31
CALCULUS OF V ARIA TIONS IN DISCRETE SP ACE FOR CONSTRAINED NONLINEAR DYNAMIC OPTIMIZATION Yixin Chen and Benjamin W. Wah Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign Urbana, IL 61801, USA ICTAI 2002, USA November 4, 2002

Introduction to the Calculus of variations

Embed Size (px)

Citation preview

Page 1: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 1/31

CALCULUS OF VARIATIONS IN DISCRETE SPACE

FOR CONSTRAINED NONLINEAR DYNAMIC

OPTIMIZATION

Yixin Chen and Benjamin W. Wah

Department of Electrical and Computer Engineering

and the Coordinated Science LaboratoryUniversity of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

ICTAI 2002, USA

November 4, 2002

Page 2: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 2/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization

Outline

• Introduction

– Discrete-space dynamic optimization problems

– Existing approaches

• Calculus of variations in discrete time and discrete state space

– Necessary and sufficient conditions for constrained local minima

– Variational search algorithm with node dominance

• Implementations in ASPEN

– Some sample results

• Conclusions

Yixin Chen and Benjamin W. Wah 1

Page 3: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 3/31

INTRODUCTION

Page 4: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 4/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Introduction

Dynamic Optimization Problems

Optimization problems with time varying dynamic variables

Control theory and

classical theory of calculus of variations

StateTime

DiscreteContinuous

Continuous

Continuous−state

DiscreteDiscrete−state

Continuous−state

Discrete−time

Continuous−time

Continuous−time

Discrete−time

Discrete−state

Yixin Chen and Benjamin W. Wah 3

Page 5: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 5/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Introduction

Discrete-Time Discrete-State Constrained Dynamic Problems

General Constraints I(Y) = 0

Constraints

G(0) G(1) G(N)

Functional

Objective

F(0) F(1) F(N)

Lagrange

y(0) y(1) y(N) y(N+1)

E(N+1)E(N)E(1)Constraints

E(0)

Local

minimize J [{y( j)}] =N 

 j=0

F ( j, y( j + 1), y( j)) (1)

s.t. G( j, y( j + 1), y( j)) = 0, j = 0, 1, · · · , N  (2)

E ( j, y(y)) = 0, (3)I (Y ) = 0 (4)

where y( j) is defined in discrete  space Y ,F 

,G

andI 

arenot 

necessarily continuous or differentiableYixin Chen and Benjamin W. Wah 4

Page 6: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 6/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Introduction

Unconstrained Problems or Problems with Lagrange Constraints

• Path Dominance: Principle of Optimality

– Principle of Optimality in dynamic programming applied on feasible state c

J 2 ≤ J 1 =⇒ P 2 → P 1

s

P 2

P 1

J 2J 1 c

Stage t If c lies on the optimalpath between s and d and

• Polynomial worst-case complexity: O

N |Y|2

Yixin Chen and Benjamin W. Wah 5

Page 7: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 7/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Introduction

Problems with General Constraints

• Path dominance not applicable

– A dominating path may become infeasible due to general constraints

– Exponential worst-case complexity: O

|Y|N 

, assuming NP hard

• Node dominance applicable

node

relationdominance

node dominance relations

c2

P 1c1

Termination of c1 by

– Worst-case complexity without path dominance: O

N |Y||s|N 

∗ Assuming |s| nodes are not pruned in each stage

∗ Substantially less than O(|Y|N ) when |s| |Y|

Yixin Chen and Benjamin W. Wah 6

Page 8: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 8/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Introduction

Benefits of Using Node Dominance

 

Dominated nodes at each stage

      |       s      |    N     +     2

        b     u     n        d        l     e     s

s

Utilizing node dominance

Not utilizing node dominance Dominating nodes at each stage

Stage 0 Stage 1 Stage N + 1

Y Y Y 

ss

Complexity of each iteration is (N + 2)|Y|

      |     Y      |    N     +     2

        b     u     n        d        l     e     s

Yixin Chen and Benjamin W. Wah 7

Page 9: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 9/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Introduction

Worst-Case Complexities in Path and Node Dominance

Constraint Without General Constraints With General ConstraintsType (Conventional DP) (Without Path Dominance)

Dominance With Path With Path and Without Node With NodeUsed Dominance Node Dominance Dominance Dominance

Complexity O

N |Y|2

O

N |Y| + N |s|2

O

|Y|N 

O

N |Y||s|N 

Node dominance works well when |s| |Y|

Yixin Chen and Benjamin W. Wah 8

Page 10: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 10/31

CALCULUS OF VARIATIONS IN DISCRETE SPACE

Page 11: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 11/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Calculus of Variations in Discrete Space

Constrained Local-Minimum Bundle in Discrete Space

• State vector s in discrete state space Y  has user-defined discrete neighborhood

• Discrete neighborhood of bundle Y  = {y( j)} is the union of discrete

neighborhoods of all stages, each defined on neighborhoods of states in each stage

Bundle Y

• Bundle Y  is a constrained local minimum in discrete space (CLM dn) if 

– Y  is feasible

– No feasible bundle in N b(Y ) has better functional value than J [Y ]

Yixin Chen and Benjamin W. Wah 10

Page 12: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 12/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Calculus of Variations in Discrete Space

Solving Overall Problem using Discrete-Space Lagrangian Theory

• First-order necessary and sufficient conditions based on the theory of Lagrangemultipliers in discrete space

Saddle Point Conditions(SP dn)

First-order conditions ⇐⇒

CLM dn ⇐⇒

O(|Y |N )

Overall Search Space

Yixin Chen and Benjamin W. Wah 11

Page 13: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 13/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Calculus of Variations in Discrete Space

Intuitive Meaning Behind Saddle Points

dynamicallyvarying

(h(x) = 0)

(∆xL(x, λ) = 0)

minx[f (x) + λT H (h(x))]↓

λ↑λ↑

Penalties λ are constraints are satisfied

Gradient descents in x space

Equilibrium point where

to reduce objective function

space to increase penalties

on violated constraints

Gradient ascents in λ

and constraint violations

and objective is minimum

Yixin Chen and Benjamin W. Wah 12

Page 14: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 14/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Calculus of Variations in Discrete Space

Discrete-Time Discrete-State Euler-Lagrange Equation

• Decompose first-order condition into Discrete-Space Euler-Lagrange Equations

(ELE dn) for each stage

• Decompose SP dn in into N  + 2 distributed saddle-point conditions DSP dn

• Distributed necessary and sufficient conditions for CLM dn

   ¨

   ©CLM dn ≡ ELE dn ≡ DSP dn

– Only necessary when there are general constraints

• Differences from continuous variational calculus theory

– Do not require differentiability or continuity of functions

– Continuous ELE conditions are only necessary but not sufficient, even in the

absence of general constraints

Yixin Chen and Benjamin W. Wah 13

Page 15: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 15/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Calculus of Variations in Discrete Space

Solving Distributed Subproblems Using Node Dominance

General Constraints

      |       s      |    N     +     2

        b     u     n        d        l     e     s

s

Stage N+1

      |     Y      |    N     +     2

        b     u     n        d        l     e     s

s s

Y Y 

Stage 0 Stage 1

Yixin Chen and Benjamin W. Wah 14

Page 16: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 16/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Calculus of Variations in Discrete Space

Heuristic Search Procedure For Finding DSP dn

stopY

N

Y

N

Stopping condition

met?

Generate new candidate(s)

in the µ subspace µ loop

Search in

µ subspace?

Start in stage 0 in stage 1

Find SP dn Find SP dn Find SP dn

in stage N + 1

Local Descent in x subspace

Local Ascent in λ subspace

Constrained Simulated Annealing(CSA):

Yixin Chen and Benjamin W. Wah 15

Page 17: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 17/31

DEMONSTRATIONS ON ASPEN

Page 18: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 18/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Demonstrations on ASPEN

ASPEN Planner

• Automated Scheduling and Planning Environment at Jet Propulsion Laboratory

• ASPEN models have discrete time horizons

– Each time point is a stage

– Adjacent time points can be collapsed into a single stage

– Current implementation: maximum 100 stages• ASPEN repair/optimization actions provide promising descent directions in

state-variable subspace

– Repair actions: resolve conflicts

– Optimization actions: optimize preferences

• ASPEN does not have the UNDO mechanism

Yixin Chen and Benjamin W. Wah 17

Page 19: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 19/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Demonstrations on ASPEN

Distributed Lagrangian Formulation

• Assign each conflict ci a unique Lagrange Multiplier λi

• Augmented distributed Lagrangian function of stage t:

Γdn(t) = −ws · Score +

ci∈C (t)

λi ∗ H (ci) +

ci∈C (t)

H (ci)2

2

– ws: weight of score

– Score: preference score of schedule

– C (t): set of conflicts whose time duration intersects with stage t

– H (ci): non-negative value assigned to a conflict reflecting its degree of violation

∗ H (ci) = 1 in current implementation

Yixin Chen and Benjamin W. Wah 18

Page 20: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 20/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Demonstrations on ASPEN

Distributed Heuristic Search for Finding SP dn in Stage t

• Descent of  Γdn(t) in state subspace

– Choose probabilistically from repair actions and optimization actions

– Select random feasible action at each choice point– Apply selected action to current schedule in a child process

– Evaluate Γdn(t) of the new schedule

– Accept new schedule according to Metropolis probability controlled by ageometrically decreasing temperature

– Repeat action in parent process if accepted; otherwise, discard result of child

process (overcome lack of UNDO but limited to 3685 forks)

• Ascent of  Γdn(t) in Lagrange-multiplier subspace

λi ←− λi + αiH (ci)

Yixin Chen and Benjamin W. Wah 19

Page 21: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 21/31

SOME SAMPLE RESULTS

Page 22: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 22/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Benchmark CX1-PREF

• Citizen Explorer-I satellite design and operation planning benchmark

–Multiple competing preferences to be optimized

– Problem generator to generate different problem instances

 perl probgen.pl < random seed > < number of orbits >

• ASPEN search setting:

a) Find feasible schedule using repair 

b) Optimize score using optimize  (default 200 iterations)

c) repeat (a) and (b)

Yixin Chen and Benjamin W. Wah 21

Page 23: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 23/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Best Feasible Solution on an 8-Orbit Problem

0.7488

0.749

0.74920.7494

0.7496

0.7498

0.75

0.7502

0 10000 20000

   B  e  s   t   F  e  a  s   i   b   l  e   S  c  o  r  e

Iteration

ASPENASPEN+DCV+CSA

CSA

Yixin Chen and Benjamin W. Wah 22

Page 24: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 24/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Search Progress on an 8-Orbit Problem

• Conflicts vs. Iteration:

0

100

200

300400

500

600

0 10000 20000

   N  u  m   b  e  r  o   f   C  o

  n   f   l   i  c   t  s

Iteration

ASPEN solving CX1-PREF Benchmark with 8 Orbits

ASPEN

0

100

200

300400

500

600

0 10000 20000

   N  u  m   b  e  r  o   f   C  o

  n   f   l   i  c   t  s

Iteration

ASPEN+DCV+CSA solving CX1-PREF Benchmark with 8 Orbits

ASPEN+DCV+CSA

• Score vs. Iteration:

0.30.350.4

0.450.5

0.550.6

0.650.7

0.750.8

0 10000 20000

   O   b   j  e  c

   t   i  v  e   S  c  o  r  e

Iteration

ASPEN solving CX1-PREF Benchmark with 8 Orbits

ASPEN

0.30.350.4

0.450.5

0.550.6

0.650.7

0.750.8

0 10000 20000

   O   b   j  e  c

   t   i  v  e   S  c  o  r  e

Iteration

ASPEN+DCV+CSA solving CX1-PREF Benchmark with 8 Orbits

ASPEN+DCV+CSA

Yixin Chen and Benjamin W. Wah 23

Page 25: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 25/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Best Feasible Solution on a 16-Orbit Problem

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10000 20000 30000 40000 50000

   B  e  s   t   F  e  a  s   i   b   l  e   S  c  o  r  e

Iteration

ASPENASPEN+DCV+CSA

CSA

Yixin Chen and Benjamin W. Wah 24

Page 26: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 26/31

Page 27: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 27/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Best Feasible Solution on OPTIMIZE Benchmark

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0 10000 20000 30000 40000 50000

   B  e  s   t   F  e  a  s   i   b   l  e   S  c  o  r  e

Iteration

ASPENASPEN+DCV+CSA

CSA

Yixin Chen and Benjamin W. Wah 26

Page 28: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 28/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Search Progress on OPTIMIZE Benchmark

• Conflicts vs. Iteration:

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000

   N  u  m   b  e  r  o   f   C  o

  n   f   l   i  c   t  s

Iteration

ASPEN solving OPTIMIZE Benchmark 

ASPEN

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000

   N  u  m   b  e  r  o   f   C  o

  n   f   l   i  c   t  s

Iteration

ASPEN+DCV+CSA solving OPTIMIZE Benchmark 

ASPEN+DCV+CSA

• Score vs. Iteration:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000

   O   b   j  e  c   t   i  v  e   S  c  o  r  e

Iteration

ASPEN solving OPTIMIZE Benchmark 

ASPEN0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000

   O   b   j  e  c   t   i  v  e   S  c  o  r  e

Iteration

ASPEN+DCV+CSA solving OPTIMIZE Benchmark 

ASPEN+DCV+CSA

Yixin Chen and Benjamin W. Wah 27

Page 29: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 29/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Best Feasible Solution on PREF Benchmark

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 10000 20000 30000 40000 50000

   B  e  s   t   F  e  a  s   i   b   l  e   S  c  o  r  e

Iteration

ASPEN+DCV+CSAASPEN

CSA

Yixin Chen and Benjamin W. Wah 28

C l l f V D S f C d N l D O S S l R l

Page 30: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 30/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Some Sample Results

Search Progress on PREF Benchmark

• Conflicts vs. Iteration:

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000

   N  u  m   b  e  r  o   f   C  o

  n   f   l   i  c   t  s

Iteration

ASPEN solving PREF Benchmark 

ASPEN

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000

   N  u  m   b  e  r  o   f   C  o

  n   f   l   i  c   t  s

Iteration

ASPEN+DCV+CSA solving PREF Benchmark 

ASPEN+DCV+CSA

• Score vs. Iteration:

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10000 20000 30000 40000 50000

   O   b   j  e  c   t   i  v  e   S  c  o  r  e

Iteration

ASPEN solving PREF Benchmark 

ASPEN

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10000 20000 30000 40000 50000

   O   b   j  e  c   t   i  v  e   S  c  o  r  e

Iteration

ASPEN+DCV+CSA solving PREF Benchmark 

ASPEN+DCV+CSA

Yixin Chen and Benjamin W. Wah 29

C l l f V i ti i Di t S f C t i d N li D i O ti i ti C l i

Page 31: Introduction to the Calculus of variations

7/27/2019 Introduction to the Calculus of variations

http://slidepdf.com/reader/full/introduction-to-the-calculus-of-variations 31/31

Calculus of Variations in Discrete Space for Constrained Nonlinear Dynamic Optimization Conclusions

Conclusions

• Extension of calculus of variations in continuous space to discrete space

• Partitioning general necessary conditions into distributed necessary conditions

• Relying on theory of Lagrange multipliers for discrete constrained optimization

• Significant reduction in the base of the exponential complexity

• Significant improvement in search times with equal or better quality in planning

and scheduling problems as compared to those of ASPEN

Yixin Chen and Benjamin W. Wah 30