IPRAN Network High Level Design for Project VTRú¿RAN12ú®

Embed Size (px)

Citation preview

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    1/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 1, 113

    IPRAN Network High Level Design for Project VTR

    RAN12

    for VTR RNC RM1301, RM1302, AN201, BB801

    Issue 3.0

    Date 2013-08-05

    Huawei Technologies Co. Ltd

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    2/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 2, 113

    Huawei Technologies Co., Ltd. provides VTR with comprehensive technical support and service. For any assista

    please contact our local office or company headquarters.

    Huawei Technologies Co., Ltd.

    Address: Huawei Industrial Base

    Bantian, Longgang

    Shenzhen 518129

    Peoples Republic of China

    Website: http://www.huawei.com

    Email: [email protected]

    Copyright Huawei Technologies Co., Ltd. 2013. All rights reserved.

    No part of this document may be reproduced or transmitted in any from or by any means without prior writtenconsent of Huawei Technologies Co., Ltd.

    Trademarks and Permissions

    And other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

    All other trademarks and trade names mentioned in this document are the property of their respective holders.

    Notice

    The information in this document is subject to change without notice. Every effort has been made in thepreparation of this document to ensure accuracy of the contents, but all statements, information, andrecommendations in this document do not constitute the warranty of any kind, express or implied.

    Update History

    Version Description Issue date Prepared by Approved by

    1.0 2013-06-12 Liang Xiulai VTR

    2.0 2013-07-17 Liang Xiulai VTR

    3.0 2013-08-05 Liang Xiulai VTR

    http://www.huawei.com/mailto:[email protected]:[email protected]://www.huawei.com/
  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    3/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 3, 113

    Contents

    Contents

    1 Introduction..................................................................................................................................15

    1.1 Objectives....................................................................................................................................................... 15

    1.2 Scopes ............................................................................................................................................................ 15

    1.3 Dependencies ................................................................................................................................................. 16

    1.4 Assumptions................................................................................................................................................... 16

    2 Network Naming and Numbering Design............................................................................17

    2.1 Naming Principle and Design......................................................................................................................... 17

    2.2 Numbering Principle and Design ................................................................................................................... 18

    2.2.1 Network Parameter Numbering ............................................................................................................ 18

    2.2.2 IP address schemes................................................................................................................................ 18

    3 UMTS Network Structure .........................................................................................................19

    3.1 Target Network............................................................................................................................................... 19

    4 RAN Network Design Requirement.......................................................................................21

    4.1 Capacity Requirement of Target Network...................................................................................................... 21

    5 Principles and Information of RAN O&M Design ..............................................................22

    5.1 O&M Network Topology ............................................................................................................................... 22

    5.2 O&M Networking Principle and Design........................................................................................................ 22

    5.2.1 O&M IP Planning Design ..................................................................................................................... 22

    5.2.2 NodeB OM Channel Design ................................................................................................................. 25

    5.2.3 Networking Design Between RAN and M2000.................................................................................... 28

    5.2.4 NodeB Software Management Design.................................................................................................. 28

    5.3 O&M Security Management Principle and Design........................................................................................ 30

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    4/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 4, 113

    5.3.1 RAN OM TCP/UDP Port Design.......................................................................................................... 30

    5.4 NE Time Synchronization Principle and Design............................................................................................ 31

    5.4.1 NodeB Time Synchronization Design................................................................................................... 31

    5.4.2 RNC Time Synchronization Design...................................................................................................... 31

    5.4.3 M2000 Time Synchronization Design .................................................................................................. 32

    6 RAN System Clock Synchronization Design........................................................................33

    6.1 RNC System Clock Source Design................................................................................................................ 33

    6.2 NodeB System Clock Source Design............................................................................................................. 33

    7 RAN Resource Distributed Design .........................................................................................35

    7.1 RAN Hardware Resource Layout Principle ................................................................................................... 35

    7.1.1 RNC SPU Board Layout Design........................................................................................................... 36

    7.1.2 RNC DPU Board Layout Design.......................................................................................................... 37

    7.1.3 RNC Transmission Interface Boards Layout Design ............................................................................ 38

    7.1.4 RNC Other Types of Boards Layout Design......................................................................................... 39

    7.1.5 Boards Distribution Layout................................................................................................................... 40

    7.2 Transmission Resource Distribution Design.................................................................................................. 45

    7.3 NodeBs Distribution in SPUs Design ............................................................................................................ 45

    7.4 IU and Iur Signaling links Distribution in SPUs Design................................................................................ 47

    8 RAN Transmission Interface Capability Design..................................................................50

    8.1 Iu CS Transmission Interface Capability Design ........................................................................................... 50

    8.1.1 Total Iu CS User Plane Throughput Estimation .................................................................................... 50

    8.1.2 Total Iu CS Control Plane Throughput Estimation ............................................................................... 51

    8.1.3 Total Number of Ports for Iu CS Transmission on RNC Calculation.................................................... 52

    8.2 Iu PS Transmission Interface Capability Design............................................................................................ 52

    8.2.1 Total Iu PS User Plane Throughput Estimation .................................................................................... 538.2.2 Total Iu PS Control Plane Throughput Estimation................................................................................ 53

    8.2.3 Total Number of Ports for Iu PS Transmission on RNC Calculation .................................................... 54

    8.3 Iub Transmission Interface Capability Design ............................................................................................... 55

    8.3.1 Traffic Mapping on IP Strategy Design................................................................................................. 55

    8.3.2 Total Iub User Plane Throughput for Iub IP Transmission Estimation ................................................. 56

    8.3.3 Total Iub Control Plane Throughput for Iub IP Transmission Estimation............................................. 57

    8.3.4 Total Number of Ports for Iub IP Transmission on RNC Calculation ................................................... 57

    8.4 Iub Transmission Configuration Design for Typical NodeB .......................................................................... 58

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    5/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 5, 113

    8.4.1 Configuration Recommendation for NCP............................................................................................. 58

    8.4.2 Configuration Recommendation for CCP............................................................................................. 58

    8.4.3 Configuration Recommendation for IPPATH ....................................................................................... 59

    8.5 Iur Transmission Interface Capability Design................................................................................................ 60

    8.5.1 Total Iur User Plane Throughput Estimation......................................................................................... 60

    8.5.2 Total Iur Control Plane Throughput Estimation.................................................................................... 61

    8.5.3 Total Number of Ports for Iur Transmission on RNC Calculation ........................................................ 61

    9 RAN Transmission Interface Reliability Design..................................................................62

    9.1 Iub Transmission Interface Networking Reliability Design........................................................................... 62

    9.1.1 Iub Networking Topology..................................................................................................................... 62

    9.1.2 Iub Interface Boards Redundancy Design............................................................................................. 63

    9.1.3 Iub Transmission Ports Redundancy in RNC Design ........................................................................... 63

    9.1.4 Iub Transmission Fault Detection Design............................................................................................. 63

    9.1.5 Iub Transmission QoS Difference Design............................................................................................. 64

    9.1.6 Iub Transmission Layer Address Allocation Design ............................................................................. 67

    9.2 Iu CS Transmission Interface Networking Reliability Design ....................................................................... 69

    9.2.1 Iu CS Networking Topology ................................................................................................................. 69

    9.2.2 Iu CS Interface Boards Redundancy Design......................................................................................... 69

    9.2.3 Iu CS Transmission Ports Redundancy in RNC Design........................................................................ 70

    9.2.4 Iu CS Transmission Fault Detection Design ......................................................................................... 70

    9.2.5 Iu CS Transmission QoS Difference Design......................................................................................... 70

    9.3 Iu PS Transmission Interface Networking Reliability Design........................................................................ 71

    9.3.1 Iu PS Networking Topology.................................................................................................................. 71

    9.3.2 Iu PS Interface Boards Redundancy Design ......................................................................................... 72

    9.3.3 Iu PS Transmission Ports Redundancy in RNC Design ........................................................................ 72

    9.3.4 Iu PS Transmission Fault Detection Design.......................................................................................... 73

    9.3.5 Iu PS Transmission QoS Difference Design ......................................................................................... 73

    9.4 Iur Transmission Interface Networking Availability Design .......................................................................... 75

    9.4.1 Iur Networking Topology...................................................................................................................... 75

    9.4.2 Iur Interface Boards Redundancy Design ............................................................................................. 75

    9.4.3 Iur Transmission Ports Redundancy in RNC Design ............................................................................ 75

    9.4.4 Iur Transmission Fault Detection Design.............................................................................................. 76

    9.4.5 Iur Transmission QoS Difference Design ............................................................................................. 76

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    6/113

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    7/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 7, 113

    12 Acronyms and Abbreviations...............................................................................................111

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    8/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 8, 113

    Figures

    Figure 3-1Target VTR network .......................................................................................................................... 19

    Figure 5-1Topology of O&M network ............................................................................................................... 22

    Figure 5-2Logical locations of BAM IP address ................................................................................................ 23

    Figure 5-3External network of BAM connection figure .................................................................................... 24

    Figure 5-4NodeB ETHIP & OMIP..................................................................................................................... 25

    Figure 5-5NodeB OMCH policy........................................................................................................................ 26

    Figure 5-6Configuring an OMCH...................................................................................................................... 27

    Figure 5-7Enabling the DHCP to configure a NodeB OMCH ........................................................................... 28

    Figure 5-8RAN and M2000................................................................................................................................ 28

    Figure 5-9The content of NodeB software management.................................................................................... 29

    Figure 5-10The process of NodeB software management.................................................................................. 29

    Figure 5-11Logical line of NodeB time synchronization ................................................................................... 31

    Figure 5-12Logical line of RNC time synchronization ...................................................................................... 32

    Figure 6-1System clock stream of the NodeB.................................................................................................... 34

    Figure 7-1General board structure in a subrack ................................................................................................. 36

    Figure 7-2Internal data switching of the RNC ................................................................................................... 38

    Figure 7-3Board configuration for the RNC_RM1301 ...................................................................................... 41

    Figure 7-4Board configuration for the RNC_RM1302 ...................................................................................... 41

    Figure 7-5Board configuration for the RNC_AN201......................................................................................... 43

    Figure 7-6Board configuration for the RNC_BB801......................................................................................... 44

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    9/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 9, 113

    Figure 7-7Iub interface links in the IP networking............................................................................................. 45

    Figure 7-8Signaling plane links of the IuCS/IuPS interface in the IP networking ............................................. 47

    Figure 8-1IP transport networking...................................................................................................................... 55

    Figure 9-1Iub networking................................................................................................................................... 62

    Figure 9-2Iu CS networking............................................................................................................................... 69

    Figure 9-3Redundancy mode of Iu CS GOUc ports........................................................................................... 70

    Figure 9-4Iu PS networking ............................................................................................................................... 71

    Figure 9-5Iur networking ................................................................................................................................... 75

    Figure 10-1Protocol stack for the IP-based Iu CS interface ............................................................................... 78

    Figure 10-2Logical networking on the Iu CS interface...................................................................................... 78

    Figure 10-3Protocol stack for the IP-based Iu PS interface................................................................................ 86

    Figure 10-4Logical networking on the Iu PS interface....................................................................................... 87

    Figure 10-5Iub interface protocol stack.............................................................................................................. 94

    Figure 10-6Iub interface topology (Control Plane) ............................................................................................ 94

    Figure 10-7Iub interface topology (User Plane)................................................................................................. 95

    Figure 10-8Iub interface bear type ..................................................................................................................... 95

    Figure 10-9Logical networking on the Iur interface (1)................................................................................... 101

    Figure 10-10Logical networking on the Iur interface (2)................................................................................. 101

    Figure 11-1Serving and Drift RNS................................................................................................................... 109

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    10/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 10, 113

    Tables

    Table 1-1Dependencies....................................................................................................................................... 16

    Table 2-1Numbering planning............................................................................................................................ 18

    Table 4-1Distribution of NodeBs........................................................................................................................ 21

    Table 4-2Interface Information........................................................................................................................... 21

    Table 4-3Product Version Information................................................................................................................ 21

    Table 5-1Example for BAM IP addresses........................................................................................................... 23

    Table 5-2DSCP configuration in the IPPATH..................................................................................................... 26

    Table 5-3TCP/UDP ports of RNC ...................................................................................................................... 30

    Table 5-4TCP/UDP ports of NodeB ................................................................................................................... 30

    Table 5-5Recommended NodeB time synchronization parameters.................................................................... 31

    Table 5-6Recommended RNC time synchronization parameters ....................................................................... 32

    Table 5-7Recommended M2000 time synchronization parameters.................................................................... 32

    Table 7-1Configuration rules for the SPUa board .............................................................................................. 37

    Table 7-2SPUa board Processing Capability ...................................................................................................... 37

    Table 7-3DPUb board Processing Capability ..................................................................................................... 37

    Table 7-4Configuration rules for interface boards.............................................................................................. 39

    Table 7-5GOUc board Processing Capability..................................................................................................... 39

    Table 7-6NodeB distribution on the SPU subsystem.......................................................................................... 46

    Table 7-7NodeB distribution on the SPU subsystem.......................................................................................... 46

    Table 7-8NodeB distribution on the SPU subsystem.......................................................................................... 46

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    11/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 11, 113

    Table 7-9NodeB distribution on the SPU subsystem.......................................................................................... 47

    Table 7-10Configuration rules for signaling links .............................................................................................. 48

    Table 7-11Signaling link allocation.................................................................................................................... 48

    Table 7-12Signaling link allocation.................................................................................................................... 48

    Table 8-1Throughput of the Iu CS interface on the user plane RM1301............................................................ 50

    Table 8-2Throughput of the Iu CS interface on the user plane RM1302............................................................ 50

    Table 8-3Throughput of the Iu CS interface on the user plane AN201............................................................... 51

    Table 8-4Throughput of the Iu CS interface on the user plane BB801............................................................... 51

    Table 8-5Throughput of the Iu CS interface on the control plane for RM1301.................................................. 51

    Table 8-6Throughput of the Iu CS interface on the control plane for RM1302.................................................. 51

    Table 8-7Throughput of the Iu CS interface on the control plane for AN201 .................................................... 51

    Table 8-8Throughput of the Iu CS interface on the control plane for BB801..................................................... 51

    Table 8-9Number of active GOUc ports for RM1301 ........................................................................................ 52

    Table 8-10Number of active GOUc ports for RM1302 ...................................................................................... 52

    Table 8-11Number of active GOUc ports for AN201......................................................................................... 52

    Table 8-12Number of active GOUc ports for BB801......................................................................................... 52

    Table 8-13Throughput of the Iu PS interface on the user plane for RM1301..................................................... 53

    Table 8-14Throughput of the Iu PS interface on the user plane for RM1302..................................................... 53

    Table 8-15Throughput of the Iu PS interface on the user plane for AN201 ....................................................... 53

    Table 8-16Throughput of the Iu PS interface on the user plane for BB801........................................................ 53

    Table 8-17Throughput of the Iu PS interface on the control plane for RM1301................................................ 53

    Table 8-18Throughput of the Iu PS interface on the control plane for RM1302................................................ 53

    Table 8-19Throughput of the Iu PS interface on the control plane for AN201................................................... 54

    Table 8-20Throughput of the Iu PS interface on the control plane for BB801................................................... 54

    Table 8-21Number of active GOUc ports for RM1301 ...................................................................................... 54

    Table 8-22Number of active GOUc ports for RM1302 ...................................................................................... 54

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    12/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 12, 113

    Table 8-23Number of active GOUc ports for AN201......................................................................................... 54

    Table 8-24Number of active GOUc ports for BB801......................................................................................... 54

    Table 8-25General rules for user plane transmission mapping........................................................................... 56

    Table 8-26Throughput of the Iub interface on the user plane in IP transmission for RM1301........................... 56

    Table 8-27Throughput of the Iub interface on the user plane in IP transmission for RM1302........................... 56

    Table 8-28Throughput of the Iub interface on the user plane in IP transmission for AN201 ............................. 56

    Table 8-29Throughput of the Iub interface on the user plane in IP transmission for BB801.............................. 56

    Table 8-30Throughput of the Iub interface on the control plane in IP transmission for RM1301...................... 57

    Table 8-31Throughput of the Iub interface on the control plane in IP transmission for RM1302...................... 57

    Table 8-32Throughput of the Iub interface on the control plane in IP transmission for AN201......................... 57

    Table 8-33Throughput of the Iub interface on the control plane in IP transmission for BB801......................... 57

    Table 8-34Number of active GOUc ports for RM1301 ...................................................................................... 57

    Table 8-35Number of active GOUc ports for RM1302 ...................................................................................... 58

    Table 8-36Number of active GOUc ports for AN201......................................................................................... 58

    Table 8-37Number of active GOUc ports for BB801......................................................................................... 58

    Table 8-38NCP configuration............................................................................................................................. 58

    Table 8-39CCP configuration ............................................................................................................................. 59

    Table 8-40IPPATH configuration ....................................................................................................................... 59

    Table 8-41Configuration recommendation for IPPATH ..................................................................................... 60

    Table 8-42Throughput of the Iur interface on the user plane for RM1301......................................................... 60

    Table 8-43Throughput of the Iur interface on the user plane for RM1302......................................................... 60

    Table 8-44Throughput of the Iur interface on the user plane for AN201............................................................ 60

    Table 8-45Throughput of the Iur interface on the user plane for BB801............................................................ 61

    Table 8-46Throughput of the Iur interface on the control plane for RM1301 .................................................... 61

    Table 8-47Throughput of the Iur interface on the control plane for RM1302 .................................................... 61

    Table 8-48Throughput of the Iur interface on the control plane for AN201....................................................... 61

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    13/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 13, 113

    Table 8-49Throughput of the Iur interface on the control plane for BB801....................................................... 61

    Table 9-1User plane DSCP................................................................................................................................. 65

    Table 9-2DSCP allocation for each service ........................................................................................................ 66

    Table 9-3DSCP mapping for signaling and user part.......................................................................................... 71

    Table 9-4Requirements for Iu CS transmission QoS.......................................................................................... 71

    Table 9-5Iu PS DSCP Design ............................................................................................................................. 73

    Table 9-6TRMMAP For IUPS-1......................................................................................................................... 73

    Table 9-7TRMMAP For IUPS-2......................................................................................................................... 73

    Table 9-8Requirements for Iu PS transmission QoS .......................................................................................... 74

    Table 9-9Requirements for Iur transmission QoS............................................................................................... 76

    Table 10-1Parameters to be negotiated in the SS7 network................................................................................ 77

    Table 10-2Physical layer data of the Iu CS interface to be negotiated ............................................................... 79

    Table 10-3IP layer data of the Iu CS interface to be negotiated.......................................................................... 80

    Table 10-4SCTP layer data of the Iu CS interface to be negotiated.................................................................... 80

    Table 10-5M3UA layer data of the Iu CS interface to be negotiated.................................................................. 82

    Table 10-6SCCP layer data of the Iu CS interface to be negotiated ................................................................... 83

    Table 10-7IP path data of the Iu CS interface to be negotiated........................................................................ 84

    Table 10-8IP route data of the Iu CS interface to be negotiated ......................................................................... 84

    Table 10-9IUUP version number........................................................................................................................ 86

    Table 10-10Physical layer data of the Iu PS interface to be negotiated.............................................................. 87

    Table 10-11IP layer data of the Iu PS interface to be negotiated ........................................................................ 88

    Table 10-12SCTP layer data of the Iu PS interface to be negotiated .................................................................. 89

    Table 10-13M3UA layer data of the Iu PS interface to be negotiated ................................................................ 90

    Table 10-14SCCP layer data of the Iu PS interface to be negotiated.................................................................. 91

    Table 10-15IP path data of the Iu PS interface to be negotiated......................................................................... 92

    Table 10-16IP route data of the Iu PS interface to be negotiated........................................................................ 92

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    14/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 14, 113

    Table 10-17FE port data to be negotiated........................................................................................................... 96

    Table 10-18GE port data to be negotiated .......................................................................................................... 96

    Table 10-19SCTP data to be negotiated.............................................................................................................. 97

    Table 10-20NCP and CCP data to be negotiated ................................................................................................ 98

    Table 10-21IP path data to be negotiated............................................................................................................ 99

    Table 10-22NBAP data to be negotiated........................................................................................................... 100

    Table 10-23Physical layer data of the Iur interface to be negotiated................................................................ 102

    Table 10-24IP layer data of the Iur interface to be negotiated.......................................................................... 103

    Table 10-25SCTP layer data of the Iur interface to be negotiated .................................................................... 103

    Table 10-26M3UA layer data of the Iur interface to be negotiated .................................................................. 105

    Table 10-27SCCP layer data of the Iur interface to be negotiated.................................................................... 106

    Table 10-28IP path data of the Iur interface to be negotiated ........................................................................... 107

    Table 10-29IP route data of the Iur interface to be negotiated.......................................................................... 107

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    15/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 15, 113

    1Introduction

    1.1 Objectives

    This document aims to describe the general network design for the building of the 3G network for VTR.

    It also describes the High level design (HLD) principles for this network.

    The implementation will happen in one phase, Phase 1. And this HLD refers strictly to this phase

    According to the network development in the future, the HLD will be updated.

    This phase is defined as commercial launch of voice and data services. The Phase 1 service offering will

    support all required terminal types. At Phase 1, all cell sites required shall be operational, all services

    available, and VTR will start selling subscriptions to paying customers. All support systems to run thenetwork, including but not limited to, customer care and subscriber provisioning shall be available.

    Based on the network scale and traffic model of VTR, HLD is to reasonably design the UMTS RAN

    networking to establish a UMTS network. The UMTS network has the following features:

    Meeting the network scale requirement.

    Being of good security, high reliability, and reasonable resource allocation.

    Supporting convenient capacity expansion.

    HLD focuses on Huawei RAN network elements (NEs) and other NEs connected to the RAN NEs.

    HLD serves as the input of low level design (LLD).

    1.2 ScopesThis document involves HLD for the RNC Santiago 1, RNC Santiago 2, RNC Antofagasta and RNC

    Chillan.

    According to the features of the Huawei UMTS product, HLD covers RAN networking, focusing on

    operation and maintenance (O&M), system clock synchronization, RAN resource distributed design,

    transmission interface capability, transmission interface networking reliability, interconnectionnegotiation, and common features.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    16/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 16, 113

    1.3 Dependencies

    Table 1-1Dependencies

    Issue No. Item Description

    1Network scale The design follows target network scale and

    target number of subscribers from VTR.

    2Site distribution The design follows site lists and

    distribution from VTR.

    3Boundary maps UTRAN boundary maps and UTRAN

    network planning for RF coverage.

    4 Transmission network The design follows transmissionnetwork information from VTR.

    1.4 Assumptions

    This HLD is based on the following general assumptions:

    BOQ is correct.

    Traffic model is correct.

    Target network scale is correct.

    Target number of subscribers is correct.

    The capacity of NodeBs and RNCs and the distribution information are correct.

    Subscriber distribution is correct.

    Transmission network information is correct.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    17/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 17, 113

    2 Network Naming andNumbering Design

    2.1 Naming Principle and Design

    Huawei recommended the NE name was consist of letter and number, and NE name cannot contain

    special characters such as @, #, !, %, ^, &, *, .[], /\, and . In addition, the names must be unique in theentire network irrespective of whether the original naming rule or the naming rule recommended by

    Huawei is used.

    RNC Naming

    RNC_RM1301, it means the first RNC that will be located in Santiago.

    RNC_RM1302, it means the second RNC that will be located in Santiago.

    RNC_AN201, it means the third RNC that will be located in Antofagasta.

    RNC_BB801, it means the fourth RNC that will be located in Chillan.

    RNC BAM Naming

    Use the following naming rules recommended by Huawei: BAM_Slot_RNC Name

    For example:

    BAM_S20_RNC_RM1301, it means BAM on slot 20 of RNC_RM1301.

    BAM_S22_RNC_RM1301, it means BAM on slot 22 of RNC_RM1301

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    18/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 18, 113

    BAM name should be the same with the name of SQL Server installed

    NodeB Naming

    Use the existing NodeB naming rule: First letter which indicates the type of network, region

    code where NodeB is located and site code.

    For Example: URM2001

    Cell Naming

    Use the existing cell naming rule: Name of the NodeB + Sector number.

    For Example: URM20011, URM20012, URM20013

    2.2 Numbering Principle and Design

    2.2.1 Network Parameter Numbering

    Some numbering is shared in different interfaces, for example ANI, SCTP link, N7DPC and so on.

    This numbering should be planned in different interfaces in advance.

    Table 2-1shows the recommended numbering planning among Iub, IuCS and IuPS interface.

    Table 2-1Numbering planning

    Item Iub Iu CS Iu PS Range

    ANI [0,1800]] 1800 1810 0..1999

    SCTP [0,120] 120 130 0..149

    N7DPC 0 10 0..118

    M3DE 0 10 0..118

    M3LKS 0 10 0..118

    M3LNK_SIGLNKID 0 10 0..63

    2.2.2 IP address schemes

    It is an important step in network design to plan the IP addresses appropriately. For large scale network,

    IP addresses must be planned and implemented unanimously. How IP addresses are planned will impacton the efficiency of route protocol algorithm of the network, and its performance, scalability,

    management, as well as its further development.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    19/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 19, 113

    The principle for IP addresses planning

    Uniqueness

    The same IP address cannot be used at the same time by two hosts/devices in the same logic IP network.Although MPLS/VPN technology that supports address overlap is used, it is better to plan differentaddresses as much as possible.

    Continuity

    Continuous addresses are easy to aggregation in hierarchy network, this can reduce route table

    significantly and improve the efficiencies of route algorithm.

    Scalable

    A certain quantity of addresses should be left at each layer for the consistency needed in addressaggregation when expanding the network.

    3 UMTS Network Structure

    3.1 Target Network

    In VTR 3G networks, 4 RNCs will be constructed: RNC_RM1301, RNC_RM1302, RNC_AFT_01 andRNC_BB801.

    The IuCS, IUPS , Iur and Iub interface all use IP transmission.

    Figure 3-1Target VTR network

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    20/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 20, 113

    IDEN

    DNS

    SUR PCRF

    NodeBs

    NodeBs

    NodeBs

    NodeBs

    Iub

    Iub

    Iub

    Iub

    RNC Santiago 01

    RNC Santiago 02

    RNC Antofagasta

    RNC Chillan

    IuPSIuCS

    IuPSIuCS

    IuPSIuCS

    IuPSIuCS

    IuCS_GE

    IuPS_GE

    ISUP

    ISUP

    BICC

    IuCS_GE

    MGW

    SGSN

    ChargingGateway

    GGSN

    MSC

    SG

    SG

    HLR

    MAP C/D_FE

    Gr_FE

    Gn_GE

    Ga_GE

    Gz_GE

    Mc_FE

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    21/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 21, 113

    4RAN Network Design

    Requirement

    4.1 Capacity Requirement of Target Network

    Target Network Scale

    The entire target VTR network will contain 4 RNCs and VTR NodeB. For details, see Table 4-1.

    Table 4-1Distribution of NodeBs

    RNC_RM1301 RNC_RM1302 RNC_AFT_01 RNC_BB801

    The Num Of Node B 396 297 15 264

    .

    Interface Connection Requirement

    Table 4-2Interface Information

    Product Version Information

    Table 4-3Product Version Information

    Version Information

    RNC RAN12 or latest stable version.

    Node B RAN12 or latest stable version.

    Interface Information

    Iu-CS GE port, Board Backup (Share with IuR)

    Iu-PS GE port, Board Backup

    Iub GE port, Board Backup

    Iur GE port, Board Backup (share with IuCS)

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    22/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 22, 113

    5Principles and Information

    of RAN O&M Design

    5.1 O&M Network Topology

    M2000 will manage and maintain NodeB directly through IP network bypassing the RNC.

    Figure 5-1shows the entire O&M network.

    Figure 5-1Topology of O&M network

    5.2 O&M Networking Principle and Design

    5.2.1 O&M IP Planning Design

    RNC BAM IP Address Design

    Among BAM IP addresses, external fixed IP addresses and external virtual IP addresses need to be

    planned according to onsite situations. In addition, the VTR needs to check whether the subnet number of

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    23/113

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    24/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 24, 113

    IP Address Planning Principle

    The IP address cannot be changed.

    Commissioning IP addressThe preset commissioning IP addresses are:

    Active BAM: 192.168.6.50 (255.255.255.0)

    Standby BAM: 192.168.6.60 (255.255.255.0)

    The IP address cannot be changed.

    Figure 5-3External network of BAM connection figure

    According to following rules to set BAM external fixed IP addresses, BAM externalvirtual IP addresses

    1) Active and Standby OMUa has Ethernet adapter 0 and 1 on the panel of the board.The two adapters are teamed as the external network team for the communicationbetween the BAM and the OM terminal (the LMT or M2000).This two adapters has

    same external fixed IP addresses.

    2) The external fixed IP addresses of the active and standby BAMs has the same

    external virtual IP address, and this external virtual IP address is setting based onVTRs network planning.

    3) The external virtual IP address is set in the same subnet with the external fixed IPaddresses of the active and standby BAMs.

    The internal subnet number of the RNC is 80 by default and the debugging subnetnumber is 192 by default. If internal subnet 80 and debugging subnet 192 are used in theVTRs network, the internal network segments of the RNC need to be modified.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    25/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 25, 113

    NodeB OM IP Address Design

    The NodeB is maintained by the M2000 or the maintenance terminal (including LMT) through the

    remote OM channel.

    The recommended remote NodeB maintenance channel is over the IP link. IP data streams are

    terminated on the Iub interface board. Through IP routing, O&M packages are routed to the maincontrol board of the NodeB for processing.

    Figure 5-4NodeB ETHIP & OMIP

    It is recommended that the NodeB OMIP and the ETHIP be configured on the same network segment.

    In this case, the ARP agent of the FE port must be enabled.

    For details, see section 9.1.6 Iub Transmission Layer Address Allocation Design/NodeB Address

    Planning.

    Based on RNC address planning, the IP addresses for O&M and Service will be on different subnets andVLANs.

    5.2.2 NodeB OM Channel Design

    OMCH Policy

    It is recommended that the NodeB is directly routed to the M2000 for maintenance without passingthrough the RNC. This can separate service channels from maintenance channels, thus enhancing

    network security and QoS.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    26/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 26, 113

    Figure 5-5NodeB OMCH policy

    DSCP Design

    The Differentiated Service is a method of providing different services with different transmission

    priorities.

    The PHB AF4 corresponding to the DSCP of the OMCH ranges from 32 to 39. For details, see the

    DSCP configuration for PS and CS services. According to OMCH DSCP, it is recommended to set

    OMCH DSCP to 16.

    Table 5-2shows the DSCP configuration in the IPPATH.

    Table 5-2DSCP configuration in the IPPATH

    IPPATH Type DSCP PHB

    EF PATH 46 EF

    AF41 PATH 34 AF41

    AF42 PATH 36 AF42

    AF43 PATH 38 AF43

    AF31 PATH 26 AF31

    AF32 PATH 28 AF32

    AF33 PATH 30 AF33

    AF21 PATH 18 AF21

    AF22 PATH 20 AF22

    AF23 PATH 22 AF23

    AF11 PATH 10 AF11

    AF12 PATH 12 AF12

    AF13 PATH 14 AF13

    BE PATH 0 BE

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    27/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 27, 113

    OMCH Configuration

    Route 1: On the NodeB side, configure a route to the M2000. The next hop is the interface IP address of

    the Router in VTR network that will act as Gateway.

    Route 2: On the M2000, configure a route to the NodeB OMIP. The next hop is the interface IP address

    of the Router in VTR network that will act as Gateway.

    In addition, the routes of transmission equipment need to be configured.

    Figure 5-6Configuring an OMCH

    DHCP Function and Parameter Configuration

    The Dynamic Host Configuration Protocol (DHCP) transfers configuration information to hosts in a

    network. Based on the BOOTP, the DHCP adds the function of dynamically obtaining IP addresses.

    The members defined in the DHCP are as follows:

    DHCP client: indicates the host, such as, the NodeB, that uses the DHCP to obtainconfiguration parameters in a network.

    DHCP server: indicates the host, such as, the RNC, that returns configuration parameters tothe DHCP client in a network.

    The DHCP is used to automatically establish remote NodeB maintenance channels. For example, when

    a NodeB downloads incorrect configuration files or maintenance channel parameters are incorrectly

    configured, including configuration loss, the NodeB can use the DHCP to automatically obtain OMCHparameters set for the NodeB by the RNC for re-establishing a maintenance channel.

    After receiving the DHCP request packet, the RNC fills the corresponding NodeB IP address to the

    response packet according to the NodeB ESN in the request packet. Therefore, to enable the DHCP

    normally, a correct NodeB IP address and NodeB ESN should be configured on the RNC side. In thismanner, the NodeB can obtain correct OMCH parameters (such as the NodeB IP address and gateway)

    after the DHCP is enabled.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    28/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 28, 113

    The NodeB IP address is set through network planning and is unique in the entire network.

    Each NodeB has a globally unique NodeB ESN before delivery. It can be obtained from the NodeB

    label or by running the MML command: DSP BARCODE.

    Figure 5-7Enabling the DHCP to configure a NodeB OMCH

    5.2.3 Networking Design Between RAN and M2000

    The M2000 is connected to the RAN through the Router. The M2000 performs O&M on the RNC and

    NodeB through the Router.

    Figure 5-8RAN and M2000

    5.2.4 NodeB Software Management Design

    The NodeB software management including mainly: file transfer and NE upgrade.

    File transfer:

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    29/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 29, 113

    NodeB file that includes data (such as configuration file), software, patch and log, etc. is transferred

    between M2000 server, M2000 client and NodeB.

    NodeB upgrade:

    On the M2000, upgrading the NodeB software and patch involves multiple operations. Upgrading the

    NodeB software (or patch) involves loading, activating, and synchronizing the software. If the requiredsoftware or patch is not installed on the matching NE, you can upload the file from the client to the

    M2000 server, and then download the file from the server to the NE.

    Figure 5-9The content of NodeB software management

    Software management of the M2000 is based on the FTP. To implement this function, the FTP server

    should be set for transferring the files between the M2000 and NEs. The FTP server serves as a transit

    server.

    According to the OMCH policy, the NodeB is directly routed to the M2000. It is recommended to

    configure the OMC (Operation and Maintenance Center) of the M2000 as the file server.

    Figure 5-10The process of NodeB software management

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    30/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 30, 113

    5.3 O&M Security Management Principle and Design

    This section describes O&M security management and design, it include the ports which should be

    enable on the firewall and BAM anti-virus recommendation. O&M design can guarantee the RANsecurity.

    5.3.1 RAN OM TCP/UDP Port Design

    Table 5-3lists the ports used for services of RNC. It needs to enable the ports on the firewall according

    to VTR requirements.

    Table 5-3TCP/UDP ports of RNC

    Port Number TCP & UDP Client & Serv Port Description

    21 TCP Server FTP

    20 TCP Server FTP

    1234 UDP Client SNTP client

    3389 TCP Server Remote Windows desktop

    (maintaining the OMU through

    MSTSC)

    6000 TCP Server MML maintenance port

    6001 TCP Server Alarm console

    6006 TCP Server LMT maintenance port

    6007 TCP Server MML debugging console

    6088 TCP Server Huawei-defined protocol

    (remote upgrade tool)

    6099 TCP Server Data synchronization with the M2000

    6100 TCP Server Alarm box

    16002 TCP Server The port that actively rep

    performance messages

    Table 5-4 lists the ports used for services of NodeB. It needs to enable the ports on the firewallaccording to VTR requirements.

    Table 5-4TCP/UDP ports of NodeB

    Port Number TCP & UDP Client & Serv Port Description

    21 TCP Server FTP

    6000 TCP Server MML maintenance port

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    31/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 31, 113

    6001 TCP Server Alarm console

    6006 TCP Server LMT maintenance port

    6007 TCP Server MML debugging console

    5.4 NE Time Synchronization Principle and Design

    This section describes policy design for time synchronization of the RNC and the NodeB.

    5.4.1 NodeB Time Synchronization Design

    The NodeB can be set to SNTP client only. The RNC, M2000, or the server provided by VTR can be set

    as the time synchronization server of the NodeB. The NodeB time synchronization server recommendedby Huawei is the M2000. Table 5-5lists time synchronization parameters.

    Table 5-5Recommended NodeB time synchronization parameters

    Time Synchronization Parameter Recommended Value

    Time synchronization server M2000

    Address of the time clock synchronization server IP address of the M2000 server

    Time synchronization period 6 hours

    Number of the port used by the time synchronizaserver

    123

    Figure 5-11Logical line of NodeB time synchronization

    5.4.2 RNC Time Synchronization Design

    It can set the M2000 or the time synchronization server provided by VTR as the RNC timesynchronization server. The RNC time synchronization server recommended by Huawei is directly

    connected to the NTP Server. If not possible, the M2000 can be configured as the server. Table 5-6liststime synchronization parameters. In addition, it can also configure up to 16 time synchronization servers

    on the RNC.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    32/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 32, 113

    Table 5-6Recommended RNC time synchronization parameters

    Time Synchronization Parameter Recommended Value

    Time synchronization server NTP Server

    Address of the time synchronization server IP address of the NTP Server

    Time synchronization period 60 minutes

    Number of the port used by the time synchroniza

    server

    123

    5.4.3 M2000 Time Synchronization Design

    The M2000 time synchronization server is directly connected to the NTP Server provided by the

    customer. If not possible, the M2000 can be configured as the server. Table 5-67 lists time

    synchronization parameters.

    Table 5-7Recommended M2000 time synchronization parameters

    Time Synchronization Parameter Recommended Value

    Time synchronization server Customer NTP Server

    Address of the time synchronization server IP address of the NTP Server

    Time synchronization period 60 minutes

    Number of the port used by the time synchroniza

    server

    123

    Figure 5-12Logical line of RNC time synchronization

    NTPServer

    Router RNC

    Time Synchronization

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    33/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 33, 113

    6 RAN System ClockSynchronization Design

    This chapter describes the system clock source design of the RNC and NodeB and flow directions ofrelevant system clocks.

    6.1 RNC System Clock Source Design

    Considering situations of VTR target network, based on IP Network and the deployment by using GEinterfaces, it is not necessary provide a clock source for the RNC. This is due the fact that the IP

    Network can guarantee the data sending, therefore, if some package is lost, it can be sent again.

    6.2 NodeB System Clock Source Design

    The Iub interface uses the IP transport. Therefore, it is recommended to set the NodeB to extract clock

    signals from the IPCLK1000 nearest to the connected NodeB. The NodeB requires that the timeprecision should be +/-0.05 ppm. For all current RNCs, one IPClock will be installed as they willprovide the clock signal to the North, South, Central and Santiago regions. At the same time, these

    IPClocks will have a backup IPClock running in a different location in Santiago that will provide abackup signal in case one of the other four equipments malfunctions. This type of backup will be

    describes as N+1 type.Figure 6-1shows the recommended NodeB system clock source.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    34/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 34, 113

    Figure 6-1System clock stream of the NodeB

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    35/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 35, 113

    7 RAN Resource DistributedDesign

    This chapter describes optimization design for RNC capabilities, involving board configuration, the port

    controller, NodeB allocation, and signaling links allocation.

    7.1 RAN Hardware Resource Layout Principle

    The V200R011 RNC supports the following boards: OMUa, SCUa, SPUa, CSUa, GCUa, GCGa, DPUb,

    AEUa, AOUa, UOIa, PEUa, FG2a, GOUa, PFCU, MDMC, and WOPB. The PFCU is configured in thefan box. The MDMC and WOPB boards are configured in the power distribution box. Other boards areconfigured in the subrack of the RNC.

    The RSS and RBS each contain 28 slots. In the RSS, slots 20 to 23 are used to house two OMUa boards

    and other slots are used to house other boards on a one-to-one basis. The board structure is the same inthe RSS and RBS. That is, the backplane is configured in the center of the subrack and the front and rear

    boards are installed on both sides of the backplane respectively, as shown in Figure 7-1.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    36/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 36, 113

    Figure 7-1General board structure in a subrack

    Two adjacent odd and even slots on one side of the backplane are a pair of active and standby slots. Forexample, slots 0 and 1 are a pair of active and standby slots, and slots 2 and 3 are a pair of active andstandby slots. A pair of active/standby boards needs to be configured in a pair of active and standby

    slots.

    The slots in which the boards of different types can be configured need to meet the board configurationrules of the RNC. In addition, reasonable resource allocation and scalability also need to be considered.

    The following section describes the distribution policy for OMUa, SCUa, SPUa, GCUa, DPUb, AOUa,and GOUa boards.

    7.1.1 RNC SPU Board Layout Design

    The SPUa performs the signaling processing function. Before configuring SPUa board, plan the slotnumber in advance.

    Slot Constraints of the SPUa Board

    Slot constraints of the SPUa board in the V200R012 RSS and RBS are as follows:

    The SPUa board can be configured in slots 0 to 5 and 8-11 in the subracks. Two adjacent oddand even slots are a pair of active and standby slots. For example, slots 0 and 1 are a pair ofactive and standby slots, and slots 2 and 3 are a pair of active and standby slots.

    Considering future network development, HLD considers network expansion and evolution in advance.

    Table 7-1lists the recommended configuration rules for the SPUa board.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    37/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 37, 113

    Table 7-1Configuration rules for the SPUa board

    SN Configuration Rule for the SPUa Board

    1 Configure the SPUa board in slots 0 to 5 and 8-11.

    2 Configure the SPUa board in the active/standby mode.

    The maximum configuration in RSS Subrack support 2 pairs (active/standby) boards meanwhile the RBS

    Subrack support 3 pairs (active/standby).

    Table 7-2SPUa board Processing Capability

    Board Capability

    Processing Capability of themain control SPUa board

    Support 100 Node B, 300 Cells and 67,500 BHCA.

    Each SPU subsystem support 25 Node B, 75 Cells and 168,75BHCA

    Processing Capability of the n

    main control SPUa board

    Support 100 Node B, 300 Cells and 90,000 BHCA. Each SPU

    subsystem support 25 Node B, 75 Cells and 22500 BHCA.

    7.1.2 RNC DPU Board Layout Design

    The DPUb board processes and distributes service data flows on the user plane. Before configuring a

    DPUb board, plan the slot number in advance.

    Slot Constraints of the DPUb Board

    Slot constraints of the DPU in the V200R011 RSS and RBS are as follows:

    The DPU is configured in slots 8 to 11 and 14 to19 in the RSS.

    The DPU is configured in slots 8 to 19 in the RSS.

    One DPUb board can support 150 cells.

    The maximum configuration in RSS Subrack support 4 DPUb boards meanwhile RBS Subrack

    support 6 DPUb boards.

    Table 7-3DPUb board Processing Capability

    Board Capability

    DPUb board Supporting 96 Mbit/s (DL+UL) data streams;

    Supporting 1,500 Erlang CS voice services;

    Supporting 750 Erlang CS data services;

    Supporting 150 cells

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    38/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 38, 113

    7.1.3 RNC Transmission Interface Boards Layout Design

    The V200R011RNC supports the following interface boards: AEUa, AOUa, UOIa, PEUa, FG2a, and

    GOUa. Before board configuration, plan the slots of all interface boards.

    Because the RNC RM1301/RM1302/AN201/BB801 uses the GOUc boards only, this section describes

    the configuration principles and optimization design of this board only.

    Slot Constraints of Interface Boards

    Slot constraints of interface boards in the V200R011 RSS and RSS are as follows:

    Interface boards are selectively configured in the RSS. The number of interface boards

    depends on the requirement. Interface boards can be configured in idle slots (slots 14 to 19,and slots 24 to 27) in the RSS .The boards in two adjacent odd and event slots can be or not

    be a pair of active/standby boards.

    Considering future network expansion and evolution, configuration interface boards from slot 27 indescending order is recommended.

    Considering the reliability, configuration interface boards in the active/standby mode is recommended.

    Configuring the Iu/Iur Interface Board

    The star connection is used in data switching between subracks of the RNC. The RSS serves as the mainsubrack and the RBS serves as the extension subrack. The SCUa board of the RBS is connected to the

    SCUa board of the RSS through the Ethernet cable, and the GE switching between subracks isimplemented through the RSS, as shown in the following figure.

    Figure 7-2Internal data switching of the RNC

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    39/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 39, 113

    The subracks of the RNC are connected in the star mode. The data between any two RBSs is switched

    through the RSS. If the Iu/Iur interface is configured in an RBS only and is not configured in the RSS,

    the services on other RBSs are interrupted provided that the RBS or the RSS is faulty.

    It is recommended to configure the Iu/Iur interface on the RSS first.

    Configuring the Iub Interface Board

    Table 7-4Configuration rules for interface boards

    SN Configuration Rule for Interface Board

    1 Configure interface boards in the active/standby mode.

    2 Distribute Iub interface boards on each subrack evenly.

    Table 7-5GOUc board Processing Capability

    Interface Capability

    Voice Service in the CS Domain 18000 Erlang

    Data Service in the CS Domain 18000 Erlang

    IUB

    Maximum Payload Throughput (UL+DL) 2600 Mbit/s

    Voice Service in the CS Domain 18000 Erlang

    Data Service in the CS Domain 18000 Erlang

    IUR

    Maximum Payload Throughput (UL+DL) 2600 Mbit/s

    Voice Service in the CS Domain 18000 ErlangIU-CS

    Data Service in the CS Domain 9000 Erlang

    IU-PS Maximum Payload Throughput (UL+DL) 3200 Mbit/s

    7.1.4 RNC Other Types of Boards Layout Design

    Other boards used by the VTR RNCs include the OMUa board, SCUa board, and GCUa board. The slotnumbers of these boards are fixed. Insert them properly.

    Slot Constraints of the OMUa Board

    The OMUa board is the BAM of the RNC. In the RNC operating system, the OMUa board serves as a

    bridge for the communication between the O&M terminal and other boards of the RNC.

    The RNC can be configured with one or two OMUa boards. The OMUa board is constantly configured

    in slots 20 and 21, or slots 22 and 23 in the RSS. The OMUa board is two times thicker than other

    boards. Therefore, each OMUa board occupies two slots.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    40/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 40, 113

    In terms of reliability, it is required to configure a pair of active and standby OMUa boards for one

    RNC.

    Slot Constraints of the SCUa Board

    The SCUa board implements internal switching of the RNC. The SCUa board in the RSS implements

    central switching function. The SCUa board in the RBS implements level-2 switching. This implements

    internal two-level MAC switching of the RNC and full interconnection among various modules of theRNC.

    Two SCUa boards are constantly configured in slots 6 and 7 in each RSS and RBS.

    Slot Constraints of the GCUa Board

    Two GCUa boards must be configured in slots 12 and 13 in the RSS.

    7.1.5 Boards Distribution Layout

    Figure 7-3shows the board configuration of the RNC_RM1301 according to the preceding design rulesfor board configuration.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    41/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 41, 113

    Figure 7-3Board configuration for the RNC_RM1301

    Figure 7-4Board configuration for the RNC_RM1302

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    42/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 42, 113

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    43/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 43, 113

    Figure 7-5Board configuration for the RNC_AN201

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    44/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 44, 113

    Figure 7-6Board configuration for the RNC_BB801

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    45/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 45, 113

    7.2 Transmission Resource Distribution Design

    Port Controller

    A port controller is the control SPU subsystem of a port. The ports can be classified into seven types:

    Ethernet port, PPP link, MLPPP link, UNI link, IMA link, fractional ATM (FRAATM) port, andunchannelized (NCOPT) electrical port.

    The path of a port can be available and can provide transmission resources for upper-layer services only

    after a port controller is specified for the port.

    Therefore, a port controller must be specified for each port to be used.

    7.3 NodeBs Distribution in SPUs Design

    When adding a NodeB to an RNC, a control SPU subsystem is specified to the NodeB. Figure7-7 showsthe Iub interface links in the IP networking.

    Figure 7-7Iub interface links in the IP networking

    Configuration Constraints of the Control SPU Subsystem

    Specifying a control SPU subsystem for a NodeB is subject to the following constraints:

    The control SPU subsystem and physical bearer can be in different subracks.

    Each SPU board can be configured with up to 100 NodeBs, except the first SPU which can beconfigured with 75 NodeBs.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    46/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 46, 113

    NodeB Distribution the SPU Subsystem

    For NodeB distribution we should consider some points:

    It is recommended to try to balance the traffic load of the NodeBs through the subsystems of the SPU.

    Each SPU has four subsystems. The best policy to deploy these NodeBs is aggregate them in similargroups. It means put the same number of high traffic NodeBs in different subsystems from the same

    SPU.

    This NodeB allocation was done according to the numbers of NodeBs. However, according to the

    subscribers and traffic increasing, a new network analysis can be provided and also a resourceoptimization service.

    The RNC_RM1302 RNC has 6 SPUa board (3 pairs, active/standby). The below table lists the detailed

    distribution of NodeBs.

    Table 7-6NodeB distribution on the SPU

    SPU No.Number ofNodeBs

    SPUSubsystem

    Number ofNodeBs

    SPUSubsystem

    Number ofNodeBs

    0/0 81 0/2 108 0/4 108

    The RNC_RM1301 RNC has 8 SPUa board (4 pairs, active/standby). The below table lists the detaileddistribution of NodeBs.

    Table 7-7NodeB distribution on the SPU

    SPU No.Number ofNodeBs

    SPU No.Number ofNodeBs

    SPU No.Number ofNodeBs

    SPU No.Number ofNodeBs

    0/2 84 0/4 114 1/2 84 1/4 114

    The RNC_BB801 has 4 SPUa board (2 pairs, active/standby). The below table lists the detailed

    distribution of NodeBs.

    Table 7-8NodeB distribution on the SPU

    SPU No.Number ofNodeBs

    SPU No.Number ofNodeBs

    0/2 112 0/4 152

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    47/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 47, 113

    The RNC_AN201 has 4 SPUa board (2 pairs, active/standby). The below table lists the detailed

    distribution of NodeBs.

    Table 7-9NodeB distribution on the SPU

    SPU No.Number ofNodeBs

    SPU No.Number ofNodeBs

    0/2 35 0/4 45

    7.4 IU and Iur Signaling links Distribution in SPUs Design

    Figure 7-8shows signaling plane links of the IuCS/IuPS interface in the IP networking.

    Figure 7-8Signaling plane links of the IuCS/IuPS interface in the IP networking

    M3UA links belong to the M3UA signaling link set and are numbered from 0 to 63. M3UA links are

    carried on SCTP links.

    The MSC and SGSN are directly connected to the RNCs. Therefore, M3UA links are terminated on and

    connected to the MSC and SGSN.

    Quantity Design of Signaling Links

    The recommended number of SCTP links ranges from 2 to 16. Select a proper number of SCTP links

    according to the traffic calculated on the Iu signaling plane. To facilitate mask configuration, it is

    recommended to configure the number of SCTP links as the exponential of 2, that is, 2/4/8/16. If thenumber of SCTP links is set to an odd number, such as 3, the traffic of one SCTP link is two times the

    traffic of other SCTP links no matter how the masks are configured.

    According to the interconnection experience of Huawei commercial network, it is recommended to

    configure signaling links according to the rules described as below:

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    48/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 48, 113

    Table 7-10Configuration rules for signaling links

    SignalingRoute MaskandSignalingLink MaskDesign

    VTRhas only one signaling route and it is recommended to set the signaling route mask to B0000 and the

    signaling link mask to B1111.

    Design Result of Signaling Links

    The RNC_RM1302 has two subracks. Therefore, 4 SCTP links are recommended between the RNC and the MSC

    and SGSN, and two SCTP links between the RNC and each NRNC. The below table lists the configuration results.Note: For SPU Subsystem No, consider X/Y/Z where X is the Subrack Number, Y the Slot Number where the

    SPUa board is allocated and Z as the SPU susbsystem number where the Signaling Link is allocated

    Table 7-11Signaling link allocation

    The

    RNC_A

    N201,RNC_R

    M1302and

    RNC_BB801

    haveone

    subrack. Therefore, 2 SCTP links are recommended between the RNC and the MSC and SGSN, The

    below table lists the configuration results.

    Table 7-12Signaling link allocation

    Interface Signaling Link No. SPU Subsystem No.

    0 0/4/1IuCS

    1 0/4/2

    IuPS 0 0/2/1

    Configuration Rules for Signaling Links

    The RNC has only one subrack. It is recommended to configure two SCTP links on the

    signaling plane between the RNC and the peer signalingpoint (MSC, SGSN and NRNC).

    The RNC has two or more

    subracks.

    It is recommended to configure four SCTP links on the

    signaling plane between the RNC and the peer signalingpoint (MSC or SGSN).

    It is recommended to configure two SCTP links on thesignaling plane between the RNC and the NRNC.

    Interface Signaling Link No. SPU Subsystem No.

    0 0/2/1

    1 0/4/0

    2 1/2/1

    IuCS

    3 1/4/0

    0 0/2/2

    1 0/4/1

    2 1/2/2

    IuPS

    3 1/4/1

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    49/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 49, 113

    Interface Signaling Link No. SPU Subsystem No.

    1 0/2/3

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    50/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 50, 113

    8 RAN Transmission InterfaceCapability Design

    This chapter describes how to calculate the throughput of the IuCS/IuPS/Iur/Iub interface and thenumber of ports on the interface boards in the all RNC according to the traffic model provided by the

    VTR. In addition, this chapter also provides recommended transmission configurations on the control

    plane and user plane of each interface according to the calculated interface throughput.

    8.1 Iu CS Transmission Interface Capability Design

    The throughput of the Iu CS interface is calculated based on the traffic model provided by VTR, the

    number of NodeBs configured in each RNC, and the number of subscribers supported by the each RNC.

    8.1.1 Total Iu CS User Plane Throughput Estimation

    The throughput of the Iu CS interface on the user plane consists of CS voice and CS data. The belowtable lists the calculated interface throughput.

    Table 8-1Throughput of the Iu CS interface on the user plane RM1301

    Item Value

    IuCS CS voice (Erl) 2710

    Table 8-2Throughput of the Iu CS interface on the user plane RM1302

    Item Value

    IuCS CS voice (Erl) 1683

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    51/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 51, 113

    Table 8-3Throughput of the Iu CS interface on the user plane AN201

    Item Value

    IuCS CS voice (Erl) 562

    Table 8-4Throughput of the Iu CS interface on the user plane BB801

    Item Value

    IuCS CS voice (Erl) 2509

    8.1.2 Total Iu CS Control Plane Throughput Estimation

    The below tables list the calculation results.

    Table 8-5Throughput of the Iu CS interface on the control plane for RM1301

    Item Value

    IuCS control plane throughput (Mbps) 5.20

    Table 8-6Throughput of the Iu CS interface on the control plane for RM1302

    Item Value

    IuCS control plane throughput (Mbps) 3.23

    Table 8-7Throughput of the Iu CS interface on the control plane for AN201

    Item Value

    IuCS control plane throughput (Mbps) 1.01

    Table 8-8Throughput of the Iu CS interface on the control plane for BB801

    Item Value

    IuCS control plane throughput (Mbps) 4.82

    Note: IuCS control plane throughput (Mbps)=3%* IuCS user plane throughput (Mbps),

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    52/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 52, 113

    8.1.3 Total Number of Ports for Iu CS Transmission on RNCCalculation

    All RNC IP transmission uses the GOUc board. The GOUc board provides 4 GE optical interfaces, andthe rate is 1 Gbps.

    Based on the IuCS user plane throughput, IuCS control plane throughput, the number of the GOUc ports

    required by the IuCS interface is calculated.

    The below table lists the active number of GOUc ports required by the IuCS interface.

    Table 8-9Number of active GOUcports for RM1301

    GE Active Port Number

    IuCS 1

    Table 8-10Number of active GOUcports for RM1302

    GE Active Port Number

    IuCS 1

    Table 8-11Number of active GOUcports for AN201

    GE Active Port Number

    IuCS 1

    Table 8-12Number of active GOUcports for BB801

    GE Active Port Number

    IuCS 1

    8.2 Iu PS Transmission Interface Capability Design

    The throughput of the Iu PS interface is calculated according to the traffic model of the VTR, the

    number of NodeBs configured in the RNCs, and the number of subscribers supported by the RNCs.

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    53/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 53, 113

    8.2.1 Total Iu PS User Plane Throughput Estimation

    Table 8-13Throughput of the Iu PS interface on the user plane for RM1301

    Item Value

    PS DL Throughput (Mbps) 2479

    PS UL Throughput (Mbps) 1062

    Table 8-14Throughput of the Iu PS interface on the user plane for RM1302

    Item Value

    PS DL Throughput (Mbps) 999

    PS UL Throughput (Mbps) 426

    Table 8-15Throughput of the Iu PS interface on the user plane for AN201

    Item Value

    PS DL Throughput (Mbps) 622

    PS UL Throughput (Mbps) 267

    Table 8-16 Throughput of the Iu PS interface on the user plane for BB801

    Item Value

    PS DL Throughput (Mbps) 897

    PS UL Throughput (Mbps) 377

    8.2.2 Total Iu PS Control Plane Throughput Estimation

    The below table lists the calculation results.

    Table 8-17Throughput of the Iu PS interface on the control plane for RM1301

    Item Value

    IuPS control plane throughput (Mbps) 24.8

    Table 8-18Throughput of the Iu PS interface on the control plane for RM1302

    Item Value

    IuPS control plane throughput (Mbps) 10

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    54/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 54, 113

    Table 8-19Throughput of the Iu PS interface on the control plane for AN201

    Item Value

    IuPS control plane throughput (Mbps) 6.2

    Table 8-20Throughput of the Iu PS interface on the control plane for BB801

    Item Value

    IuPS control plane throughput (Mbps) 9

    Note:IuPS control plane throughput (Mbps)=1%*IuPS user plane throughput (Mbps)

    8.2.3 Total Number of Ports for Iu PS Transmission on RNCCalculation

    All RNC IP transmission uses the GOUc board. The GOUc board provides two GE optical interfaceswith the rate 1 Gbps.

    Based on the IuPS user plane throughput and IuPS control plane throughput, the number of the GOUc

    ports required by the Iu PS interface is calculated.

    The below table lists the number of active GOUc ports required by the Iu PS interface.

    Table 8-21Number of active GOUcports for RM1301

    GE Active Port Number

    IuPS 4

    Table 8-22Number of active GOUcports for RM1302

    GE Active Port Number

    IuPS 2

    Table 8-23Number of active GOUcports for AN201

    GE Active Port Number

    IuPS 1

    Table 8-24Number of active GOUcports for BB801

    GE Active Port Number

    IuPS 2

  • 8/10/2019 IPRAN Network High Level Design for Project VTRRAN12

    55/113

    IPRAN Network High Level Design for Project VTRRAN12 Security Level: Internal

    2013-11-1 , 55, 113

    8.3 Iub Transmission Interface Capability Design

    This section describes how to calculate the traffic and throughput of the Iub interface and how to

    calculate the required IP ports.

    8.3.1 Traffic Mapping on IP Strategy Design

    IP transport networking of the Iub interface indicates that the protocol (IP) stack networking is usedbetween the RNC and the NodeB.

    With the development of data services, especially the introduction of the HSDPA/HSUPA, the Iub

    interface has larger and larger requirements for transmission bandwidth. Introducing the IP transmissiontechnology can save the cost.

    IP transport Networking

    IP transport can transmit the services of different QoS in different ways. IP transmission is used for

    services of low QoS, such as HSDPA and HSUPA services. Figure 8-1 shows the IP transport

    networking.

    Figure 8-1IP transport networking

    The VTR RNC is configured with the IP interface board (GOUc). The IP interface board is connected to

    the IP transmission network through the GE port.

    The NodeB is connected to the IP transmission networks through the corresponding IP interface boards.

    The FE networking is used in VTR.

    Service Mapping and Transmission Resource Allocation Principle

    For transmission resource allocation in IP transport of the Iub interface, it is recommended to:

    Use IP transmi