17
Introduction to SLGT: Binary Black Hole Coalescence and Gravitational wave detection in 0.1-10 Hz Yeong-Bok Bae (KASI) Sang-Hyeon Ahn (KASI), Gungwon Kang (KISTI), Chunglee Kim (KASI), Whansun Kim (NIMS), John J. Oh (NIMS), Sang Hoon Oh (NIMS), Chan Park (KISTI), Edwin J. Son (NIMS), Yong Ho Lee (KRISS)

Introduction to SLGT: Binary Black Hole Coalescence and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to SLGT: Binary Black Hole Coalescence and

Introduction to SLGT:Binary Black Hole Coalescence and Gravitational wave detection in 0.1-10 Hz

Yeong-Bok Bae (KASI)Sang-Hyeon Ahn (KASI), Gungwon Kang (KISTI), ChungleeKim (KASI), Whansun Kim (NIMS), John J. Oh (NIMS), Sang Hoon Oh (NIMS), Chan Park (KISTI), Edwin J. Son (NIMS), Yong Ho Lee (KRISS)

Page 2: Introduction to SLGT: Binary Black Hole Coalescence and

Outline

β–ͺ Introduction– SLGT

– Binary black holes

β–ͺ Detector and sources– Power spectral density

– Signal to noise ratio

β–ͺ Detection Rate

β–ͺ Summary

Page 3: Introduction to SLGT: Binary Black Hole Coalescence and

KKN & Pilot study for SLGT

β–ͺ KKN (KASI-KISTI-NIMS) collaboration

β–ͺ Pilot study for SLGT is funded by NST (2017.03.01.~2017.12.31.)

KASI (Korea Astronomy & Space Science Institute

KISTI(Korea Institute of Science and Technology Information)

NIMS (National Institute for Mathematical Science)

Page 4: Introduction to SLGT: Binary Black Hole Coalescence and

Introduction to SLGT

β–ͺ SLGT (Superconducting Low-frequency Gravitational-wave Telescope)– SOGRO (Superconducting Omin-directional Gravitational Radiation

Observatory)

Page 5: Introduction to SLGT: Binary Black Hole Coalescence and

Introduction to SLGT

β–ͺ Superconducting test masses are magnetically levitated.

β–ͺ Tensor GW detector by combining six test masses

β„Žπ‘–π‘– 𝑑 =2

𝐿π‘₯+𝑖𝑖 𝑑 βˆ’ π‘₯βˆ’π‘–π‘– 𝑑

β„Žπ‘–π‘— 𝑑 =1

𝐿π‘₯+𝑖𝑗 𝑑 βˆ’ π‘₯βˆ’π‘–π‘— 𝑑 βˆ’ π‘₯βˆ’π‘—π‘– 𝑑 βˆ’ π‘₯+𝑗𝑖 𝑑 , 𝑖 β‰  𝑗

β–ͺ Source direction and wave polarization can be determined by a single detector.

β–ͺ Enlargement of SGG (Superconducting Gravity Gradiometer)

Paik et al. 2016

Page 6: Introduction to SLGT: Binary Black Hole Coalescence and

Introduction to SLGT

http://rhcole.com/apps/GWplotter/

eLISA

aLIGO

SLGT

Page 7: Introduction to SLGT: Binary Black Hole Coalescence and

Gravitational Wave(GW) sources

β–ͺ GRB/Supernova, Spinning Neutron star, Cosmological Sources, …

β–ͺ Compact Binary Coalescence (CBC)– Strongest source

– Predictable wave forms

– Detectable frequency & Strength for ground-based detectors

Page 8: Introduction to SLGT: Binary Black Hole Coalescence and

Formation of Binary Black Hole (BBH)

β–ͺ Environment

– Field or disk β–ͺ Stellar binary evolution

β–ͺ Mass transfer, common envelope, …

– Globular cluster or galactic centerβ–ͺ Dynamics of cluster – core collapse, mass segregation

β–ͺ Three-body process

β–ͺ Capture driven by gravitational radiation (GR capture)

β–ͺ Intermediate mass black hole

Page 9: Introduction to SLGT: Binary Black Hole Coalescence and

Main target of SLGT

β–ͺ Frequency range of SLGTβ€’ Lower than aLIGO: 0.1-10 Hz

β–ͺ Highest inspiral frequency of BBH

β€’ Innermost Stable Circular Orbit (ISCO) π‘ŸπΌπ‘†πΆπ‘‚ =6𝐺𝑀

𝑐2

β€’ 𝑓𝐼𝑆𝐢𝑂,πΊπ‘Š =1

πœ‹

1

6

3/2 𝑐3

𝐺(π‘š1+π‘š2)~

4396

𝑀

π‘€βŠ™

Hz

β–ͺ Intermediate Mass Black Hole (IMBH) binary

β–ͺ Intermediate Mass Ratio Inspiral (IMRI)

Page 10: Introduction to SLGT: Binary Black Hole Coalescence and

ASD & SNR of BBH

β–ͺ ASD (Amplitude spectral density)π‘†β„Ž(𝑓) = 2𝑓1/2 ΰ·¨β„Ž(𝑓)

β–ͺ SNR (Signal to noise ratio)

𝜌 = 4ࢱ0

𝑓𝐼𝑆𝐢𝑂 ΰ·¨β„Ž(𝑓)2

𝑆𝑛(𝑓)𝑑𝑓

β–ͺ For the inspiral phase,

ΰ·¨β„Ž(𝑓) =2

𝐷

5

96πœ‹βˆ’2/3

1 + 𝑧 𝐺𝑀𝑐

𝑐3

5/6

π‘π‘“βˆ’7/6

wβ„Žπ‘’π‘Ÿπ‘’ 𝐷 𝑧 = (1 + 𝑧)𝑐

𝐻0ࢱ0

𝑧 𝑑𝑧′

Ξ©π‘š(1 + 𝑧′)3+Ξ©π‘˜(1 + 𝑧′)2+ΩΛ

(Dalal et al. 2006, Abadie et al. 2010, Moore et al. 2015)

Page 11: Introduction to SLGT: Binary Black Hole Coalescence and

Inspiral + Merger + Ringdown

β–ͺ For the non-precessing spins (Ajith et al. 2011)

β–ͺ ΰ·¨β„Ž 𝑓 = 𝐴 𝑓 π‘’βˆ’π‘–Ξ¨ 𝑓

𝐴 𝑓 = 𝐢𝑓1βˆ’7/6

π‘“β€²βˆ’76 1 +

𝑖=2

3

𝛼𝑖𝑣𝑖 𝑖𝑓 𝑓 < 𝑓1

πœ”π‘šπ‘“β€²βˆ’23 1 +

𝑖=1

2

πœ€π‘–π‘£π‘– 𝑖𝑓 𝑓1 ≀ 𝑓 < 𝑓2

πœ”π‘Ÿβ„’ 𝑓, 𝑓2, 𝜎 𝑖𝑓 𝑓2 ≀ 𝑓 < 𝑓3

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑓′ ≑ ΀𝑓 𝑓1 , 𝑣 ≑ πœ‹π‘€π‘“ Ξ€1 3, πœ€1 = 1.4547πœ’ βˆ’ 1.8897, πœ€2 = βˆ’1.8153πœ’ + 1.6557,

𝛼2 = βˆ’ Ξ€323 224 + Ξ€451πœ‚ 168 , 𝛼3 = Ξ€27 8 βˆ’ Ξ€11πœ‚ 6 πœ’, πœ‚ β‰‘π‘š1π‘š2

π‘š1+π‘š22 , Ο‡ ≑

π‘š1πœ’1+π‘š2πœ’2

π‘š1+π‘š2,

β„’: πΏπ‘œπ‘Ÿπ‘’π‘›π‘‘π‘§π‘–π‘Žπ‘› π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

πœ‡π‘˜ ≑ 𝑓1, 𝑓2, 𝜎, 𝑓3 , πœ‹π‘€πœ‡π‘˜ = πœ‡π‘˜0 +

𝑖=1

3

𝑗=0

𝑁

π‘¦π‘˜π‘–π‘—πœ‚π‘–πœ’π‘— , 𝑁 ≑ min(3 βˆ’ 𝑖, 2)

Page 12: Introduction to SLGT: Binary Black Hole Coalescence and

Horizon distance

Binary: face on Equal mass Ξ€π‘š1 π‘š2 = 1,SNR 𝜌 = 5

Page 13: Introduction to SLGT: Binary Black Hole Coalescence and

IMBH formation (Giersz et al. 2016)

β–ͺ Existence of IMBH?– Extrapolating the relation between the BH mass and the velocity dispersion

of host galaxy to the globular cluster (Gultekin et al. 2009)

– Observational evidences ?(Patruno et al. 2006, Maccarone et al. 2007, Oka et al. 2016, Kiziltan et al. 2017)

β–ͺ Formation mechanisms1. Direct collapse of PopIII stars (Madau & Rees 2001)

2. Runaway merging of massive main sequence stars in dense young star clusters (Portegies Zwart et al. 2004)

3. Accretion of gas on the stellar mass BHs (Leigh et al. 2013)

4. Buildup of BH mass through the mergers in dynamical interactions and mass transfers in binaries (Giersz et al. 2015)

Page 14: Introduction to SLGT: Binary Black Hole Coalescence and

Detection Rate of IMBH binary (IMBHB)

β–ͺ Fregeau et al. (2006), Amaro-Seoane & Santamaria (2010)

where 𝑑2𝑀𝑆𝐹/𝑑𝑉𝑐𝑑𝑑𝑒 : star formation rate (SFR) per unit comoving volume and unit local time

(Madau & Pozzetti 2000, Steidel et al. 1999, Blain et al. 1999)

𝑔𝑐𝑙: fraction of star forming mass that goes into star clusters

𝑔: fraction of clusters that have IMBHBs

𝑓(𝑀𝑐𝑙): distribution function of cluster masses (Zhang & Fall 1999, 𝑓 𝑀𝑐𝑙 ∝ π‘€π‘π‘™βˆ’2, 103.5 βˆ’ 107MβŠ™)

β–ͺ Mass fraction of IMBHB in the cluster is assumed to be 𝑓𝐺𝐢 = 2 Γ— 10βˆ’3.

Page 15: Introduction to SLGT: Binary Black Hole Coalescence and

SFR model

β–ͺ SF1 (Madau & Pozzetti 2000)𝑑2𝑀𝑆𝐹1

𝑑𝑉𝑐𝑑𝑑𝑒= 0.3β„Ž65𝐹 𝑧

exp 3.4𝑧

exp 3.8𝑧 +45MβŠ™ yr

-1 Mpc-3

β–ͺ SF2 (Steidel et al. 1999)

𝑑2𝑀𝑆𝐹2

𝑑𝑉𝑐𝑑𝑑𝑒= 0.15β„Ž65𝐹 𝑧

exp 3.4𝑧

exp 3.4𝑧 +22MβŠ™ yr

-1 Mpc-3

β–ͺ SF3 (Blain et al. 1999)

𝑑2𝑀𝑆𝐹3

𝑑𝑉𝑐𝑑𝑑𝑒= 0.2β„Ž65𝐹 𝑧

exp 3.05π‘§βˆ’0.4

exp 2.93𝑧 +15MβŠ™ yr

-1 Mpc-3

where β„Ž65 = β„Ž/0.65

and 𝐹 𝑧 = Ω𝑀 1 + 𝑧 3 + Ξ©π‘˜ 1 + 𝑧 2 + ΩΛ/(1 + 𝑧)3/2

Page 16: Introduction to SLGT: Binary Black Hole Coalescence and

β–ͺ Double cluster channel (collision of two clusters)

β–ͺ π‘…π‘‘π‘œπ‘’π‘π‘™π‘’ = π‘ƒπ‘šπ‘’π‘Ÿπ‘”π‘…π‘ π‘–π‘›π‘”π‘™π‘’ (π‘ƒπ‘šπ‘’π‘Ÿπ‘” ∈ [0.1,1])

β–ͺ Should be considered more– Tensor detector– IMBHB mass fraction– More BH mergers in a cluster– Higher modes of GWs– IMRI rates– Orbital hang-up (BH spin effect)

Detection Rate of IMBH binary (IMBHB)

Estimation Conservative Reference Optimistic

Assumptions

SNR 𝜌 = 5, πœ‚ = 0.25, πœ’ = 0, π‘‘π‘œπ‘π‘  = 1 year, 𝑓𝐺𝐢 = 2 Γ— 10βˆ’3

Averaged over binary orientation

𝑀𝐡𝐡𝐻,π‘šπ‘Žπ‘₯ = 2 Γ— 104 MβŠ™,

𝑔𝑐𝑙 = 0.0025,𝑔 = 0.1,Ξ€π‘…π‘‘π‘œπ‘’π‘π‘™π‘’ 𝑅𝑠𝑖𝑛𝑔𝑙𝑒 = 0.1

𝑀𝐡𝐡𝐻,π‘šπ‘Žπ‘₯ = 2 Γ— 104 MβŠ™,

𝑔𝑐𝑙 = 0.1,𝑔 = 0.1,Ξ€π‘…π‘‘π‘œπ‘’π‘π‘™π‘’ 𝑅𝑠𝑖𝑛𝑔𝑙𝑒 = 0.5

𝑀𝐡𝐡𝐻,π‘šπ‘Žπ‘₯ = 105 MβŠ™,

𝑔𝑐𝑙 = 0.1,𝑔 = 0.5,Ξ€π‘…π‘‘π‘œπ‘’π‘π‘™π‘’ 𝑅𝑠𝑖𝑛𝑔𝑙𝑒 = 1

Detection Rate [yr-1] 0.013 0.72 7.5

Page 17: Introduction to SLGT: Binary Black Hole Coalescence and

Summary

β–ͺ BBH sources for SLGT (0.1-10 Hz) are studied.

β–ͺ aSOGRO (50m) is expected to detect BBH coalescences.– IMBHBs up to ~105 MβŠ™.

– IMRIs with ~104 MβŠ™.

– GW150914-like BBH inspirals ?

β–ͺ Detection rate of IMBHBs are expected (0.013-7.5) yr-1 with aSOGRO (50m).– But highly dependent on the detector sensitivity and astrophysical

models.