodeB RNC

E1

RSG1 ASG1

CSG1

RNC/S-

GW/MME

Failure Point Detection Protection Switching Path

Failure point a/b

BFD for TE LSP TE hot-standby ①: CSG1-CSG3-ASG2-ASG1-P1-RSG1

Failure point c BFD for TE tunnels

VPN FRR ②: CSG1-CSG3-ASG2-P2-RSG2-RSG1

Failure point d/e

BFD for TE LSP TE hot-standby ③: CSG1-CSG2-ASG1-ASG2-P2-RSG2-RSG1

Failure point f BFD for TE tunnels

BFD for VRRP

VPN FRR

VRRP or route backup

④: CSG1-CSG2-ASG1-ASG2-P2-RSG2

Failure point g Physical link check

VRRP or route backup

⑤: CSG1-CSG2-ASG1-P1-RSG1-RSG2

2G, 3G, and LTE S1 services require high reliability and therefore RSVP-TE tunnels need to be configured to carry them.

Ethernet service protection a

b c d e f

g CSG2

CSG3 ASG2

P2

P1

② ④

RSG2

③ ③ ④ ① ② ⑤

RSG1 ASG1

CSG1

RNC/S-

GW/MME

Failure Point Detection Protection Switching Path

Failure point a/b

BFD for TE LSP TE hot-standby ①: CSG1-CSG3-ASG2-ASG1-P1-RSG1

Failure point c BFD for PW PW redundancy ②: CSG1-CSG3-ASG2-P2-RSG2-RSG1

Failure point d/e

BFD for TE LSP TE hot-standby ③: CSG1-CSG2-ASG1-ASG2-P2-RSG2-RSG1

Failure point f BFD for PW

Physical link check

PW redundancy

E-APS

④: CSG1-CSG3-ASG2-P2-RSG2

Failure point g Physical link check

PW redundancy

E-APS

⑤: CSG1-CSG3-ASG2-P2-RSG2

Note: in independent mode

a

b c d e f

g CSG2

CSG3 ASG2

P2

P1

RSG2

① ②

TDM/ATM service protection

L3VPN L3VPN 3G ETH VRF HVPN 3G ETH VRF

A

ASG aggregation site gateway

B

BFD Bidirectional Forwarding Detection

BTS base transceiver station

BSC base station controller

C

CSG cell site gateway

L

LTE Long Term Evolution

M

MME mobility management entity

MPLS Multiprotocol Label Switching

MS-PW multi-segment pseudo wire

R

RNC radio network controller

RR route reflector

RSG radio service gateway

S

SS-PW single-segment pseudo wire

V

VRF VPN routing and forwarding

③ ③

③ ③

④ ④

SyncE is used to implement frequency synchronization, and hop-by-hop 1588v2 is used to implement phase synchronization.

1 1

1

1

1

1

1

1

2

2 2

2

2

2

2

2

2

BC

BC

BC

BC

BC

BC

BC

BC

BC

BITS1

BITS2

M S

P

M

S

M S

M

M

S

S

M

S

S

S

P

P

M M

M

S

OC

OC

ETH/IP service: The service layer uses ICMP ping/trace for fault locating. L3VPN uses LSP ping/trace for fault locating. TDM/ATM service: L2VPN uses LSP ping/trace and PW ping/trace for fault locating.

CSG

ASG RSG

IP

LSP

PW

ICMP Ping/Trace

ICMP Ping/Trace ICMP Ping

LSP Ping/Trace LSP Ping/Trace

PW Ping/Trace PW Ping/Trace

L3VPN

L2VPN

⑤ ⑤

First priority clock source for SyncE

Second priority clock source for SyncE

Non-clock source

Master port of 1588v2

Slave port of 1588v2

Passive port of 1588v2

Frequency tracing working path

Frequency tracing protection path

Time tracing path

P

S

M

1

2

BTS

1 M

Overview High Reliability

LTE S1 Service Bearing

2G TDM/3G ATM Service Bearing

Acronyms OAM

Clock

CX600-X16 Used as an RSG

CX600-X8 Used as an RSG or ASG

CX600-X3 Used as an ASG

ATN 950 Used as a CSG

Dimensions

(H x W x D)

1420 mm x 442 mm x 650 mm

Weight (Full Configuration)

267 kg

Typical Power Consumption

6500 W

Forwarding Capacity

3200 Mpps

Switching Capacity

12.58 Tbit/s (bidirectional)

Interface Capacity

3.2 Tbit/s (bidirectional)

Dimensions

(H x W x D)

620 mm x 442 mm x 650 mm

Weight (Full Configuration)

130 kg

Typical Power Consumption

3300 W

Forwarding Capacity

1600 Mpps

Switching Capacity

7.08 Tbit/s (bidirectional)

Interface Capacity

1.6 Tbit/s (bidirectional)

Dimensions

(H x W x D)

175 mm x 442 mm x 650 mm (DC)

220 mm x 442 mm x 650 mm (AC)

Weight (Full Configuration)

41 kg (DC)

51 kg (AC)

Typical power Consumption

1100 W

Forwarding Capacity

300 Mpps

Switching Capacity 1.08 Tbit/s (bidirectional)

Interface Capacity 240 Gbit/s (bidirectional)

ATN 910 Used as a CSG

ATN 950B Used as a CSG Dimensions (H x W x D) 2 U x 442 mm x 220 mm

Weight (Empty Configuration) 2.80 kg

Power Consumption 4GE(O)+8FE(O)+16E1 106.3 W

4GE(O)+8FE(E)+16E1 103.4 W

4GE(O)+8FE(O) 97.2 W

4GE(O)+8FE(E) 93.1 W

4GE(O)+8FE(O)+8FE(E) 107.8 W

4GE(O)+8FE(E)+16FE(O) 123.1 W

Packet Processing Capability 12 Mpps

Switching Capacity 8 Gbit/s (unidirectional)

Dimensions

(H x W x D)

2 U x 442 mm x 220 mm

Weight (Empty) 2.80 kg

Packet Processing Capability

65.48 Mpps (AND1CXPA)

83.33 Mpps (AND1CXPB)

Switching Capacity

44 Gbit/s (AND1CXPA)/56 Gbit/s (AND1CXPB)

(unidirectional)

Dimensions

(H x W x D)

1 U x 442 mm x 220 mm

Weight (Empty Configuration)

2.36 kg

Power Consumption

2GE(O)+4GE/FE(O)+4GE/FE(E)

50 W

Packet Processing Capability

17.85 Mpps

Switching Capacity 6.8 Gbit/s (CXPI)/12 Gbit/s (CXPL)

(unidirectional)

ATN9 10I Used as a CSG

Dimensions (H x W x D) 1 U x 442 mm x 220 mm

Weight (Empty Configuration) 3 kg

Power Consumption ATN 910I AC 4GE(O)+4GE/FE(O)+4GE/FE(E)

28 W

ATN 910I-C AC

4GE(O)+4GE/FE(O)+4GE/FE(E)+16E1

32.8 W

ATN 910I DC 4GE(O)+4GE/FE(O)+4GE/FE(E)

27.6 W

4GE(O)+4GE/FE(O)+4GE/FE(E)+16E1

32.5 W

ATN 910I-TC DC

4GE(O)+4GE/FE(O)+4GE/FE(E)+16E1

32.2 W

Packet Processing Capability 17.85 Mpps

Switching Capacity 12 Gbit/s (unidirectional)

Products

VRF Service

Destination 10.0.0.1/30

I-RT 100:1

E-RT 200:1

Next-Hop 1.1.1.1

Inner-Label Out/In-label

11/3100

Outer-Tunnel

0x11

Interface FE 1/0/0

VRF Service

Router 10.0.0.1/30 RSG

1.1.1.1

VRF Service

Destination 10.0.0.1/30

I-RT 100:1

E-RT 200:1

Next-Hop 2.2.2.2

Inner-Label Out/In-label

2600/6700

Outer-Tunnel

0x62

VRF Service

Destination 0.0.0.0/0 (default route)

I-RT 200:1

Next-Hop 6.6.6.6

Inner-Label Out/In-label

6700/Null

Outer-Tunnel

0x76

5.5.5.5

Note: It is recommended to use the LDP technology to create tunnels automatically for LTE X2 services. RSVP-TE configuration is complex on the full mesh topology.

CSG2 4.4.4.4

VRF Service

Destination 10.0.0.1/30

I-RT 1:1

Next-Hop 1.1.1.1

Inner-Label Out/In-label

21/Null

Outer-Tunnel

0x41

CSG1

CSG4 ASG2 6.6.6.6 7.7.7.7

CSG1

ASG2 CSG4 CSG2

E-RT I-RT Description

1:1 CSG 1:1 CSG This RT enables routes within the same access ring to be preferred and routes from other access rings not to be received.

100:1 CSG

ASG

RSG

100:1 ASG

RSG

This RT enables ASGs and RSGs to receive networkwide routes.

200:1 ASG 200:1 CSG This RT enables CSGs to receive default routes advertised by ASGs.

ASG1

RSG CSG2

CSG1

CSG4 ASG2 PDU

IP L2

PDU IP L2

PDU

21 0x41 ETH1

IP

PDU

11 0x11 ETH2

IP

PDU

3100 0x31 ETH3

IP

PDU IP L2

PDU

2600 0x62 ETH4

IP PDU

6700 0x76 ETH5

IP PDU

IP L2

Key factor: RT

CSG3

CSG3

VRF Service

Destination 0.0.0.0/0 (default route)

I-RT 200:1

Next-Hop 2.2.2.2

Inner-Label Out/In-label

3100/Null

Outer-Tunnel 0x31

CSG3

ASG1

VRF Service

Destination 10.0.0.1/30

I-RT 100:1

E-RT 100:1

Next-Hop 1.1.1.1

Inner-Label Out/In-label

11/2600

Outer-Tunnel

0x11

ASG1

VRF Service

Destination 10.0.0.1/30

E-RT 100:1

Next-Hop 127.0.0.1

Inner-Label Out/In-label

Null/11

Outer-Tunnel 0x0

CSG1

ASG1 2.2.2.2

3.3.3.3

VRF Service

Destination 10.0.0.1/30

E-RT 1:1

Next-Hop 127.0.0.1

Inner-Label Out/In-label

Null/21

Outer-Tunnel

0x0

LTE X2 Service Bearing

ASGs are configured with RRs. CSG routes within an access ring are reflected by an RR without changing their next hops. All ASGs set up full mesh iBGP VPNv4 connections using RRs. After changing the next hops in VPNv4 routes to themselves, ASGs send the routes to the RSG. Default routes are manually advertised to CSGs. By using the default routes, inter-ring X2 traffic can be forwarded to ASGs.

Data Forwarding LTE X2 services on an access ring connected to an ASG pair (a master ASG and its slave ASG) are forwarded between service nodes (CSG1->CSG2). LTE X2 services on different access rings connected to an ASG pair (a master ASG and its slave ASG) are forwarded through an ASG (CSG1->ASG1->CSG3). LTE X2 services on an access ring connected to different ASG pairs are forwarded between ASGs (CSG1->ASG1->ASG2->CSG4).

RSG ASG CSG Interface FE 1/0/0

VRF Service

Route 10.0.0.1/30

VRF Service

Destination 10.0.0.1/30

E-RT 100:1

Next-Hop 127.0.0.1

Inner-Label Out/In-label

Null/21

Outer-Tunnel 0x0

VRF Service

Destination 10.0.0.1/30

I-RT 100:1

E-RT 100:1

Nest-Hop 1.1.1.1

Inner Label Out/In-label

21/3200

Outer-Tunnel 0x21

VRF Service

Destination 10.0.0.1/30

I-RT 100:1

Next-Hop 2.2.2.2

Inner-Label Out/In-label

3200/Null

Outer-Tunnel 0x32

Interface GE 1/0/0

VRF Service

Route 20.0.0.1/29

RSG ASG CSG

VRF Service

Destination 0.0.0.0/0 (default route)

I-RT 200:1

Next-Hop 2.2.2.2

Inner-Label Out/In-label

1200/Null

Outer-Label 0x12

VRF Service

Destination 20.0.0.1

I-RT 100:1

E-RT 200:1

Next-Hop 3.3.3.3

Inner-Label Out/In-label

2300/1200

Outer-Tunnel 0x23

VRF Service

Destination 20.0.0.1

E-RT 100:1

Next-Hop 127.0.0.1

Inner-Label Out/In-label

Null/2300

Outer-Tunnel 0x0

RSG ASG CSG

1.1.1.1 2.2.2.2 3.3.3.3

PDU IP L2 PDU

VRF1 LSP1 ETH1

IP PDU

VRF2 LSP2 ETH2

IP

PDU IP L2

The HVPN technology is used to bear LTE S1 services and 3G ETH services on the IPRAN.

Popping

Tunnel label popping

Swapping

3.3.3.3 2.2.2.2 1.1.1.1

With an RR configured on an ASG, the ASG becomes the next hop of a private network route. The ASG generates a specific route and reflects it to the RSG.

An ASG sends a default route instead of a specific route to a CSG, which reduces routing entries on the CSG.

During packet forwarding, inner BGP labels are popped in the uplink direction and swapped in the downlink direction, and tunnel labels are popped.

BSC

RNC/S-GW/MME

RSG ASG

ISIS process 100/Area 0

ISIS process 1/Area 1

ISIS process 2/Area 2

iBGP

LTE eNodeB

FE/GE

BTS

E1

NodeB

FE

iBGP

Route Advertisement (CSG->RSG)

Route Advertisement (RSG->CSG)

Packet Forwarding

Packet Forwarding

Route Advertisement